Effects of Citric Acid and Humic-like Substances on Yield, Enzyme Activities, and Expression of Genes Involved in Iron Uptake in Tomato Plants
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Growth Conditions
2.2. Enzymatic Activity
2.3. Real-Time Reverse-Transcriptase PCR
2.4. Data Analysis
3. Results
3.1. Plant Growth
3.2. Enzymatic Activity
3.2.1. H+-ATPase Activity
3.2.2. PEPC Activity
3.2.3. FRO Activity
3.3. Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murgia, I.; Marzorati, F.; Vigani, G.; Morandini, P. Plant iron nutrition: The long road from soil to seeds. J. Exp. Bot. 2022, 73, 1809–1824. [Google Scholar] [CrossRef] [PubMed]
- Mori, S. Iron acquisition by plants. Curr. Opin. Plant Biol. 1999, 2, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Nozoye, T.; Nishizawa, N.K. Iron transport and its regulation in plants. Free Radic. Biol. Med. 2019, 133, 11–20. [Google Scholar] [CrossRef]
- Wahba, M.M.; Labib, F.; Zaghloul, A. Management of Calcareous Soils in Arid Region. Int. J. Environ. Pollut. Environ. Model. 2019, 2, 248–258. [Google Scholar]
- Marschner, H.; Römheld, V. Strategies of plants for acquisition of iron. Plant Soil 1994, 165, 261–274. [Google Scholar] [CrossRef]
- Martín-Barranco, A.; Thomine, S.; Vert, G.; Zelazny, E. A quick journey into the diversity of iron uptake strategies in photosynthetic organisms. Plant Signal. Behav. 2021, 16, 1975088. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.F.; Chao, D.Y. Similarities and differences in iron homeostasis strategies between graminaceous and nongraminaceous plants. New Phytol. 2022, 236, 1655–1660. [Google Scholar] [CrossRef]
- Li, S.; Song, Z.; Liu, X.; Zhou, X.; Yang, W.; Chen, J.; Chen, R. Mediation of Zinc and Iron Accumulation in Maize by ZmIRT2, a Novel Iron-Regulated Transporter. Plant Cell Physiol. 2022, 63, 521–534. [Google Scholar] [CrossRef]
- Santi, S.; Schmidt, W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol. 2009, 183, 1072–1084. [Google Scholar] [CrossRef]
- Gupta, P.K.; Balyan, H.S.; Sharma, S.; Kumar, R. Biofortification and bioavailability of Zn, Fe and Se in wheat: Present status and future prospects. Theor. Appl. Genet. 2021, 134, 1–35. [Google Scholar] [CrossRef]
- Schwarz, B.; Bauer, P. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures. J. Exp. Bot. 2020, 71, 1694–1705. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rosenkranz, T.; Oburger, E.; Baune, M.; Weber, G.; Puschenreiter, M. Root exudation of coumarins from soil-grown Arabidopsis thaliana in response to iron deficiency. Rhizosphere 2021, 17, 100296. [Google Scholar] [CrossRef]
- Vélez-Bermúdez, I.C.; Schmidt, W. Plant strategies to mine iron from alkaline substrates. Plant Soil 2023, 483, 1–25. [Google Scholar] [CrossRef]
- Jiménez, M.R.; Casanova, L.; Saavedra, T.; Gama, F.; Suárez, M.P.; Correia, P.J.; Pestana, M. Responses of tomato (Solanum lycopersicum L.) plants to iron deficiency in the root zone. Folia Hortic. 2019, 31, 223–234. [Google Scholar] [CrossRef][Green Version]
- Kabir, A.H.; Paltridge, N.G.; Able, A.J.; Paull, J.G.; Stangoulis, J.C.R. Natural variation for Fe-efficiency is associated with upregulation of Strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L. Planta 2012, 235, 1409–1419. [Google Scholar] [CrossRef] [PubMed]
- Santi, S.; Cesco, S.; Varanini, Z.; Pinton, R. Two plasma membrane H+-ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiol. Biochem. 2005, 43, 287–292. [Google Scholar] [CrossRef]
- Fan, Z.; Wu, Y.; Zhao, L.; Fu, L.; Deng, L.; Deng, J.; Ding, D.; Xiao, S.; Deng, X.; Peng, S.; et al. MYB308-mediated transcriptional activation of plasma membrane H+-ATPase 6 promotes iron uptake in citrus. Hortic. Res. 2022, 9, uhac088. [Google Scholar] [CrossRef]
- Filiz, E.; Kurt, F. FIT (Fer-like iron deficiency-induced transcription factor) in plant iron homeostasis: Genome-wide identification and bioinformatics analyses. J. Plant Biochem. Biotechnol. 2019, 28, 143–157. [Google Scholar] [CrossRef]
- Ferreira, C.M.H.; López-Rayo, S.; Lucena, J.J.; Soares, E.V.; Soares, H. Evaluation of the Efficacy of Two New Biotechnological-Based Freeze-Dried Fertilizers for Sustainable Fe Deficiency Correction of Soybean Plants Grown in Calcareous Soils. Front. Plant Sci. 2019, 10, 1335. [Google Scholar] [CrossRef]
- Zanin, L.; Tomasi, N.; Cesco, S.; Varanini, Z.; Pinton, R. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front. Plant Sci. 2019, 10, 675. [Google Scholar] [CrossRef][Green Version]
- Pérez-Labrada, F.; Benavides-Mendoza, A.; Juárez-Maldonado, A.; Solís-Gaona, S.; González-Morales, S. Organic acids combined with Fe-chelate improves ferric nutrition in tomato grown in calcisol soil. J. Soil Sci. Plant Nutr. 2020, 20, 673–683. [Google Scholar] [CrossRef]
- Al-Balawna, Z.A.; Abu-Abdoun, I.I. Fate of Citric Acid Addition on Mineral Elements Availability in Calcareous Soils of Jordan Valley. Int. Res. J. Pure Appl. Chem. 2021, 22, 82–89. [Google Scholar] [CrossRef]
- Olego, M.Á.; Cuesta Lasso, M.; Quiroga, M.J.; Visconti, F.; López, R.; Garzón-Jimeno, E. Effects of Leonardite Amendments on Vineyard Calcareous Soil Fertility, Vine Nutrition and Grape Quality. Plants 2022, 11, 356. [Google Scholar] [CrossRef]
- Zanin, L.; Tomasi, N.; Rizzardo, C.; Gottardi, S.; Terzano, R.; Alfeld, M.; Janssens, K.; De Nobili, M.; Mimmo, T.; Cesco, S. Iron allocation in leaves of Fe-deficient cucumber plants fed with natural Fe complexes. Physiol. Plant. 2015, 154, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, A.; Zanin, L.; Tomasi, N.; Avesani, L.; Pinton, R.; Varanini, Z.; Cesco, S. Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent. BMC Genom. 2016, 17, 35. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cieschi, M.T.; Lucena, J.J. Leonardite iron humate and synthetic iron chelate mixtures in Glycine max nutrition. J. Sci. Food Agric. 2021, 101, 4207–4219. [Google Scholar] [CrossRef]
- Steiner, A.A. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 1961, 15, 134–154. [Google Scholar] [CrossRef][Green Version]
- Rabotti, G.; Zocchi, G. Plasma membrane-bound H+-ATPase and reductase activities in Fe-deficient cucumber roots. Physiol. Plant. 1994, 90, 779–785. [Google Scholar] [CrossRef]
- Palmgren, M.G.; Askerlund, P.; Fredrikson, K.; Widell, S.; Sommarin, M.; Larsson, C. Sealed Inside-Out and Right-Side-Out Plasma Membrane Vesicles. Plant Physiol. 1990, 92, 871–880. [Google Scholar] [CrossRef][Green Version]
- Nisi, P.D.; Zochi, G. Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: Activity and kinetic characterization. J. Exp. Bot. 2000, 51, 1903–1909. [Google Scholar] [CrossRef][Green Version]
- Romera, F.; Welch, R.; Norvell, W.; Schaefer, S.; Kochian, L. Ethylene involvement in the over-expression of Fe(III)-chelate reductase by roots of E107 pea [Pisum sativum L. (brz, brz)] and chloronerva tomato (Lycopersicon esculentum L.) mutant genotypes. Biometals 1996, 9, 38–44. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Rio, D.C.; Ares, M.; Hannon, G.J.; Nilsen, T.W. Purification of RNA Using TRIzol (TRI Reagent). Cold Spring Harb. Protoc. 2010, 2010, pdb-prot5439. [Google Scholar] [CrossRef] [PubMed]
- Paolacci, A.R.; Celletti, S.; Catarcione, G.; Hawkesford, M.J.; Astolfi, S.; Ciaffi, M. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings. J. Integr. Plant Biol. 2014, 56, 88–100. [Google Scholar] [CrossRef]
- Diamantopoulos, P.D.; Aivalakis, G.; Flemetakis, E.; Katinakis, P. Expression of three β-type carbonic anhydrases in tomato fruits. Mol. Biol. Rep. 2013, 40, 4189–4196. [Google Scholar] [CrossRef]
- Larionov, A.; Krause, A.; Miller, W. A standard curve based method for relative real time PCR data processing. BMC Bioinform. 2005, 6, 62. [Google Scholar] [CrossRef][Green Version]
- Dembélé, D.; Kastner, P. Fold change rank ordering statistics: A new method for detecting differentially expressed genes. BMC Bioinform. 2014, 15, 14. [Google Scholar] [CrossRef][Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef][Green Version]
- Pérez-Labrada, F.; Mendoza, A.B.; Valdez-Aguilar, L.A.; Robledo-Torres, V. Citric acid in the nutrient solution increases the mineral absorption in potted tomato grown in calcareous soil. Pakistan J. Bot. 2016, 48, 67–74. [Google Scholar]
- Massimi, M.; Radócz, L.; Csótó, A. Impact of Organic Acids and Biological Treatments in Foliar Nutrition on Tomato and Pepper Plants. Horticulturae 2023, 9, 413. [Google Scholar] [CrossRef]
- Sharma, S.; Anand, N.; Bindraban, P.S.; Pandey, R. Foliar Application of Humic Acid with Fe Supplement Improved Rice, Soybean, and Lettuce Iron Fortification. Agriculture 2023, 13, 132. [Google Scholar] [CrossRef]
- Zia-ur-Rehman, M.; Bani Mfarrej, M.F.; Usman, M.; Azhar, M.; Rizwan, M.; Alharby, H.F.; Bamagoos, A.A.; Alshamrani, R.; Ahmad, Z. Exogenous application of low and high molecular weight organic acids differentially affected the uptake of cadmium in wheat-rice cropping system in alkaline calcareous soil. Environ. Pollut. 2023, 329, 121682. [Google Scholar] [CrossRef] [PubMed]
- Cieschi, M.T.; Polyakov, A.Y.; Lebedev, V.A.; Volkov, D.S.; Pankratov, D.A.; Veligzhanin, A.A.; Perminova, I.V.; Lucena, J.J. Eco-friendly iron-humic nanofertilizers synthesis for the prevention of iron chlorosis in soybean (Glycine max) grown in calcareous soil. Front. Plant Sci. 2019, 10, 413. [Google Scholar] [CrossRef] [PubMed]
- Justi, M.; Silva, C.A.; Rosa, S.D. Organic acids as complexing agents for iron and their effects on the nutrition and growth of maize and soybean. Arch. Agron. Soil Sci. 2022, 68, 1369–1384. [Google Scholar] [CrossRef]
- Jalali, M.; Jalali, M. Effect of Low-Molecular-Weight Organic Acids on the Release of Phosphorus from Amended Calcareous Soils: Experimental and Modeling. J. Soil Sci. Plant Nutr. 2022, 22, 4179–4193. [Google Scholar] [CrossRef]
- Karadihalli Thammaiah, M.; Pandey, R.N.; Purakayastha, T.J.; Chobhe, K.A.; Vashisth, A.; Chandra, S.; Pawar, A.B.; Trivedi, A. Impact of Low Molecular Weight Organic Acids on Soil Phosphorus Release and Availability to Wheat. Commun. Soil Sci. Plant Anal. 2022, 53, 2497–2508. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, C.; Xiao, X.; Li, M.; Zhao, W.; Wang, Y.; Yang, Y. The Hormetic Response of Soil P Extraction Induced by Low-Molecular-Weight Organic Acids. Processes 2023, 11, 216. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, J.; Huo, L.; Li, Y.C.; Li, X.; Xia, L.; Zhou, Z.; Zhang, M.; Li, B. Humic acids derived from Leonardite to improve enzymatic activities and bioavailability of nutrients in a calcareous soil. Int. J. Agric. Biol. Eng. 2020, 13, 200–205. [Google Scholar] [CrossRef]
- Abdulla, A.A.; Esmai, A.O.; Yaseen, H.S. Combination Influence of Humic Acid and Chelated Iron on yield and quality of Broccoli (Brassica oleracea L.) in Erbil, Iraqi Kurdistan Region. ZANCO J. Pure Appl. Sci. 2023, 35, 126–135. [Google Scholar] [CrossRef]
- Gayomba, S.R.; Zhai, Z.; Jung, H.; Vatamaniuk, O.K. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. Front. Plant Sci. 2015, 6, 716. [Google Scholar] [CrossRef][Green Version]
- Palmgren, M.G. Plant plasma membrane H+-ATPases: Powerhouses for Nutrient Uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 817–845. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, L.; Zhao, R.; Yu, J.; Gu, J.; Li, Y.; Chen, W.; Guo, W. Functional analysis of plasma membrane H+-ATPases in response to alkaline stress in blueberry. Sci. Hortic. 2022, 306, 111453. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Elena, A.; Diane, L.; Eva, B.; Marta, F.; Roberto, B.; Zamarreño, A.M.; García-Mina, J.M. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants. Plant Physiol. Biochem. 2009, 47, 215–223. [Google Scholar] [CrossRef]
- Mora, V.; Bacaicoa, E.; Zamarreño, A.-M.; Aguirre, E.; Garnica, M.; Fuentes, M.; García-Mina, J.-M. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J. Plant Physiol. 2010, 167, 633–642. [Google Scholar] [CrossRef]
- Alghamdi, S.A.; Al-Ghamdi, F.A.M.; El-Zohri, M.; Al-Ghamdi, A.A.M. Modifying of calcareous soil with some acidifying materials and its effect on Helianthus annuus (L.) growth. Saudi J. Biol. Sci. 2023, 30, 103568. [Google Scholar] [CrossRef]
- Astolfi, S.; Pii, Y.; Mimmo, T.; Lucini, L.; Miras-Moreno, M.B.; Coppa, E.; Violino, S.; Celletti, S.; Cesco, S. Single and Combined Fe and S Deficiency Differentially Modulate Root Exudate Composition in Tomato: A Double Strategy for Fe Acquisition? Int. J. Mol. Sci. 2020, 21, 4038. [Google Scholar] [CrossRef]
- Martinez-Cuenca, M.-R.; Iglesias, D.J.; Talon, M.; Abadia, J.; Lopez-Millan, A.-F.; Primo-Millo, E.; Legaz, F. Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. × Poncirus trifoliata (L.) Raf.]. Tree Physiol. 2013, 33, 320–329. [Google Scholar] [CrossRef][Green Version]
- Covarrubias, J.I.; Rombolà, A.D. Organic acids metabolism in roots of grapevine rootstocks under severe iron deficiency. Plant Soil 2015, 394, 165–175. [Google Scholar] [CrossRef]
- Alhendawi, R.A.M.; Mohamed, A.A.M. The influence of high pH on maize growth and utilization of micronutrients under various concentrations of bicarbonates. Am. J. Agric. Environ. Sci. 2015, 15, 259–264. [Google Scholar] [CrossRef]
- Kong, D.; Chen, C.; Wu, H.; Li, Y.; Li, J.; Ling, H.-Q. Sequence Diversity and Enzyme Activity of Ferric-Chelate Reductase LeFRO1 in Tomato. J. Genet. Genomics 2013, 40, 565–573. [Google Scholar] [CrossRef]
- Larbi, A.; Morales, F.; Abadía, A.; Abadía, J. Changes in iron and organic acid concentrations in xylem sap and apoplastic fluid of iron-deficient Beta vulgaris plants in response to iron resupply. J. Plant Physiol. 2010, 167, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, S.; Li, F.; Sun, M.; Liang, Z.; Sun, Z.; Yu, F.; Li, H. The low ferric chelate reductase activity and high apoplastic pH in leaves cause iron deficiency chlorosis in ‘Huangguan’ pears grafted onto quince A grown in calcareous soil. Sci. Hortic. 2023, 310, 111754. [Google Scholar] [CrossRef]
- Zamboni, A.; Zanin, L.; Tomasi, N.; Pezzotti, M.; Pinton, R.; Varanini, Z.; Cesco, S. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genom. 2012, 13, 101. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Skogerboe, R.K.; Wilson, S.A. Reduction of ionic species by fulvic acid. Anal. Chem. 1981, 53, 228–232. [Google Scholar] [CrossRef]
- Struyk, Z.; Sposito, G. Redox properties of standard humic acids. Geoderma 2001, 102, 329–346. [Google Scholar] [CrossRef]
- Yang, F.; Tang, C.; Antonietti, M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev. 2021, 50, 6221–6239. [Google Scholar] [CrossRef]
- Cieschi, M.T.; Lucena, J.J. Iron and Humic Acid Accumulation on Soybean Roots Fertilized with Leonardite Iron Humates under Calcareous Conditions. J. Agric. Food Chem. 2018, 66, 13386–13396. [Google Scholar] [CrossRef]
- Tahjib-Ul-Arif, M.; Zahan, M.I.; Karim, M.M.; Imran, S.; Hunter, C.T.; Islam, M.S.; Mia, M.A.; Hannan, M.A.; Rhaman, M.S.; Hossain, M.A.; et al. Citric Acid-Mediated Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2021, 22, 7235. [Google Scholar] [CrossRef]
- Tomasi, N.; De Nobili, M.; Gottardi, S.; Zanin, L.; Mimmo, T.; Varanini, Z.; Römheld, V.; Pinton, R.; Cesco, S. Physiological and molecular characterization of Fe acquisition by tomato plants from natural Fe complexes. Biol. Fertil. Soils 2013, 49, 187–200. [Google Scholar] [CrossRef]
- Lee, S.; Rahman, M.M.; Nakanishi, H.; Nishizawa, N.K.; An, G.; Nam, H.G.; Jeon, J.-S. Concomitant Activation of OsNAS2 and OsNAS3 Contributes to the Enhanced Accumulation of Iron and Zinc in Rice. Int. J. Mol. Sci. 2023, 24, 6568. [Google Scholar] [CrossRef] [PubMed]
- Vigani, G.; Pii, Y.; Celletti, S.; Maver, M.; Mimmo, T.; Cesco, S.; Astolfi, S. Mitochondria dysfunctions under Fe and S deficiency: Is citric acid involved in the regulation of adaptive responses? Plant Physiol. Biochem. 2018, 126, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Waseem, M.; Ahmad, F. The phosphoenolpyruvate carboxylase gene family identification and expression analysis under abiotic and phytohormone stresses in Solanum lycopersicum L. Gene 2019, 690, 11–20. [Google Scholar] [CrossRef]
- An, Y.; Zhou, P.; Xiao, Q.; Shi, D. Effects of foliar application of organic acids on alleviation of aluminum toxicity in alfalfa. J. Plant Nutr. Soil Sci. 2014, 177, 421–430. [Google Scholar] [CrossRef]
- Hsieh, E.-J.; Waters, B.M. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: Implications for iron deficiency chlorosis. J. Exp. Bot. 2016, 67, 5671–5685. [Google Scholar] [CrossRef][Green Version]
- Li, L.; Cheng, X.; Ling, H.-Q. Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Plant Mol. Biol. 2004, 54, 125–136. [Google Scholar] [CrossRef]
- Tomasi, N.; Rizzardo, C.; Monte, R.; Gottardi, S.; Jelali, N.; Terzano, R.; Vekemans, B.; De Nobili, M.; Varanini, Z.; Pinton, R.; et al. Micro-analytical, physiological and molecular aspects of Fe acquisition in leaves of Fe-deficient tomato plants re-supplied with natural Fe-complexes in nutrient solution. Plant Soil 2009, 325, 25–38. [Google Scholar] [CrossRef]
- Drincovich, M.F.; Voll, L.M.; Maurino, V.G. Editorial: On the Diversity of Roles of Organic Acids. Front. Plant Sci. 2016, 7, 1592. [Google Scholar] [CrossRef][Green Version]
Name Gene | Nomenclature | Forward Primer 5′-3′ | Reverse Primer 5′-3′ | Tm (°C) |
---|---|---|---|---|
Actin | ACTIN | CCCAGGCACACAGGTGTTAT | CAGGAGCAACTCGAAGCTCA | 60 |
H+-ATPase | LeHA1 | GAACCCTTCATGGGCTCCAA | GCAACTCACGTAGCCTAGCA | 60 |
PEPC | LePEPC1 | TGCTGCATTGTTCGACAAGC | CAAAAGTTCGCCGAAAGACAAC | 60 |
FRO | LeFRO1 | GCGGTGTTGAATATGCTAATC | AAACTTTCCATCTCCCTATCG | 60 |
Sampling | Treatment | Stem Diameter (mm) | Plant Height (cm) | Number of Leaves | SPAD-Unit | Total of Fruit Harvest | Production per Plant (kg) |
---|---|---|---|---|---|---|---|
27 DAT | CA | 10.80 ± 0.52 a† | 45.70 ± 3.38 a | 13.20 ± 0.45 a | 54.19 ± 2.78 a | - | - |
HLS | 10.24 ± 0.96 a | 39.40 ± 4.39 b | 13.40 ± 0.89 a | 53.65 ± 2.38 a | - | - | |
WOA | 10.00 ± 0.29 a | 45.50 ± 3.87 a | 12.60 ± 0.89 a | 53.85 ± 2.95 a | - | - | |
ID | 8.22 ± 1.90 b | 32.80 ± 5.54 c | 10.80 ± 2.17 b | 33.55 ± 5.64 b | - | - | |
49 DAT | CA | 11.66 ± 1.21 a | 71.20 ± 3.63 a | 18.00 ± 2.24 a | 55.43 ± 3.42 a | - | - |
HLS | 12.54 ± 1.03 a | 68.20 ± 8.32 a | 15.20 ± 2.17 b | 57.91 ± 3.51 a | - | - | |
WOA | 12.02 ± 0.45 a | 73.40 ± 5.94 a | 18.00 ± 0.71 a | 54.85 ± 2.17 a | - | - | |
ID | 9.74 ± 0.56 b | 53.40 ± 2.30 b | 12.60 ± 1.67 c | 27.51 ± 5.13 b | - | - | |
84 DAT | CA | 12.98 ± 1.28 ab | 101.60 ± 11.04 a | 23.00 ± 2.35 a | 54.21 ± 4.12 a | 57.75 ± 6.44 ab | 2.76 ± 0.28 a |
HLS | 13.84 ± 1.23 a | 102.60 ± 13.45 a | 23.80 ± 1.92 a | 56.03 ± 4.30 a | 61.95 ± 6.73 a | 2.82 ± 0.27 a | |
WOA | 11.98 ± 0.67 bc | 103.40 ± 4.10 a | 21.20 ± 1.48 a | 48.77 ± 5.91 a | 53.40 ± 4.38 b | 2.67 ± 0.08 a | |
ID | 11.40 ± 1.18 c | 64.60 ± 9.42 b | 17.00 ± 3.46 b | 17.34 ± 16.92 b | 32.05 ± 3.09 c | 0.77 ± 0.15 b |
Tissue | Sampling | Treatment | H+-ATPase | PEPC | FRO |
---|---|---|---|---|---|
Leaf | 27 DAT | CA | 1.46 ± 0.18 b† | 482.3 ± 64.0 ab | 7.2 ± 0.2 b |
HLS | 1.84 ± 0.07 ab | 267.1 ± 65.7 cd | 7.4 ± 0.1 b | ||
WOA | 1.57 ± 0.05 ab | 633.6 ± 154.2 a | 7.2 ± 0.3 b | ||
ID | 3.76 ± 2.22 a | 343.5 ± 56.9 bc | 9.6 ± 0.3 b | ||
49 DAT | CA | 0.92 ± 0.11 b | 834.2 ± 151.4 a | 7.7 ± 0.2 b | |
HLS | 0.89 ± 0.04 b | 856.5 ± 140.6 a | 7.5 ± 0.3 b | ||
WOA | 0.89 ± 0.05 b | 784.9 ± 194.0 a | 9.1 ± 0.4 b | ||
ID | 0.65 ± 0.05 c | 552.7 ± 113.0 a | 6.7 ± 0.3 b | ||
84 DAT | CA | 2.65 ± 1.33 a | 465.6 ± 221.8 b | 10.7 ± 1.2 b | |
HLS | 1.58 ± 0.06 a | 759.6 ± 136.5 a | 8.2 ± 0.2 bc | ||
WOA | 1.25 ± 0.13 a | 141.0 ± 27.0 cd | 10.5 ± 1.1 b | ||
ID | 1.81 ± 0.63 a | 304.0 ± 99.5 bc | 6.7 ± 1.1 c | ||
Root | 27 DAT | CA | 0.016 ± 0.0005 b | 51.5 ± 29.7 e | 15.8 ± 2.1 a |
HLS | 0.017 ± 0.0007 b | 95.2 ± 43.1 de | 17.2 ± 1.5 a | ||
WOA | 0.017 ± 0.0004 b | 191.8 ± 16.0 cde | 17.3 ± 2.4 a | ||
ID | 0.017 ± 0.0009 b | 156.9 ± 48.3 cde | 14.5 ± 1.3 a | ||
49 DAT | CA | 1.35 ± 0.05 a | 26.2 ± 21.5 b | 22.0 ± 1.2 a | |
HLS | 1.28 ± 0.02 a | 11.6 ± 7.0 b | 23.2 ± 0.7 a | ||
WOA | 1.26 ± 0.13 a | 16.6 ± 12.2 b | 22.2 ± 2.9 a | ||
ID | 1.32 ± 0.05 a | 4.6 ± 0.1 b | 25.3 ± 1.5 a | ||
84 DAT | CA | 1.50 ± 0.05 a | 4.5 ± 0.0 d | 21.6 ± 0.9 a | |
HLS | 1.27 ± 0.11 a | 205.6 ± 21.1 bcd | 20.1 ± 1.7 a | ||
WOA | 1.29 ± 0.03 a | 11.8 ± 7.6 d | 21.4 ± 1.1 a | ||
ID | 1.48 ± 0.04 a | 261.9 ± 16.5 bcd | 20.1 ± 1.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Labrada, F.; Benavides-Mendoza, A.; Juárez-Maldonado, A.; Solís-Gaona, S.; González-Morales, S. Effects of Citric Acid and Humic-like Substances on Yield, Enzyme Activities, and Expression of Genes Involved in Iron Uptake in Tomato Plants. Horticulturae 2023, 9, 630. https://doi.org/10.3390/horticulturae9060630
Pérez-Labrada F, Benavides-Mendoza A, Juárez-Maldonado A, Solís-Gaona S, González-Morales S. Effects of Citric Acid and Humic-like Substances on Yield, Enzyme Activities, and Expression of Genes Involved in Iron Uptake in Tomato Plants. Horticulturae. 2023; 9(6):630. https://doi.org/10.3390/horticulturae9060630
Chicago/Turabian StylePérez-Labrada, Fabián, Adalberto Benavides-Mendoza, Antonio Juárez-Maldonado, Susana Solís-Gaona, and Susana González-Morales. 2023. "Effects of Citric Acid and Humic-like Substances on Yield, Enzyme Activities, and Expression of Genes Involved in Iron Uptake in Tomato Plants" Horticulturae 9, no. 6: 630. https://doi.org/10.3390/horticulturae9060630
APA StylePérez-Labrada, F., Benavides-Mendoza, A., Juárez-Maldonado, A., Solís-Gaona, S., & González-Morales, S. (2023). Effects of Citric Acid and Humic-like Substances on Yield, Enzyme Activities, and Expression of Genes Involved in Iron Uptake in Tomato Plants. Horticulturae, 9(6), 630. https://doi.org/10.3390/horticulturae9060630