Effects of Low-Temperature Accumulation on Flowering of Prunus mume
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Method
2.2.1. Methods to Break Bud Dormancy under Different Low-Temperature Treatments
2.2.2. Experimental Methods for the Effect of Low-Temperature Accumulation on Flowering Traits
2.3. Indicators Measurement
2.3.1. Flowering Rate
2.3.2. Flower Diameter
2.3.3. Bud Morphology
2.4. Statistical Analysis
3. Results
3.1. Effect of Different Low-Temperature Treatments on Flowering Characteristics
3.1.1. Effect of Different Low-Temperature Treatments on Flowering Rate
3.1.2. Effects of Different Low-Temperature Treatments on the Flower Diameter
3.1.3. Effects of Different Low-Temperature Treatments on the Flowering Quality
3.2. Effects of Different Low-Temperature Accumulations on Flowering Characteristics
3.2.1. Morphological Changes in Flower Buds under Different Low-Temperature Accumulations
3.2.2. Effects of Different Low-Temperature Accumulations on Flowering Rate of Different P. mume Cultivars
3.2.3. Effects of Different Low-Temperature Accumulation on Flowering Quality of Different P. mume Cultivars
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, K.; Yang, W.; Zhou, Y.; Zhang, J.; Li, Y.; Ahmad, S.; Zhang, Q. Comparative transcriptome reveals benzenoid biosynthesis regulation as inducer of floral scent in the woody plant Prunus mume. Front. Plant Sci. 2017, 8, 319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, K.; Li, Q. Research on Chilling Requirements and Physiological Mechanisms of Prunus mume. Horticulturae 2023, 9, 603. [Google Scholar] [CrossRef]
- Chu, M.Y. China Fruit Records-Mei; China Forestry Press: Beijing, China, 1999. [Google Scholar]
- Faust, M.; Erez, A.; Rowland, L.J.; Wang, S.Y.; Norman, H.A. Bud dormancy in perennial fruit trees: Physiological basis for dormancy induction, maintenance, and release. HortScience 1997, 32, 623–629. [Google Scholar] [CrossRef]
- Coville, F.V. The Influence of Cold in Stimulating the Growth of Plants; Smithsonian Institution: Washington, DC, USA, 1920. [Google Scholar]
- Chandler, W.H. Chilling Requirements for Opening of Buds on Deciduous Orchard Trees and Some Other Plants in California; Forgotten Books: London, UK, 1937. [Google Scholar]
- Dokoozlian, N.K. Chilling temperature and duration interact on the budbreak of Perlette’grapevine cuttings. HortScience 1999, 34, 1–3. [Google Scholar] [CrossRef]
- Lavee, S.; May, P. Dormancy of grapevine buds-facts and speculation. Aust. J. Grape Wine Res. 1997, 3, 31–46. [Google Scholar] [CrossRef]
- Arora, R.; Rowland, L.J.; Tanino, K. Induction and release of bud dormancy in woody perennials: A science comes of age. HortScience 2003, 38, 911–921. [Google Scholar] [CrossRef]
- Heide, O.M.; Prestrud, A.K. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 2005, 25, 109–114. [Google Scholar] [CrossRef]
- Zohner, C.M.; Benito, B.M.; Svenning, J.C.; Renner, S.S. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Chang. 2016, 6, 1120–1123. [Google Scholar] [CrossRef]
- Li, Z.; Liu, N.; Zhang, W.; Wu, C.; Jiang, Y.; Ma, J. Integrated transcriptome and proteome analysis provides insight into chilling-induced dormancy breaking in Chimonanthus praecox. Hortic. Res. 2020, 7, 198. [Google Scholar] [CrossRef]
- Hu, Z.; Lin, S.; Wang, H.; Dai, J. Seasonal variations of cold hardiness and dormancy depth in five temperate woody plants in China. Front. For. Glob. Change 2022, 5, 249. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Ge, Q.; Dai, J. The interactive effects of chilling, photoperiod, and forcing temperature on flowering phenology of temperate woody plants. Front. Plant Sci. 2020, 11, 443. [Google Scholar] [CrossRef]
- Lin, S.; Wang, H.; Ge, Q.; Hu, Z. Effects of chilling on heat requirement of spring phenology vary between years. Agric. For. Meteorol. 2022, 312, 108718. [Google Scholar] [CrossRef]
- Hayat, F.; Ma, C.; Iqbal, S.; Huang, X.; Omondi, O.K.; Ni, Z. Rootstock-Mediated Transcriptional Changes Associated with Cold Tolerance in Prunus mume Leaves. Horticulturae 2021, 7, 572. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Q. Chilling requirement of Prunus mume cultivars. J. Beijing For. Univ. 2013, 35, 47–51. [Google Scholar] [CrossRef]
- Hussain, S.; Niu, Q.; Yang, F.; Hussain, N.; Teng, Y. The possible role of chilling in floral and vegetative bud dormancy release in Pyrus pyrifolia. Biol. Plant. 2015, 59, 726–734. [Google Scholar] [CrossRef]
- El-Yazal SA, S.; EI-Yazal, M.A. Chilling-Requirement Release of Seed and Bud Dormancy in Apricot. J. Hortic. Plant Res. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Du, Y.; Pan, Y.; Ma, K. Moderate chilling requirement controls budburst for subtropical species in China. Agric. For. Meteorol. 2019, 278, 107693. [Google Scholar] [CrossRef]
- Campoy, J.A.; Ruiz, D.; Nortes, M.D.; Egea, J. Temperature efficiency for dormancy release in apricot varies when applied at different amounts of chill accumulation. Plant Biol. 2013, 15, 28–35. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, J.; Yang, Z. Effect of low-temperature storage on the florescence regulation in Prunus mume. J. Beijing For. Univ. 2012, S1, 224–227. [Google Scholar] [CrossRef]
- Anzanello, R.; Fialho, F.B.; Santos, H.P. Chilling requirements and dormancy evolution in grapevine buds. Ciência Agrotecnologia 2018, 42, 364–371. [Google Scholar] [CrossRef]
- Gariglio, N.; Rossia, D.E.G.; Mendow, M.; Reig, C.; Agusti, M. Effect of artificial chilling on the depth of endodormancy and vegetative and flower budbreak of peach and nectarine cultivars using excised shoots. Sci. Hortic. 2006, 108, 371–377. [Google Scholar] [CrossRef]
- Jacobs, J.N.; Jacobs, G.; Cook, N.C. Chilling period influences the progression of bud dormancy more than does chilling temperature in apple and pear shoots. J. Hortic. Sci. Biotechnol. 2002, 77, 333–339. [Google Scholar] [CrossRef]
- Naor, A.; Flaishman, M.; Stern, R.; Moshe, A.; Erez, A. Temperature effects on dormancy completion of vegetative buds in apple. J. Am. Soc. Hortic. Sci. 2003, 128, 636–641. [Google Scholar] [CrossRef]
Temperature Treatments (°C) | Flowering Rate (%) | |||||
---|---|---|---|---|---|---|
Exit Date | ||||||
17 September 2021 | 22 September 2021 | 27 September 2021 | 2 October 2021 | 7 October 2021 | 12 October 2021 | |
6 | 9.52 | 30.69 | 75.36 | 86.79 | 88.48 | 92.00 |
10 | 1.94 | 11.18 | 36.13 | 42.27 | 46.62 | 60.07 |
Temperature Treatments (°C) | Flower Diameter (cm) | |||||
---|---|---|---|---|---|---|
Exit Date | ||||||
17 September 2021 | 22 September 2021 | 27 September 2021 | 2 October 2021 | 7 October 2021 | 12 October 2021 | |
6 | 2.15 ± 0.12 a | 2.13 ± 0.20 a | 2.30 ± 0.34 a | 2.51 ± 0.15 a | 2.53 ± 0.26 a | 2.74 ± 0.20 a |
10 | 1.91 ± 0.22 b | 2.05 ± 0.23 b | 2.12 ± 0.35 b | 2.30 ± 0.25 b | 2.48 ± 0.13 a | 2.51 ± 0.18 b |
Exit Date | ‘Gulihong’ | ‘Nanjing gongfen’ | ‘Zaoyudie’ | ‘Zaohualve’ | ||||
---|---|---|---|---|---|---|---|---|
HD | VD | HD | VD | HD | VD | HD | VD | |
04/09/2021 | 1.16 ± 0.13 d | 1.72 ± 0.21 e | 1.07 ± 0.13 c | 1.56 ± 0.21 d | 1.00 ± 0.12 d | 1.49 ± 0.21 d | 1.13 ± 0.22 d | 1.60 ± 0.36 d |
14/09/2021 | 1.16 ± 0.21 d | 1.97 ± 0.26 d | 1.06 ± 0.11 c | 1.51 ± 0.21 d | 1.05 ± 0.12 d | 1.49 ± 0.23 d | 1.16 ± 0.23 c | 1.61 ± 0.26 d |
24/09/2021 | 1.29 ± 0.10 c | 2.15 ± 0.19 c | 1.12 ± 0.17 b | 1.63 ± 0.27 c | 1.13 ± 0.12 c | 1.80 ± 0.25 c | 1.17 ± 0.16 c | 1.85 ± 0.25 c |
08/10/2021 | 1.39 ± 0.15 b | 2.52 ± 0.18 b | 1.16 ± 0.14 b | 1.88 ± 0.26 b | 1.24 ± 0.12 b | 2.25 ± 0.24 b | 1.32 ± 0.15 b | 2.51 ± 0.24 b |
16/10/2021 | 1.60 ± 0.11 a | 2.98 ± 0.14 a | 1.45 ± 0.16 a | 2.52 ± 0.29 a | 1.45 ± 0.10 a | 2.78 ± 0.27 a | 1.51 ± 0.01 a | 2.65 ± 0.18 a |
Exit Date | Chilling Requirement | Flowering Rate (%) | |||
---|---|---|---|---|---|
‘Gulihong’ | ‘Nanjing gongfen’ | ‘Zaoyudie’ | ‘Zaohualve’ | ||
12/09/2021 | 132 | 1.89 | 0 | 0 | 0 |
17/09/2021 | 252 | 9.52 | 0 | 20.57 | 0 |
22/09/2021 | 372 | 30.69 | 22.80 | 50.39 | 55.21 |
27/09/2021 | 492 | 75.36 | 63.52 | 78.54 | 60.03 |
02/10/2021 | 612 | 86.79 | 72.85 | 81.79 | 70.94 |
07/10/2021 | 732 | 88.48 | 76.53 | 80.91 | 82.62 |
12/10/2021 | 852 | 92.00 | 80.93 | 86.50 | 84.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ma, K.; Li, Q. Effects of Low-Temperature Accumulation on Flowering of Prunus mume. Horticulturae 2023, 9, 628. https://doi.org/10.3390/horticulturae9060628
Zhang Y, Ma K, Li Q. Effects of Low-Temperature Accumulation on Flowering of Prunus mume. Horticulturae. 2023; 9(6):628. https://doi.org/10.3390/horticulturae9060628
Chicago/Turabian StyleZhang, Yuhan, Kaifeng Ma, and Qingwei Li. 2023. "Effects of Low-Temperature Accumulation on Flowering of Prunus mume" Horticulturae 9, no. 6: 628. https://doi.org/10.3390/horticulturae9060628
APA StyleZhang, Y., Ma, K., & Li, Q. (2023). Effects of Low-Temperature Accumulation on Flowering of Prunus mume. Horticulturae, 9(6), 628. https://doi.org/10.3390/horticulturae9060628