Analysis of Growth and Rhizosphere Soil Changes of Herbaceous Peony Treated with a Compound Microbial Agent under Contrasted Soil Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Treatment and Sampling
2.3. Test Methods
2.3.1. Determination of Plant Morphological Indicators
2.3.2. Determination of Root Physiological Indicators
2.3.3. Determination of Rhizosphere Soil Indicators
2.3.4. Statistical Analysis
3. Results and Analysis
3.1. Changes in Morphological Indices of Herbaceous Peony under Different Soil Conditions after Treatment with Compound Microbial Agent
3.2. Changes in the Herbaceous Peony Root System after Treatment with the Compound Microbial Agent under Different Soil Conditions
3.2.1. Changes in Antioxidant Enzyme Activities and MDA in the Herbaceous Peony Root System
3.2.2. Changes in Osmoregulatory Substances and Root Vigour in the Herbaceous Peony Root System
3.2.3. Changes in Secondary Metabolites in the Herbaceous Peony Root System
3.3. Changes in Rhizosphere Soil of Herbaceous Peony under Different Soil Conditions after Treatment with the Compound Microbial Agent
3.3.1. Changes in Soil Organic Matter and Soil Nutrients between Herbaceous peony Roots
3.3.2. Changes in Soil Enzyme Activity between Herbaceous Peony Roots
3.3.3. Changes in Soil Microbial Abundance between Herbaceous Peony Roots
4. Discussion
4.1. Effect of Compound Microbial Agent Treatment on the Growth and Development of Herbaceous Peony under Different Soil Conditions
4.2. Effect of Compound Microbial Agent Treatment on the Herbaceous Peony Root System under Different Soil Conditions
4.3. Effect of Compound Microbial Agent Treatment on Rhizosphere Soil under Different Soil Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Soil Conditions | Fresh Weight Growth Rate (%) | Dry Weight Growth Rate (%) | Root-Shoot Ratio Growth Rate (%) | ||||
---|---|---|---|---|---|---|---|
Shoot | Root | Total | Shoot | Root | Total | ||
Y | 10.12 ± 0.04 b | 11.92 ± 0.06 b | 11.09 ± 0.05 b | −3.17 ± 0.07 b | −16.39 ± 0.04 b | −11.29 ± 0.05 b | 1.50 ± 0.02 b |
S | 66.05 ± 0.07 a | 40.21 ± 0.05 a | 51.57 ± 0.06 a | 83.70 ± 0.22 a | 34.72 ± 0.19 a | 51.20 ± 0.20 a | −15.51 ± 0.01 c |
B | −49.67 ± 0.01 c | −34.07 ± 0.03 c | −41.23 ± 0.01 c | −42.66 ± 0.03 c | −30.24 ± 0.01 c | −34.87 ± 0.01 c | 31.13 ± 0.03 a |
References
- Liu, Z.M.; Wang, H.Y.; Li, Y.; Li, X.; Shi, Y.J.; Yang, L.J.; Yang, X.; Zheng, C.S.; Sun, X. Effects of exogenous albiflorin on the growth of herbaceous peony (Paeonia lactiflora) and rhizosphere soil. Plant Physiol. J. 2022, 58, 873–888. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Xu, J.G.; Bao, M.Y.; Liu, M.M.; Xie, A.Q.; Zhang, D.L.; Sun, X. Effect of waterlogging stress on root morphology and polyamine content of herbaceous herbaceous peony (Paeonia lactiflora). Plant Physiol. J. 2020, 56, 1445–1457. [Google Scholar] [CrossRef]
- Filipović, V.; Ugrenović, V.; Popović, V.; Dimitrijević, S.; Popović, S.; Aćimović, M.; Dragumilo, A.; Pezo, L. Productivity and flower quality of different pot marigold (Calendula officinalis L.) varieties on the compost produced from medicinal plant waste. Ind. Crop Prod. 2023, 192, 116093. [Google Scholar] [CrossRef]
- Bielski, S.; Szwejkowska, B. Effect of fertilization on the development and yields of pot marigold (Calendula officinalis L.). Herba Pol. 2013, 59, 5–12. [Google Scholar] [CrossRef]
- Dimitrijevic, S.; Pavlovic, M.; Maksimovic, S.; Ristic, M.; Filipovic, V.; Antonovic, D.; Dimitrijevic-Brankovic, S. Plant growth-promoting bacteria elevate the nutritional and functional properties of black cumin and flaxseed fixed oil. J. Sci. Food. Agr. 2018, 98, 1584–1590. [Google Scholar] [CrossRef]
- Gadd, G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010, 156, 609–643. [Google Scholar] [CrossRef]
- Savarese, C.; Cozzolino, V.; Verrillo, M.; Vinci, G.; De Martino, A.; Scopa, A.; Piccolo, A. Combination of humic biostimulants with a microbial inoculum improves lettuce productivity, nutrient uptake, and primary and secondary metabolism. Plant Soil 2022, 481, 285–314. [Google Scholar] [CrossRef]
- Balestrini, R.; Salvioli, A.; Dal Molin, A.; Novero, M.; Gabelli, G.; Paparelli, E.; Marroni, F.; Bonfante, P. Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots. Mycorrhiza 2017, 27, 417–430. [Google Scholar] [CrossRef]
- Xie, D.F.; Wang, G.Q.; Xie, R.; Zhu, Z.J.; Xue, S.H. Effects of Microbial Fertilizers on Growth and Defense-related Enzymes of Continuously Cropped Cucumbers. Fujian J. Agric. Sci. 2018, 33, 696–701. [Google Scholar] [CrossRef]
- Yue, M.C.; Wang, Z.G.; Chen, Q.S.; Xu, M.X.; Li, W.M.; Wu, X.D.; Liu, Q.Y.; Chen, L.L.; Wang, D.S.; Jiao, J.G. Effects of Reduction of Chemical Fertilizer Combined with Application of Microbial Agents on Growth and Soil Fertility of Cherry Tomato. Soils 2020, 52, 68–73. [Google Scholar] [CrossRef]
- Hassine, M.; Aydi-Ben-Abdallah, R.; Jabnoun-Khireddine, H.; Daami-Remadi, M. Soil-borne and compost-borne Penicillium sp. and Gliocladium spp. as potential microbial biocontrol agents for the suppression of anthracnose-induced decay on tomato fruits. Egypt. J. Biol. Pest. Co. 2022, 32, 12. [Google Scholar] [CrossRef]
- Li, Z.G.; Wang, X.M.; Liu, T.Y.; Zhang, X.G.; Jie, X.L.; Zhao, Y.J. Restor ation of continuous Cropping Obstacles of Rehmannia Glutinosa Libosch by Applying Compound Bacterial Manure. Hunan Agric. Sci. 2008, 5, 62–65. [Google Scholar] [CrossRef]
- Wang, A.M.; Yang, S.L.; Ding, A.P.; Guo, Y.H.; Yu, X.X. Study on the fattening effect of “the microbial agent” on Huaichrysanthemum. Henan Agric. 2022, 24, 44–46. [Google Scholar] [CrossRef]
- Lv, M.W.; Xu, J.G.; Du, J.; Gao, C.R.; Lu, J.; Zhang, Q.X.; Wang, T.L.; Sun, X. Effects of exogenous gibberellin A3 and paclobutrazol on development of herbaceous peony (Paeonia lactiflora) bulbils. Plant Physiol. 2018, 54, 790–802. [Google Scholar] [CrossRef]
- Zhang, D.L.; Sun, L.M.; Xie, A.Q.; Li, X.; Li, Y.; Liu, Z.M.; Sun, X. Effects of residual broken roots on the growth and rhizosphere soil of herbaceous peony. Eur. J. Hortic. Sci. 2022, 87, 10. [Google Scholar] [CrossRef] [PubMed]
- Cang, J.; Zhao, H.J. Experimental Course of Plant PhySiology; Higher Education Press: Beijing, China, 2013; pp. 68–85. [Google Scholar]
- Yu, Q.Y. Plant Physiology Laboratory Tutorial; Beijing University of Technology Press: Beijing, China, 2014. [Google Scholar]
- Li, F.Y.; Zang, X.D.; Cao, Y. Determination of paeoniflorin of cultivated herbaceous peony root in Mudanjiang by HPLC. North. Hortic. 2017, 20, 149–153. [Google Scholar] [CrossRef]
- Liu, J.; Ji, X.J.; Liu, Y.L. A high-performance liquid chromatographic method for the determination of polyamines in plant tissues. Plant Physiol. Lett. 2002, 38, 596–598. [Google Scholar] [CrossRef]
- Gong, X.C.; Song, C.F.; Wang, M.H.; Zheng, F.C.; Miao, W.G.; Wang, J.S. Determination of growth factors intobacco and cotton by high performance liquid chromatography. Jiangsu J. Agric. Sci. 2012, 28, 225–227. [Google Scholar] [CrossRef]
- Xu, S.Z.; Liu, Y.S.; Xia, X.X.; Wang, Y.P.; Chen, X.S.; Shen, X.; Yin, C.M.; Mao, Z.Q. Dazomet fumigation plus short-term crop rotation of onion significantly alleviates crop succession disorder in apple. Acta Hortic. Sin. 2018, 45, 11–20. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemistry Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Geng, Y.Q.; Wang, D.M. Research progress of soil hydrolytic enzyme activity determination methods. Chin. J. Eco-Agric 2012, 20, 387–394. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Duan, Y.N.; Shen, X.; Chen, X.S.; Yin, C.M.; Mao, Z.Q. Effects of mixed planting of different crops with young replanted apple trees on replanting plants and soil environment. Sci. Agric. Sin. 2018, 51, 3815–3822. [Google Scholar] [CrossRef]
- Cheng, L.J.; Xue, H.Q. Experimental Techniques in Microbiology; World Book Publishing Co.: Xi’an, China, 2000. [Google Scholar]
- Zhu, J.F.; Wang, X.D.; Guo, C.B.; Li, Y.J.; Jing, X.F.; Liu, L.; Cui, Z.Z. Influence of microbial bacterial application on soil key enzyme activity and root growth of roasted tobacco. Acta Agric. Jiangxi 2015, 9, 31–35. [Google Scholar] [CrossRef]
- Wang, M.Y.; Li, G.Z.; Yang, X.F.; Zhang, H.; Xin, B. Preliminary study on the effect of microbial fertilizer on fertility, yield and quality of cucumber in protected areas. China Soils Fert. 2003, 3, 38–41. [Google Scholar] [CrossRef]
- Annamaria, R.; Antonella, C.; Barbara, B.; Gian Franco, S. Iron deficiency differently affects peroxidase isoforms in sunflower. J. Exp. Bot. 2001, 52, 25–35. [Google Scholar] [CrossRef]
- Zhang, H.N.; Lu, X.H.; Jin, Z.N.; Li, Y.; Wang, R.F.; Li, Z.X.; Liu, L.K. Effects of rare earth tailing sand drought on physiological characteristics of four plant species under high temperature conditions. Acta Ecol. Sin. 2019, 39, 2426–2434. [Google Scholar] [CrossRef]
- Song, Y.L.; Yu, J.; Chen, S.G.; Xiao, C.Z.; Li, Y.H.; Su, X.R.; Ding, F.J. Effects of compound microbial agents on physiological characteristics and inter-root soil microbial and chemical properties of cotton. Soils 2019, 51, 477–487. [Google Scholar] [CrossRef]
- Yuan, L.; Kheemu, Y.L.; Zhang, L.Q. Effects of NaCl stress on reactive oxygen metabolism and cell membrane stability in pistachio seedlings. J. Plant Ecol. 2005, 6, 119–125. [Google Scholar] [CrossRef]
- Yan, M.; Wang, Y.; Bao, J.K.; Wang, C.C.; Lu, D.Y.; Wu, C.Y. Effects of mixed salinity stress on osmoregulatory substances and antioxidant enzyme activities in jujube. Shandong Agric. Sci. 2022, 54, 37–43. [Google Scholar] [CrossRef]
- Xiong, M.B.; Luo, M.S.; Tian, Y.B.; Song, G.Y.; Cao, S.Y. Dynamics of soil nutrition and wheat root activities and their relationships during wheat growth. Soil Fertil. 2005, 3, 8–11. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Yang, S.; Zhao, S.; Zheng, W.B.; Zhou, X.; Li, M. Study on the effect of biofertilizer on osmoregulatory substances in ginseng leaves. J. Ginseng Res. 2020, 3, 50–52. [Google Scholar] [CrossRef]
- Tian, F.; Chen, X.; Wang, P.C.; Zhong, L.; Ou, E.L. Effect of microbial fungicides on drought-resistant enzyme system and physiological and biochemical indexes of white spurge seedlings. J. Plant Physiol. 2022, 58, 435–446. [Google Scholar] [CrossRef]
- Li, Y.Q.; Xin, S.J.; Ao, Y.S. Effect of microbial fertilizer on the growth, yield and quality of greenhouse cucumber. Chin. Agric. Sci. Bull. 2012, 28, 259–263. [Google Scholar] [CrossRef]
- Huang, L.Q.; Guo, L.P. Accumulation of secondary metabolites under environmental stress and the formation of daoji medicinal herbs. Chin. J. China Mater. Med. 2007, 4, 277–280. [Google Scholar]
- Wei, Z.M.; Hu, X.J.; Mo, H. Effect of exogenous gibberellin on seed germination and seedling growth of Marigold under salt stress. North. Hortic. 2022, 16, 69–75. [Google Scholar]
- Wang, Q.K.; Wang, S.L.; Gao, H.; Liu, Y.; Yu, X.J. Effects of land use practices on soil organic matter. J. Ecol. 2005, 4, 360–363. [Google Scholar] [CrossRef]
- Matse, D.T.; Huang, C.H.; Huang, Y.M.; Yen, M.Y. Effects of coinoculation of Rhizobium with plant growth promoting rhizobacteria on the nitrogen fixation and nutrient uptake of Trifolium repens in low phosphorus soil. J. Plant Nutr. 2020, 43, 739–752. [Google Scholar] [CrossRef]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 2018, 9, 1–25. [Google Scholar] [CrossRef]
- Deng, L.; Wang, T.; Luo, W.; He, L.Y.; Liang, Z.S. Effects of a compound microbial agent and plants on soil properties, enzyme activities, and bacterial composition of Pisha sandstone. Environ. Sci. Pollut. Res. 2021, 28, 53353–53364. [Google Scholar] [CrossRef]
- Gao, J.X.; Gao, Y.; Wu, X.M.; Niu, Y.Q.; Pei, H.X.; Xie, H. Response of microbial community and soil ions to microbicides in pepper continuous cropping soil. Southwest. China. J. Agric. Sci. 2020, 33, 1659–1664. [Google Scholar] [CrossRef]
- Guo, D.; Ren, C.Y.; Ali, A.; Li, R.H.; Du, J.; Liu, X.Y.; Guan, W.D.; Zhang, Z.Q. Streptomyces pactum combined with manure compost alters soil fertility and enzymatic activities, enhancing phytoextraction of potentially toxic metals (PTMs) in a smelter-contaminated soil. Ecotoxicol. Environ. Saf. 2019, 181, 312–320. [Google Scholar] [CrossRef]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 2010, 60, 579–598. [Google Scholar] [CrossRef]
- Zhang, L.R.; Chen, H.; Kang, P.Z.; Shen, R.Q. Effects of different microbial agents on tomato yield and soil microbial population. Hubei Agric. Sci. 2013, 52, 5452–5454,5518. [Google Scholar] [CrossRef]
- Lei, X.D.; Li, J.W.; Xu, X.L.; Zhang, H.L.; Cao, L.K. Influence of microbicides on growth characteristics and soil microbial diversity of spinach. Chin. J. Eco-Agric. 2012, 20, 488–494. [Google Scholar] [CrossRef]
- Liu, L.Y.; Liu, K.X.; Chi, X.L.; Zhang, X.; Xu, C.; Zhu, H.; Jin, X.; Liu, W.W.; Sun, Z.T.; Mao, Z.Q. Effects of Bacillus subtilis SNB-86 fertilizer on the growth and soil environment of continuous Pingyi sweet tea seedlings. Acta Hortic. Sin. 2018, 45, 2008–2018. [Google Scholar] [CrossRef]
Soil Conditions | Plant Height Growth Rate (%) | Thick Stem Growth rate (%) | Flowering Rate Growth Rate (%) | Leaf Length Growth Rate (%) | Leaf Width Growth Rate (%) | Leaf Area Growth Rate (%) |
---|---|---|---|---|---|---|
Y | 14.78 ± 0.01 a | 20.83 ± 0.01 a | 36.07 ± 0.01 a | −10.79 ± 0.02 c | −4.60 ± 0.01 c | −22.27 ± 0.03 c |
S | 6.11 ± 0.02 b | 21.89 ± 0.01 a | 9.74 ± 0.02 b | −8.74 ± 0.01 b | 2.90 ± 0.01 a | −4.95 ± 0.01 a |
B | −7.33 ± 0.01 c | 13.42 ± 0.01 b | 9.56 ± 0.01 b | −3.69 ± 0.01 a | −0.98 ± 0.01 b | −7.48 ± 0.02 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Shi, Y.; Yang, X.; Dong, L.; Lei, F.; Zheng, C.; Xie, A.; Zhang, D.; Sun, L.; Sun, X. Analysis of Growth and Rhizosphere Soil Changes of Herbaceous Peony Treated with a Compound Microbial Agent under Contrasted Soil Conditions. Horticulturae 2023, 9, 602. https://doi.org/10.3390/horticulturae9050602
Yang L, Shi Y, Yang X, Dong L, Lei F, Zheng C, Xie A, Zhang D, Sun L, Sun X. Analysis of Growth and Rhizosphere Soil Changes of Herbaceous Peony Treated with a Compound Microbial Agent under Contrasted Soil Conditions. Horticulturae. 2023; 9(5):602. https://doi.org/10.3390/horticulturae9050602
Chicago/Turabian StyleYang, Lijin, Yajie Shi, Xiao Yang, Lingling Dong, Fuling Lei, Chengshu Zheng, Anqi Xie, Dongliang Zhang, Limin Sun, and Xia Sun. 2023. "Analysis of Growth and Rhizosphere Soil Changes of Herbaceous Peony Treated with a Compound Microbial Agent under Contrasted Soil Conditions" Horticulturae 9, no. 5: 602. https://doi.org/10.3390/horticulturae9050602
APA StyleYang, L., Shi, Y., Yang, X., Dong, L., Lei, F., Zheng, C., Xie, A., Zhang, D., Sun, L., & Sun, X. (2023). Analysis of Growth and Rhizosphere Soil Changes of Herbaceous Peony Treated with a Compound Microbial Agent under Contrasted Soil Conditions. Horticulturae, 9(5), 602. https://doi.org/10.3390/horticulturae9050602