High Soil pH and Plastic-Shed Lead to Iron Deficiency and Chlorosis of Citrus in Coastal Saline–Alkali Lands: A Field Study in Xiangshan County
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Location
2.2. Sample Collection in Xiangshan County
2.3. Sample Collection of Selected Beni-Madonna Orchards
2.4. Soil Analysis
2.5. Measurement of Mineral Nutrient Contents in Plants
2.6. Determination of Fruit Quality
2.7. Statistical Analysis
3. Results
3.1. Distribution of Soil Properties in Citrus Orchards in Xiangshan County
3.1.1. Soil pH
3.1.2. Soil Organic Matter
3.1.3. Total Contents of Nutrients in Soil
3.1.4. Available Contents of Nutrients in Soil
3.2. Nutrient Contents of Citrus Trees
3.2.1. Fruit Nutrient Contents in Different Landforms
3.2.2. Fruit Nutrient Contents of Different Citrus Varieties
3.3. Correlation between Fruit Nutrients of Different Cultivars and Soil Properties
3.4. Soil Properties of Representative BM Orchards
3.5. Nutrients Contents of Citrus in Different BM Orchards
3.5.1. Nutrient Contents of Citrus Trees
3.5.2. Nutrient Contents of Fruits
3.6. Correlation between Nutrients in Different Parts of the Citrus Tree and Soil Properties
3.7. Effect of Long-Term Film Cover on Soil Properties and Plant Fe Nutrition
4. Discussion
4.1. Analysis of Soil Nutrient Abundance and Deficiency in Citrus Orchards
4.2. Fruit Nutrient Status Varied in Different Citrus Cultivars in Xiangshan County
4.3. Causes of Iron Deficiency in Citrus in Saline–Alkali Land
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Citrus Fruit Fresh and Processed Statistical Bulletin 2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- Hyun, J.W.; Hwang, R.Y.; Choi, C.W.; Jung, K.E.; Han, S.G. Symptomatology of Citrus mosaic sadwavirus (CiMV) in Some Citrus Cultivars and Effect of CiMV Infection on Citrus Fruit Quality. Plant Pathol. J. 2020, 36, 106–110. [Google Scholar] [CrossRef]
- Jiao, Y.; Xie, R.; Zhang, H. Identification of potential pathways associated with indole-3-butyric acid in citrus bud germination via transcriptomic analysis. Funct. Integr. Genomics 2021, 21, 619–631. [Google Scholar] [CrossRef]
- Zheng, D.; Chen, J.; Lin, M.; Wang, D.; Lin, Q.; Cao, J.; Yang, X.; Duan, Y.; Ye, X.; Sun, C.; et al. Packaging Design to Protect Hongmeiren Orange Fruit from Mechanical Damage during Simulated and Road Transportation. Horticulturae 2022, 8, 258. [Google Scholar] [CrossRef]
- Shigematsu, Y.; Kita, K.; Yakushiji, H.; Ishikawa, K.; Inoue, H. The new citrus cultivar’Ehime Kashi No. 28’. Bull. Ehime Fruit Tree Exp. Stn. 2005, 19, 1–6. (In Japanese) [Google Scholar]
- Nawaz, M.A.; Ahmed, W.; Iqbal, Z.; Khan, M.M. Evaluation of High Density Plantation on Vigor and Yield in Kinnow Mandarin (Citrus reticulata Blanco). In Proceedings of the International Symposium on Prospects of Horticulture in Pakistan, Faisalabad, Pakistan, 28–30 March 2007; pp. 87–92. [Google Scholar]
- Chen, Z. Research on the Cause and Regulation Technology of Citrus Top-Grafting Chlorosis in Zhongxian County. Master’s Thesis, Southwest University, Georgetown, TX, USA, 2022. [Google Scholar]
- Schmidt, W.; Thomine, S.; Buckhout, T.J. Iron nutrition and interactions in plants. Front. Media SA 2020, 10, 1670. [Google Scholar] [CrossRef] [Green Version]
- Therby-Vale, R.; Lacombe, B.; Rhee, S.Y.; Nussaume, L.; Rouached, H. Mineral nutrient signaling controls photosynthesis: Focus on iron deficiency-induced chlorosis. Trends Plant Sci. 2022, 27, 502–509. [Google Scholar] [CrossRef]
- Tagliavini, M.; Rombolà, A.D. Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur. J. Agron. 2001, 15, 71–92. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, F. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 2011, 339, 83–95. [Google Scholar] [CrossRef]
- Álvarez-Fernández, A.; Paniagua, P.; Abadía, J.; Abadía, A. Effects of Fe Deficiency Chlorosis on Yield and Fruit Quality in Peach (Prunus persica L. Batsch). J. Agric. Food Chem. 2003, 51, 5738–5744. [Google Scholar] [CrossRef] [Green Version]
- Rabhi, M.; Barhoumi, Z.; Ksouri, R.; Abdelly, C.; Gharsalli, M. Interactive effects of salinity and iron deficiency in Medicago ciliaris. C. R. Biol. 2007, 330, 779–788. [Google Scholar] [CrossRef]
- Nazir, A.; Bahar, F.A.; Rashid, Z.; Fayaz, S.; Bhat, T.A.; Ahmad, O. Quality of Baby Corn (Zea mays L.) as influenced by different weed management practices under the temperate conditions of Kashmir valley. Bull. Env. Pharmacol. Life Sci 2019, 8, 96–98. [Google Scholar]
- Chen, F.; Lu, J.; Liu, D. Investigation of soil fertility in citrus orchards of Southern China. Better Crops Plant Food 2007, 91, 24–25. [Google Scholar]
- Wilson, M.J. The importance of parent material in soil classification: A review in a historical context. Catena 2019, 182, 104131. [Google Scholar] [CrossRef]
- Soil Census and Land Planning Committee of Zhejiang Province. Soil Records of Zhejiang Province; Zhejiang People’s Press: Hangzhou, China, 1964. [Google Scholar]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Chen, D.; Lan, Z.; Hu, S.; Bai, Y. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biol. Biochem. 2015, 89, 99–108. [Google Scholar] [CrossRef]
- Bi, Y.; Kuzyakov, Y.; Cai, S.; Zhao, X. Accumulation of organic compounds in paddy soils after biochar application is controlled by iron hydroxides. Sci. Total Environ. 2021, 764, 144300. [Google Scholar] [CrossRef]
- Guggenberger, G.; Kaiser, K. Dissolved organic matter in soil: Challenging the paradigm of sorptive preservation. Geoderma 2003, 113, 293–310. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Guo, C.; Xue, D.; Li, J.; Chen, Q.; Song, Z.; Lou, Y.; Kuzyakov, Y.; Wang, Z.-L.; et al. Conversion of coastal marshes to croplands decreases organic carbon but increases inorganic carbon in saline soils. Land Degrad. Dev. 2020, 31, 1099–1109. [Google Scholar] [CrossRef]
- Wacker, T.S.; Jensen, L.S.; Thorup-Kristensen, K. Conservation agriculture affects soil organic matter distribution, microbial metabolic capacity and nitrogen turnover under Danish field conditions. Soil Tillage Res. 2022, 224, 105508. [Google Scholar] [CrossRef]
- Ahm, A.-S.C.; Bjerrum, C.J.; Blättler, C.L.; Swart, P.K.; Higgins, J.A. Quantifying early marine diagenesis in shallow-water carbonate sediments. Geochim. Cosmochim. Acta 2018, 236, 140–159. [Google Scholar] [CrossRef]
- Colombo, C.; Palumbo, G.; He, J.-Z.; Pinton, R.; Cesco, S. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. J. Soils Sediments 2014, 14, 538–548. [Google Scholar] [CrossRef]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.A.; Panagos, P.; Borrelli, P. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhao, C.; Shi, H.; Liao, Y.; Xu, F.; Du, H.; Xiao, H.; Zheng, J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit. Rev. Food Sci. Nutr. 2021, 5, 1–24. [Google Scholar] [CrossRef]
- Kim, S.S.; Kim, H.-J.; Park, K.J.; Kang, S.B.; Park, Y.; Han, S.-G.; Kim, M.; Song, Y.H.; Kim, D.-S. Metabolomic Profiling of Citrus unshiu during Different Stages of Fruit Development. Plants 2022, 11, 967. [Google Scholar] [CrossRef]
- Fang, S.; Hou, X.; Liang, X. Response mechanisms of plants under saline-alkali stress. Front. Plant. Sci. 2021, 12, 667458. [Google Scholar] [CrossRef]
- Zhang, K.; Chang, L.; Li, G.; Li, Y. Advances and future research in ecological stoichiometry under saline-alkali stress. Environ. Sci. Pollut. Res. 2023, 30, 5475–5486. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, R.; Cao, Q.; Bie, Z. Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. Sci. Hortic. 2009, 122, 26–31. [Google Scholar] [CrossRef]
- Castle, W.S.; Bowman, K.D.; Grosser, J.W.; Futch, S.H.; Graham, J.H. Florida Citrus Rootstock Selection Guide; IFAS Publication SP248; University of Florida: Gainesville, FL, USA, 2016. [Google Scholar]
- Obreza, T.A.; Rouse, R.E.; Morgan, K.T. Managing Phosphorus for Citrus Yield and Fruit Quality in Developing Orchards. HortScience 2008, 43, 2162–2166. [Google Scholar] [CrossRef] [Green Version]
- Hell, R.; Stephan, U.W. Iron uptake, trafficking and homeostasis in plants. Planta 2003, 216, 541–551. [Google Scholar] [CrossRef]
- Covarrubias, J.I.; Rombolà, A.D. Physiological and biochemical responses of the iron chlorosis tolerant grapevine rootstock 140 Ruggeri to iron deficiency and bicarbonate. Plant Soil 2013, 370, 305–315. [Google Scholar] [CrossRef]
- Gruber, B.; Kosegarten, H. Depressed growth of non-chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. J. Soil Sci. Plant Nutr. 2002, 165, 111–117. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, D.; Tang, Y.; Zhu, R.; Li, X.; Gruda, N.; Dong, J.; Duan, Z. Plastic shed soil salinity in China: Current status and next steps. J. Clean. Prod. 2021, 296, 126453. [Google Scholar] [CrossRef]
- Fan, Y.n.; Zhang, Y.; Wan, M.; Hu, W.; Chen, Z.; Huang, B. Plastic shed production intensified secondary soil salinization in perennial fruit production systems. Agr. Ecosyst. Environ. 2021, 316, 107469. [Google Scholar] [CrossRef]
- Abbas, G.; Saqib, M.; Akhtar, J.; ul Haq, M.A. Interactive effects of salinity and iron deficiency on different rice genotypes. J. Plant Nutr. Soil Sc. 2015, 178, 306–311. [Google Scholar] [CrossRef]
Element | Landform | Range | Mean | Variation Coefficient |
---|---|---|---|---|
Ca (mg·kg−1) | Whole county | 109.00–439.00 | 255.81 | 31.33 |
Mountain land | 109.00–396.00 | 266.44 | 30.34 | |
Flat land | 134.00–328.00 | 205.40 | 25.62 | |
Coastal saline–alkali land | 198.00–439.00 | 289.83 | 26.79 | |
Mg (mg·kg−1) | Whole county | 74.50–134.00 | 105.30 | 19.04 |
Mountain land | 87.00–133.00 | 117.78 | 17.04 | |
Flat land | 74.50–130.00 | 101.87 | 18.25 | |
Coastal saline–alkali land | 79.80–134.00 | 98.81 | 16.91 | |
Zn (mg·kg−1) | Whole county | 0.51–2.50 | 1.36 | 35.32 |
Mountain land | 0.77–2.48 | 1.33 | 35.65 | |
Flat land | 0.51–2.23 | 1.38 | 34.20 | |
Coastal saline–alkali land | 0.75–2.50 | 1.36 | 35.92 | |
Fe (mg·kg−1) | Whole county | 2.67–5.79 | 3.85 | 20.61 |
Mountain land | 2.79–5.32 | 3.80 | 20.53 | |
Flat land | 3.04–4.71 | 3.97 | 14.11 | |
Coastal saline–alkali land | 2.67–5.79 | 3.78 | 24.91 | |
Mn (mg·kg−1) | Whole county | 0.32–3.19 | 1.60 | 61.32 |
Mountain land | 0.87–3.19 | 2.27 | 53.79 | |
Flat land | 0.32–2.50 | 1.41 | 44.55 | |
Coastal saline–alkali land | 0.35–2.19 | 1.25 | 58.40 | |
Cu (mg·kg−1) | Mountain land | 0.15–0.52 | 0.28 | 29.25 |
Flat land | 0.17–0.52 | 0.32 | 33.50 | |
Coastal saline–alkali land | 0.15–0.40 | 0.28 | 25.96 | |
Whole county | 0.15–0.39 | 0.26 | 23.26 | |
B (mg·kg−1) | Mountain land | 0.88–2.58 | 1.64 | 21.90 |
Flat land | 0.88–2.05 | 1.39 | 26.90 | |
Coastal saline–alkali land | 1.29–2.58 | 1.70 | 19.84 | |
Whole county | 1.26–2.13 | 1.77 | 14.59 |
Element | Beni-Madonna | Citrus unshiu | ||||
---|---|---|---|---|---|---|
Mountain Land | Flat Land | Coastal Saline–Alkali Land | Mountain Land | Flat Land | Coastal Saline–Alkali Land | |
Ca (mg·kg−1) | 283.50 ± 50.77 a | 178.20 ± 30.80 b | 251.14 ± 31.90 a | 253.00 ± 41.67 ab’ | 208.78 ± 32.30 b | 344.00 ± 89.51 a’* |
Mg (mg·kg−1) | 104.23 ± 12.16 a | 96.23 ± 8.23 a | 89.12 ± 6.29 a | 128.62 ± 18.49 a’ | 121.00 ± 5.92 a’** | 104.20 ± 16.92 a’ |
Zn (mg·kg−1) | 0.95 ± 0.14 b | 1.56 ± 0.33 a | 1.42 ± 0.35 ab | 1.24 ± 0.09 a’* | 1.22 ± 0.14 a’ | 0.98 ± 0.18 a’ |
Fe (mg·kg−1) | 3.81 ± 0.52 bc | 4.12 ± 0.43 a | 3.19 ± 0.35 c | 3.65 ± 0.59 a’ | 3.61 ± 0.51 a’ | 4.84 ± 0.81 a’** |
Mn (mg·kg−1) | 1.18 ± 0.40 a | 1.39 ± 0.26 a | 1.88 ± 0.60 a | 1.77 ± 0.34 a’ | 2.07 ± 0.52 a’ | 0.85 ± 0.18 b’ |
Cu (mg·kg−1) | 0.32 ± 0.11 a | 0.34 ± 0.06 a* | 0.25 ± 0.03 a | 0.30 ± 0.03 a’ | 0.25 ± 0.02 a’ | 0.25 ± 0.03 a’ |
B (mg·kg−1) | 1.11 ± 0.24 b | 1.58 ± 0.10 a | 1.77 ± 0.28 a | 1.50 ± 0.24 a’ | 1.64 ± 0.24 a’ | 1.76 ± 0.22 a’ |
Fruit Nutrition Index | BM Orchards | ||
---|---|---|---|
MY | DW | DY | |
Weight (g) | 255.49 ± 29.2 b | 316.25 ± 29.33 a | 274.74 ± 29.30 ab |
Shape index | 0.92 ± 0.01 a | 0.86 ± 0.03 b | 0.87 ± 0.01 b |
TSS (%) | 11.86 ± 0.42 a | 11.60 ± 0.05 a | 11.41 ± 0.55 a |
VC (mg·100 g−1) | 26.75 ± 1.90 c | 36.34 ± 1.84 a | 33.23 ± 2.52 b |
K (g·kg−1) | 5.94 ± 0.30 b | 6.25 ± 0.34 a | 6.46 ± 0.30 a |
Ca (mg·kg−1) | 946.54 ± 75.09 a | 923.28 ± 56.18 a | 879.19 ± 83.68 a |
Mg (mg·kg−1) | 571.43 ± 34.71 a | 548.05 ± 24.07 a | 549.98 ± 46.36 a |
Zn (mg·kg−1) | 29.17 ± 2.52 a | 12.52 ± 0.72 c | 22.66 ± 2.45 b |
Fe (mg·kg−1) | 21.49 ± 1.47 a | 14.88 ± 1.73 b | 9.25 ± 0.77 c |
Mn (mg·kg−1) | 14.26 ± 1.43 a | 1.93 ± 0.08 b | 2.47 ± 0.28 b |
Cu (mg·kg−1) | 3.20 ± 0.29 a | 3.14 ± 0.16 a | 1.96 ± 0.26 b |
B (mg·kg−1) | 13.32 ± 1.50 a | 10.40 ± 1.27 b | 13.10 ± 1.26 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, Y.; Huang, Y.; Chang, X.; Chen, J.; Jiang, T.; Wu, Z.; Lu, L.; Tian, S. High Soil pH and Plastic-Shed Lead to Iron Deficiency and Chlorosis of Citrus in Coastal Saline–Alkali Lands: A Field Study in Xiangshan County. Horticulturae 2023, 9, 437. https://doi.org/10.3390/horticulturae9040437
Zang Y, Huang Y, Chang X, Chen J, Jiang T, Wu Z, Lu L, Tian S. High Soil pH and Plastic-Shed Lead to Iron Deficiency and Chlorosis of Citrus in Coastal Saline–Alkali Lands: A Field Study in Xiangshan County. Horticulturae. 2023; 9(4):437. https://doi.org/10.3390/horticulturae9040437
Chicago/Turabian StyleZang, Yili, Yu Huang, Xiaoyan Chang, Jiuzhou Chen, Tianchi Jiang, Zhiying Wu, Lingli Lu, and Shengke Tian. 2023. "High Soil pH and Plastic-Shed Lead to Iron Deficiency and Chlorosis of Citrus in Coastal Saline–Alkali Lands: A Field Study in Xiangshan County" Horticulturae 9, no. 4: 437. https://doi.org/10.3390/horticulturae9040437
APA StyleZang, Y., Huang, Y., Chang, X., Chen, J., Jiang, T., Wu, Z., Lu, L., & Tian, S. (2023). High Soil pH and Plastic-Shed Lead to Iron Deficiency and Chlorosis of Citrus in Coastal Saline–Alkali Lands: A Field Study in Xiangshan County. Horticulturae, 9(4), 437. https://doi.org/10.3390/horticulturae9040437