Farmers’ Intention to Adopt Agronomic Biofortification: The Case of Iodine Biofortified Vegetables in Uganda
Abstract
:1. Introduction
2. Theoretical Framework
3. Materials and Methods
3.1. Research Setting
3.2. Sample and Data Collection
3.3. Measurement of TPB and HBM Constructs
3.4. Statistical Analyses
4. Results
4.1. Sociodemographic Profile of Respondents
4.2. Knowledge about Iodine Deficiency Disorders, Fertilizers and Sources
4.3. Determinants of Farmers’ Intention to Adopt Agronomic Iodine Biofortification
5. Discussion
6. Study Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiran, A.; Wakeel, A.; Mahmood, K.; Mubaraka, R.; Hafsa; Haefele, S.M. Biofortification of Staple Crops to Alleviate Human Malnutrition: Contributions and Potential in Developing Countries. Agronomy 2022, 12, 452. [Google Scholar] [CrossRef]
- Sheoran, S.; Kumar, S.; Ramtekey, V.; Kar, P.; Meena, R.S.; Jangir, C.K. Current Status and Potential of Biofortification to Enhance Crop Nutritional Quality: An Overview. Sustainability 2022, 14, 3301. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Incrocci, L.; Rosellini, I.; Pezzarossa, B. Effects of Individual and Simultaneous Selenium and Iodine Biofortification of Baby-Leaf Lettuce Plants Grown in Two Different Hydroponic Systems. Horticulturae 2021, 7, 590. [Google Scholar] [CrossRef]
- Atukunda, P.; Muhoozi, G.K.; Diep, L.M.; Berg, J.P.; Westerberg, A.C.; Iversen, P.O. The association of urine markers of iodine intake with development and growth among children in rural Uganda: A secondary analysis of a randomised education trial. Public Health Nutr. 2021, 24, 3730–3739. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Andersson, M. Global Endocrinology: Global perspectives in endocrinology: Coverage of iodized salt programs and iodine status in 2020. Eur. J. Endocrinol. 2021, 185, R13–R21. [Google Scholar] [CrossRef]
- Bimenya, G.S.; Olico-Okui; Kaviri, D.; Mbona, N.; Byarugaba, W. Monitoring the severity of iodine deficiency disorders in Uganda. Afr. Health Sci. 2002, 2, 63–68. [Google Scholar]
- FANTA-2. The analysis of the nutrition situation in Uganda. In Food and Nutrition Technical Assistance II Project (FANTA-2); AED: Washington, DC, USA, 2010. [Google Scholar]
- Olum, S.; Gellynck, X.; Okello, C.; Webale, D.; Odongo, W.; Ongeng, D.; De Steur, H. Stakeholders’ perceptions of agronomic iodine biofortification: A SWOT-AHP analysis in Northern Uganda. Nutrients 2018, 10, 407. [Google Scholar] [CrossRef] [Green Version]
- Ojok, J.; Omara, P.; Opolot, E.; Odongo, W.; Olum, S.; Gijs, D.L.; Gellynck, X.; De Steur, H.; Ongeng, D. Iodine Agronomic Biofortification of Cabbage (Brassica oleracea var. capitata) and Cowpea (Vigna unguiculata L.) Is Effective under Farmer Field Conditions. Agronomy 2019, 9, 797. [Google Scholar] [CrossRef] [Green Version]
- Gonzali, S.; Kiferle, C.; Perata, P. Iodine biofortification of crops: Agronomic biofortification, metabolic engineering and iodine bioavailability. Curr. Opin. Biotechnol. 2017, 44, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Jinkou, Z.; Haar, F.v.d. Progress in salt iodization and improved iodine nutrition in China, 1995–1999. Food Nutr. Bull. 2004, 25, 337–343. [Google Scholar]
- Lyons, G. Biofortification of Cereals With Foliar Selenium and Iodine Could Reduce Hypothyroidism. Front Plant Sci. 2018, 9, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaddumukasa, M.N.; Katabira, E.; Sajatovic, M.; Pundik, S.; Kaddumukasa, M.; Goldstein, L.B. Influence of Dietary Salt Knowledge, Perceptions, and Beliefs on Consumption Choices after Stroke in Uganda. J. Stroke Cerebrovasc. Dis. 2017, 26, 2935–2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolen, S.; Sady, W.; Ledwozyw-Smolen, I.; Strzetelski, P.; Liszka-Skoczylas, M.; Rozek, S. Quality of fresh and stored carrots depending on iodine and nitrogen fertilization. Food Chem. 2014, 159, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Gomez, J.; Twyman, R.M.; Zhu, C.; Farre, G.; Serrano, J.C.; Portero-Otin, M.; Munoz, P.; Sandmann, G.; Capell, T.; Christou, P. Biofortification of crops with nutrients: Factors affecting utilization and storage. Curr. Opin. Biotechnol. 2017, 44, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Lal, M.K.; Kumar, A.; Kardile, H.B.; Raigond, P.; Changan, S.S.; Thakur, N.; Dutt, S.; Tiwari, R.K.; Chourasia, K.N.; Kumar, D.; et al. Biofortification of vegetables. In Advances in Agri-Food Biotechnology; Sharma, T.R., Deshmukh, R., Sonah, H., Eds.; Springer Nature: London, UK, 2020. [Google Scholar]
- Buturi, C.V.; Mauro, R.P.; Fogliano, V.; Leonardi, C.; Giuffrida, F. Mineral Biofortification of Vegetables as a Tool to Improve Human Diet. Foods 2021, 10, 223. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Pintimalli, L.; Rosellini, I.; Pezzarossa, B. Biofortification of Lettuce and Basil Seedlings to Produce Selenium Enriched Leafy Vegetables. Horticulturae 2022, 8, 801. [Google Scholar] [CrossRef]
- Dobosy, P.; Kröpfl, K.; Óvári, M.; Sandil, S.; Németh, K.; Engloner, A.; Takács, T.; Záray, G. Biofortification of green bean (Phaseolus vulgaris L.) and lettuce (Lactuca sativa L.) with iodine in a plant-calcareous sandy soil system irrigated with water containing KI. J. Food Compos. Anal. 2020, 88, 103434. [Google Scholar] [CrossRef]
- Gonnella, M.; Renna, M.; D’imperio, M.; Santamaria, P.; Serio, F. Iodine biofortification of four brassica genotypes is effective already at low rates of potassium iodate. Nutrients 2019, 11, 451. [Google Scholar] [CrossRef] [Green Version]
- Anarado, C.J.O.; Anarado, C.E.; Areh, R.I.; Ifoh, N.; Eze, E.O.; Ikeakor, E. Iodine Fortification Study of Some Common African Vegetables. J. Agric. Chem. Environ. 2019, 08, 172–183. [Google Scholar] [CrossRef] [Green Version]
- Lawson, P.G.; Daum, D.; Czauderna, R.; Meuser, H.; Härtling, J.W. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci. 2015, 6, 450. [Google Scholar] [CrossRef]
- Ligowe, I.S.; Bailey, E.H.; Young, S.D.; Ander, E.L.; Kabambe, V.; Chilimba, A.D.; Lark, R.M.; Nalivata, P.C. Agronomic iodine biofortification of leafy vegetables grown in Vertisols, Oxisols and Alfisols. Environ. Geochem. Health 2021, 43, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Nissar, R.; Zahida, R.; Kanth, R.H.; Manzoor, G.; Shafeeq, R.; Ashaq, H.; Waseem, R.; Bhat, R.A.; Tahir, S. Agronomic biofortification of major cereals with zinc and iron—A review. Agric. Rev. 2019, 40, 21–28. [Google Scholar] [CrossRef]
- Weng, H.; Hong, C.; Xia, T.; Bao, L.; Liu, H.; Li, D. Iodine biofortification of vegetable plants—An innovative method for iodine supplementation. Chin. Sci. Bull. 2013, 58, 2066–2072. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.X.; Weng, J.K.; Yan, A.L.; Hong, C.L.; Yong, W.B.; Qin, Y.C. Increment of iodine content in vegetable plants by applying iodized fertilizer and the residual characteristics of iodine in soil. Biol. Trace Elem. Res. 2008, 123, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Olum, S.; Gellynck, X.; Wesana, J.; Odongo, W.; Aparo, N.O.; Aloka, B.; Ongeng, D.; De Steur, H. Economic Feasibility of Iodine Agronomic Biofortification: A Projective Analysis with Ugandan Vegetable Farmers. Sustainability 2021, 13, 10608. [Google Scholar] [CrossRef]
- Mogendi, J.B.; De Steur, H.; Gellynck, X.; Makokha, A. A novel framework for analysing stakeholder interest in healthy foods: A case study on iodine biofortification. Ecol. Food Nutr. 2016, 55, 182–208. [Google Scholar] [CrossRef]
- Mushunje, A.; Muchaonyerwa, P.; Mandikiana, B.W.; Taruvinga, A. Smallholder farmers’ perceptions on Bt maize and their relative influence towards its adoption: The case of Mqanduli communal area, South Africa. Afr. J. Agric. Res. 2011, 6, 5918–5923. [Google Scholar] [CrossRef]
- Sanou, E.I.R.; Gheysen, G.; Koulibaly, B.; Roelofs, C.; Speelman, S. Farmers’ knowledge and opinions towards bollgard II® implementation in cotton production in western Burkina Faso. New Biotechnol. 2018, 42, 33–41. [Google Scholar] [CrossRef]
- Chowdhury, S.; Meenakshi, J.V.; Tomlins, K.I.; Owori, C. Are consumers in developing countries willing to pay more for micronutrient-dense biofortified foods? Evidence from a field experiment in Uganda. Am. J. Agric. Econ. 2011, 93, 83–97. [Google Scholar] [CrossRef]
- De Steur, H.; Gellynck, X.; Feng, S.; Rutsaert, P.; Verbeke, W. Determinants of willingness-to-pay for GM rice with health benefits in a high-risk region: Evidence from experimental auctions for folate biofortified rice in China. Food Qual. Prefer. 2012, 25, 87–94. [Google Scholar] [CrossRef]
- Meenakshi, J.V.; Johnson, N.L.; Manyong, V.M.; De Groote, H.; Javelosa, J.; Yanggen, D.R.; Naher, F.; Gonzalez, C.; García, J.; Meng, E. How Cost-Effective is Biofortification in Combating Micronutrient Malnutrition? An Ex ante Assessment. World Dev. 2010, 38, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Oparinde, A.; Abdoulaye, T.; Mignouna, D.B.; Bamire, A.S. Will farmers intend to cultivate Provitamin A genetically modified (GM) cassava in Nigeria? Evidence from a k-means segmentation analysis of beliefs and attitudes. PLoS ONE 2017, 12, e0179427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saltzman, A.; Birol, E.; Oparinde, A.; Andersson, M.S.; Asare-Marfo, D.; Diressie, M.T.; Gonzalez, C.; Lividini, K.; Moursi, M.; Zeller, M. Availability, production, and consumption of crops biofortified by plant breeding: Current evidence and future potential. Ann. N. Y. Acad. Sci. 2017, 1390, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Schnurr, M.A.; Addison, L.; Mujabi-Mujuzi, S. Limits to biofortification: Farmer perspectives on a vitamin A enriched Banana in Uganda. J. Peasant. Stud. 2020, 47, 326–345. [Google Scholar] [CrossRef]
- Icek, A. From Intentions to Actions: A Theory of Planned Behavior; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. [Google Scholar]
- Cook, A.J.; Kerr, G.N.; Moore, K. Attitudes and intentions towards purchasing GM food. J. Econ. Psychol. 2002, 23, 557–572. [Google Scholar] [CrossRef]
- Sun, X.; Guo, Y.; Wang, S.; Sun, J. Predicting Iron-Fortified Soy Sauce Consumption Intention: Application of the Theory of Planned Behavior and Health Belief Model. J. Nutr. Educ. Behav. 2006, 38, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Teo, T.; Beng Lee, C. Explaining the intention to use technology among student teachers: An application of the Theory of Planned Behavior (TPB). Campus-Wide Inf. Syst. 2010, 27, 60–67. [Google Scholar] [CrossRef]
- Satsios, N.; Hadjidakis, S. Applying the Theory of Planned Behaviour (TPB) in saving behaviour of Pomak households. Int. J. Financ. Res. 2018, 9, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Daxini, A.; O’Donoghue, C.; Ryan, M.; Buckley, C.; Barnes, A.P.; Daly, K. Which factors influence farmers’ intentions to adopt nutrient management planning? J. Environ. Manag. 2018, 224, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Janz, N.K.; Becker, M.H. The Health Belief Model: A Decade Later. Health Educ. Behav. 1984, 11, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.L.; Jensen, J.D.; Scherr, C.L.; Brown, N.R.; Christy, K.; Weaver, J. The Health Belief Model as an Explanatory Framework in Communication Research: Exploring Parallel, Serial, and Moderated Mediation. Health Commun. 2015, 30, 566–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenstock, I.M. Historical Origins of the Health Belief Model. Health Educ. Behav. 1974, 2, 328–335. [Google Scholar] [CrossRef]
- Rosenstock, I.M. Enhancing patient compliance with health recommendations. J. Pediatr. Health Care 1988, 2, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Buglar, M.E.; White, K.M.; Robinson, N.G. The role of self-efficacy in dental patients’ brushing and flossing: Testing an extended Health Belief Model. Patient Educ. Couns. 2010, 78, 269–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bylund, C.L.; Galvin, K.M.; Dunet, D.O.; Reyes, M. Using the Extended Health Belief Model to understand siblings’ perceptions of risk for hereditary hemochromatosis. Patient Educ. Couns. 2011, 82, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Abizari, A.R.; Pilime, N.; Armar-Klemesu, M.; Brouwer, I.D. Cowpeas in Northern Ghana and the Factors that Predict Caregivers’ Intention to Give Them to Schoolchildren. PLoS ONE 2013, 8, e72087. [Google Scholar] [CrossRef]
- Jones, C.J.; Smith, H.; Llewellyn, C. Evaluating the effectiveness of health belief model interventions in improving adherence: A systematic review. Health Psychol. Rev. 2014, 8, 253–269. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; Ali, M. A solution for the sunset industry: Adoption of Green Fertiliser Technology amongst Malaysian paddy farmers. Land Use Policy 2018, 79, 575–584. [Google Scholar] [CrossRef]
- Rahmati-Najarkolaei, F.; Tavafan, S.S.; Fesharaki, M.G.; Jafari, M.R. Factors predicting nutrition and physical activity behaviors due to cardiovascular disease in Tehran university students: Application of health belief model. Iran. Red Crescent Med. J. 2015, 17, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Soon, J.M.; Wallace, C. Application of theory of planned behaviour in purchasing intention and consumption of Halal food. Nutr. Food Sci. 2017, 47, 635–647. [Google Scholar] [CrossRef]
- Zhao, J.; Song, F.; Ren, S.; Wang, Y.; Wang, L.; Liu, W.; Wan, Y.; Xu, H.; Zhou, T.; Hu, T.; et al. Predictors of Condom Use Behaviors Based on the Health Belief Model (HBM) among Female Sex Workers: A Cross-Sectional Study in Hubei Province, China. PLoS ONE 2012, 7, e49542. [Google Scholar] [CrossRef] [Green Version]
- Talsma, E.F.; Melse-Boonstra, A.; de Kok, B.P.H.; Mbera, G.N.K.; Mwangi, A.M.; Brouwer, I.D. Biofortified Cassava with Pro-Vitamin A Is Sensory and Culturally Acceptable for Consumption by Primary School Children in Kenya. PLoS ONE 2013, 8, e73433. [Google Scholar] [CrossRef] [Green Version]
- Vassallo, M.; Saba, A.; Arvola, A.; Dean, M.; Messina, F.; Winkelmann, M.; Claupein, E.; Lähteenmäki, L.; Shepherd, R. Willingness to use functional breads. Applying the Health Belief Model across four European countries. Appetite 2009, 52, 452–460. [Google Scholar] [CrossRef]
- UBOS. Uganda: Demographic and Health Survey; Uganda Bureau of Statistics: Kampala, Uganda, 2016.
- Chinedu, O.; Sanou, E.; Tur-Cardona, J.; Bartolini, F.; Gheysen, G.; Speelman, S. Farmers’ valuation of transgenic biofortified sorghum for nutritional improvement in Burkina Faso: A latent class approach. Food Policy 2018, 79, 132–140. [Google Scholar] [CrossRef]
- Zhao, F.-J.; Shewry, P.R. Recent developments in modifying crops and agronomic practice to improve human health. Food Policy 2011, 36, S94–S101. [Google Scholar] [CrossRef]
- Singhal, V.K.; Patel, G.G.; Patel, D.H.; Kumar, U.; Saini, L.K. Effect of foliar applicaton of water soluble fertilizers on growth, yield and economics of vegetable cowpea production. Int. Q. J. Environ. Sci. 2015, 7, 79–83. [Google Scholar] [CrossRef]
- Hummel, M.; Talsma, E.F.; Van der Honing, A.; Gama, A.C.; Van Vugt, D.; Brouwer, I.D.; Spillane, C. Sensory and cultural acceptability tradeoffs with nutritional content of biofortified orange-fleshed sweetpotato varieties among households with children in Malawi. PLoS ONE 2018, 13, e0204754. [Google Scholar] [CrossRef] [Green Version]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53–55. [Google Scholar] [CrossRef]
- Kabbiri, R.; Dora, M.; Kumar, V.; Elepu, G.; Gellynck, X. Mobile phone adoption in agri-food sector: Are farmers in Sub-Saharan Africa connected? Technol. Forecast. Soc. Chang. 2018, 131, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis; Pearson Education Limited: London, UK, 2013. [Google Scholar]
- Kikulwe, E.M.; Wesseler, J.; Falck-Zepeda, J. Attitudes, perceptions, and trust. Insights from a consumer survey regarding genetically modified banana in Uganda. Appetite 2011, 57, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, N.; Haroon, S.; Frank, M. Social-cognitive factors influencing household decisions to grow orange-fleshed sweet potato in Uganda. J. Agric. Ext. 2020, 24, 1–12. [Google Scholar] [CrossRef]
- Fanou-Fogny, N.; van Dam, B.; Koreissi, Y.; Dossa, R.A.; Brouwer, I.D. Factors predicting consumption of fonio grain (Digitaria exilis) among urban Malian women of reproductive age. J. Nutr. Educ. Behav. 2011, 43, 219–228. [Google Scholar] [CrossRef] [PubMed]
Construct | Number of Items | Tolerance | VIF | Cronbach’s Alpha (α) | Constructs | Number of Items | Tolerance | VIF | Cronbach’s Alpha (α) |
---|---|---|---|---|---|---|---|---|---|
ATT | 5 | 0.591 | 1.692 | 0.718 | PSev | 4 | 0.59 | 1.695 | 0.771 |
SN | 4 | 0.994 | 1.006 | 0.628 | PBen | 3 | 0.726 | 1.377 | 0.748 |
PBC | 5 | 0.594 | 1.684 | 0.831 | PBar | 3 | 0.815 | 1.228 | 0.732 |
PSus | 5 | 0.641 | 1.56 | 0.804 | Cues to Action | 3 | 0.972 | 1.029 | 0.752 |
Characteristic | Mean | SD |
---|---|---|
Age (complete years) | 38.1 | 12.6 |
Household size | 7 | 3.0 |
Household income (UGX.) | 331,558 | 388,829 |
Farm size (hectares) | 1.82 | 1.66 |
Experience applying fertilizers | 3.2 | 3.4 |
Construct | Mean | S. D | Constructs | Mean | S. D |
---|---|---|---|---|---|
Attitude | 3.92 | 0.762 | Perceived severity | 4.41 | 0.621 |
ATT 1 | 4.35 | 0.844 | PSev1 | 4.19 | 1.022 |
ATT2 | 4.09 | 0.942 | PSev2 | 4.40 | 0.788 |
ATT3 | 4.31 | 0.895 | PSev3 | 4.51 | 0.698 |
ATT 4 | 2.76 | 1.212 | PSev4 | 4.55 | 0.671 |
ATT 5 | 4.11 | 0.950 | Perceived benefits | 4.43 | 0.580 |
Subjective norms | 3.02 | 1.112 | PBen1 | 4.48 | 0.710 |
SN1 | 2.95 | 1.757 | PBen2 | 4.47 | 0.688 |
SN2 | 3.12 | 1.660 | PBen3 | 4.36 | 0.736 |
SN3 | 2.97 | 1.643 | Perceived barriers | 4.16 | 0.823 |
SN4 | 3.05 | 1.453 | PBar1 | 4.32 | 0.967 |
Perceived behavioral Control | 3.87 | 0.946 | PBar2 | 3.98 | 1.115 |
PBC1 | 3.72 | 1.267 | PBar3 | 4.19 | 0.972 |
PBC2 | 4.08 | 1.136 | Cues to Action | 4.36 | 0.618 |
PBC3 | 4.29 | 1.059 | Cues1 | 3.97 | 1.316 |
PBC4 | 3.46 | 1.389 | Cues2 | 4.50 | 0.799 |
PBC5 | 3.83 | 1.253 | Cues 3 | 4.63 | 0.630 |
Perceived susceptibility | 4.09 | 0.714 | Knowledge | 1.68 | 1.037 |
PSUS1 | 4.03 | 1.042 | Know1 | 1.70 | 0.459 |
PSUS2 | 4.17 | 0.903 | Know2 | 1.95 | 0.217 |
PSUS3 | 4.24 | 0.912 | Know3 | 1.41 | 0.492 |
PSUS4 | 4.02 | 1.016 | |||
PSUS5 | 4.28 | 0.881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparo, N.O.; Olum, S.; Atimango, A.O.; Odongo, W.; Aloka, B.; Ongeng, D.; Gellynck, X.; De Steur, H. Farmers’ Intention to Adopt Agronomic Biofortification: The Case of Iodine Biofortified Vegetables in Uganda. Horticulturae 2023, 9, 401. https://doi.org/10.3390/horticulturae9030401
Aparo NO, Olum S, Atimango AO, Odongo W, Aloka B, Ongeng D, Gellynck X, De Steur H. Farmers’ Intention to Adopt Agronomic Biofortification: The Case of Iodine Biofortified Vegetables in Uganda. Horticulturae. 2023; 9(3):401. https://doi.org/10.3390/horticulturae9030401
Chicago/Turabian StyleAparo, Nathaline Onek, Solomon Olum, Alice Onek Atimango, Walter Odongo, Bonny Aloka, Duncan Ongeng, Xavier Gellynck, and Hans De Steur. 2023. "Farmers’ Intention to Adopt Agronomic Biofortification: The Case of Iodine Biofortified Vegetables in Uganda" Horticulturae 9, no. 3: 401. https://doi.org/10.3390/horticulturae9030401
APA StyleAparo, N. O., Olum, S., Atimango, A. O., Odongo, W., Aloka, B., Ongeng, D., Gellynck, X., & De Steur, H. (2023). Farmers’ Intention to Adopt Agronomic Biofortification: The Case of Iodine Biofortified Vegetables in Uganda. Horticulturae, 9(3), 401. https://doi.org/10.3390/horticulturae9030401