The Acetone Extract of Albizia lebbeck Stem Bark and Its In Vitro Cytotoxic and Antimicrobial Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of A. lebbeck Extract
2.3. Extract Derivatization and Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
2.4. High-Performance Liquid Chromatography (HPLC) Analysis
2.5. Antibacterial Activity
2.6. Antifungal Activity
2.7. Cytotoxicity Test In Vitro
2.7.1. Cell Cultures
2.7.2. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5 Diphenyl Tetrazolium Bromide) Assay
2.8. Statistical Analysis
3. Results
3.1. GC-MS Analysis
3.2. HPLC Analysis
3.3. Antibacterial Activity
3.4. Antifungal Activity
3.5. In Vitro Cytotoxic Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, S.S.; Gothecha, V.K.; Sharma, A. Albizia lebbeck: A short review. J. Herb. Med. Toxicol. 2010, 4, 9–15. [Google Scholar]
- Amog, P.U.; Manjuprasanna, V.N.; Yariswamy, M.; Nanjaraj Urs, A.N.; Joshi, V.; Suvilesh, K.N.; Nataraju, A.; Vishwanath, B.S.; Gowda, T.V. Albizia lebbeck seed methanolic extract as a complementary therapy to manage local toxicity of Echis carinatus venom in a murine model. Pharm. Biol. 2016, 54, 2568–2574. [Google Scholar] [CrossRef]
- Rashid, R.B.; Chowdhury, R.; Jabbar, A.; Hasan, C.M.; Rashid, M.A. Constituents of Albizzia lebbeck and antibacterial activity of an isolated flavone derivative. Saudi Pharm. J 2003, 11, 52–56. [Google Scholar]
- Noté, O.P.; Jihu, D.; Antheaume, C.; Zeniou, M.; Pegnyemb, D.E.; Guillaume, D.; Chneiwess, H.; Kilhoffer, M.C.; Lobstein, A. Triterpenoid saponins from Albizia lebbeck (L.) Benth and their inhibitory effect on the survival of high grade human brain tumor cells. Carbohydr. Res. 2015, 404, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, M.; Kundu, S.S.; Singh, S.; Misra, A.K. Cornell net carbohydrate and protein system for nutritional evluation of tree leaves, shrubs and grasses. Indian J Anim Sci. 2006, 76, 81–87. [Google Scholar]
- Varshney, I.P. Glycosides and carbohydrates from the members of the family Leguminosae. Univ. Indore Res. J. Sci. 1976, 4, 13–22. [Google Scholar]
- Pal, B.C.; Achari, B.; Yoshikawa, K.; Arihara, S. Saponins from Albizia lebbeck. Phytochemistry 1995, 38, 1287–1291. [Google Scholar] [CrossRef]
- Wati, M.; Khabiruddin, M. Comparision of antioxidants in phenol extract and methanol extract of Albizia lebbeck from two locations. Int. J. Pharm. Sci. Rev. Res. Int. 2017, 45, 78–82. [Google Scholar]
- Elshiekh, Y.H.; Alagbash, R.E.; Ali, R.A.; Saad, F.O.; Musharaf, M. Phytochemical constituents, antibacterial screening and antioxidant activity of Albizia lebbeck (L.) Benth (Seed). N. A. J. Adv. Res. Rev. 2020, 7, 035–040. [Google Scholar]
- Babu, N.P.; Pandikumar, P.; Ignacimuthu, S. Anti-inflammatory activity of Albizia lebbeck Benth., an ethnomedicinal plant, in acute and chronic animal models of inflammation. J. Ethnopharmacol. 2009, 125, 356–360. [Google Scholar] [CrossRef]
- Gul, F.; Shinwari, Z.K.; Afzal, I. Screening of indigenous knowledge of herbal remedies for skin diseases among local communities of north West Punjab, Pakistan. Pak. J. Bot. 2012, 44, 1609–1616. [Google Scholar]
- Farag, M.; El Gamal, A.; Kalil, A.; Al-Rehaily, A.; El Mirghany, O.; El Tahir, K. Evaluation of some biological activities of Albizia lebbeck flowers. Pharmacol. Pharm. 2013, 4, 473–477. [Google Scholar] [CrossRef]
- Abd El-Ghany, A.E.-S.; Dora, G.; Abdallah, R.H.; Hassan, W.; El-Salam, E.A. Phytochemical and biological study of Albizia lebbeck stem bark. J Chem Pharma Res 2015, 7, 29–43. [Google Scholar]
- Arasu, M.V.; Al-Dhabi, N.A.; Choi, K.C.; Vincent Bensy, A.D.; Rajaselvam, J. Bioactive potential of Albizia lebbeck extract against phytopathogens and protective properties on tomato plant against speck disease in greenhouse. Physiol. Mol. Plant Pathol. 2022, 117, 101750. [Google Scholar] [CrossRef]
- Suruse, P.B.; Bodele, S.B.; Duragkar, N.J.; Saundankar, Y.G. In-Vitro evaluation of antioxidant activity of Albizia Lebbeck bark. Int. J. Biol. Sci. Ayuveda Res. 2013, 1, 6–17. [Google Scholar]
- Abdul-Hafeez, E.Y.; Nguyen, T.N.; Karamova, N.S.; Ilinskaya, O.N. Antibacterial activity of certain medicinal plants on different bacterial strains associated with colorectral cancer. Int. J. Biosci. 2014, 5, 219–229. [Google Scholar]
- Ali, M.T.; Haque, S.T.; Kabir, M.L.; Rana, S.; Haque, M.E. A comparative study of in vitro antimicrobial, antioxidant and cytotoxic activity of Albizia lebbeck and Acacia nilotica stem bark. Bull. Fac. Pharm. Cairo Univ. 2018, 56, 34–38. [Google Scholar] [CrossRef]
- El-Hawary, S.; El-Fouly, K.; Sokkar, N.M.; Talaat, Z. A phytochemical profile of Albizia lebbeck (L.) Benth. cultivated in Egypt. Asian J. Biochem. 2011, 6, 122–141. [Google Scholar] [CrossRef]
- Abdul-Hafeez, E.Y.; Karamova, N.S.; Ilinskaya, O.N. Antioxidant activity and total phenolic compound content of certain medicinal plants. Int. J. Biosci. 2014, 5, 213–222. [Google Scholar]
- Desai, S.; Tatke, P.; Gabhe, S. Isolation of catechin from stem bark of Albizia lebbeck. Int. J. Res. Pharm. Biomed. Sci. 2014, 3, 31–35. [Google Scholar]
- Ahmed, D.; Kumar, V.; Sharma, M.; Verma, A. Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. bark. BMC Complement Altern. Med. 2014, 14, 155. [Google Scholar] [CrossRef]
- Desai, T.H.; Joshi, S.V. Anticancer activity of saponin isolated from Albizia lebbeck using various in vitro models. J. Ethnopharmacol. 2019, 231, 494–502. [Google Scholar] [CrossRef]
- Viana, E.O.R.; Cruz, M.d.F.S.J.; da Silva, M.J.; Pereira, G.M.; da Silva, B.P.; Tinoco, L.W.; Parente, J.P. Structural characterization of a complex triterpenoid saponin from Albizia lebbeck and investigation of its permeability property and supramolecular interactions with membrane constituents. Carbohydr. Res. 2019, 471, 105–114. [Google Scholar] [CrossRef]
- Ibrahim, O.H.M.; Abdul-Hafeez, E.Y.; Mahmoud, A.F. Antimicrobial and Antioxidant Activities of Stem Bark Extracts of Different Ornamental Trees. Assiut J. Agric. Sci 2015, 46, 19–32. [Google Scholar]
- Thakur, R.S.; Ahirwar, B. A steroidal derivative from Trigonella foenum graecum L. that induces apoptosis in vitro and in vivo. J Food Drug Anal. 2019, 27, 231–239. [Google Scholar] [CrossRef]
- Noté, O.P.; Ngo Mbing, J.; Kilhoffer, M.-C.; Pegnyemb, D.E.; Lobstein, A. Lebbeckoside C, a new triterpenoid saponin from the stem barks of Albizia lebbeck inhibits the growth of human glioblastoma cells. Nat. Prod. Res. 2019, 33, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Grattan, B.J. Plant Sterols as Anticancer Nutrients: Evidence for Their Role in Breast Cancer. Nutrients 2013, 5, 359–387. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Kumar, P.; Jindal, A. Antibacterial potential of sterols of some medicinal plants. Int. J. Pharm. Pharm. Sci. 2012, 4, 159–162. [Google Scholar]
- Semwal, P.; Painuli, S.; Badoni, H.; Bacheti, R.K. Screening of phytoconstituents and antibacterial activity of leaves and bark of Quercus leucotrichophora A. Camus from Uttarakhand Himalaya. Clin. Phytoscience 2018, 4, 30. [Google Scholar] [CrossRef]
- Khan, N.; Ali, A.; Qadir, A.; Ali, A.; Warsi, M.H.; Tahir, A.; Ali, A. GC-MS analysis and antioxidant activity of Wrightia tinctoria R.Br. leaf extract. J. AOAC Int. 2021, 104, 1415–1419. [Google Scholar] [CrossRef]
- Jangwan, J.S.; Dobhal, M.; Kumar, N. New cytotoxic saponin of Albizzia lebbeck. Indian J. Chem. B 2010, 49, 123–126. [Google Scholar]
- Jóźwiak, M.; Filipowska, A.; Fiorino, F.; Struga, M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur. J. Pharm. 2020, 871, 172937. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, S.; Menzel, A. A subchronic 90-day oral rat toxicity study and in vitro genotoxicity studies with a conjugated linoleic acid product. Food Chem. Toxicol. 2003, 41, 1749–1760. [Google Scholar] [CrossRef]
- Bharath, B.; Perinbam, K.; Devanesan, S.; AlSalhi, M.S.; Saravanan, M. Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. J. Mol. Struct. 2021, 1235, 130229. [Google Scholar] [CrossRef]
- Harada, H.; Yamashita, U.; Kurihara, H.; Fukushi, E.; Kawabata, J.; Kamei, Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res. 2002, 22, 2587–2590. [Google Scholar] [PubMed]
- Arora, S.; Kumar, G. Phytochemical screening of root, stem and leaves of Cenchrus biflorus Roxb. J. Pharm. Phytochem. 2018, 7, 1445–1450. [Google Scholar]
- Jiang, L.; Wang, W.; He, Q.; Wu, Y.; Lu, Z.; Sun, J.; Liu, Z.; Shao, Y.; Wang, A. Oleic acid induces apoptosis and autophagy in the treatment of tongue squamous cell carcinomas. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yff, B.T.S.; Lindsey, K.L.; Taylor, M.B.; Erasmus, D.G.; Jäger, A.K. The pharmacological screening of Pentanisia prunelloides and the isolation of the antibacterial compound palmitic acid. J. Ethnopharmacol. 2002, 79, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.J.; Yoo, J.-S.; Lee, T.-G.; Cho, H.-Y.; Kim, Y.-H.; Kim, W.-G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005, 579, 5157–5162. [Google Scholar] [CrossRef] [PubMed]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef]
- Ngamakeue, N.; Chitprasert, P. Encapsulation of Holy Basil Essential Oil in Gelatin: Effects of Palmitic Acid in Carboxymethyl Cellulose Emulsion Coating on Antioxidant and Antimicrobial Activities. Food Bioproc. Tech. 2016, 9, 1735–1745. [Google Scholar] [CrossRef]
- Shaaban, M.T.; Ghaly, M.F.; Fahmi, S.M. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J. Basic Microbiol. 2021, 61, 557–568. [Google Scholar] [CrossRef]
- Novak, A.F.; Clark, G.C.; Dupuy, H.P. Antimicrobial activity of some ricinoleic acid oleic acid derivatives. JAOCS 1961, 38, 321–324. [Google Scholar] [CrossRef]
- Brulez, W.; Zeller, W. Seasonal changes of epiphytic Erwinia amylovora on ornamentals in relation to weather conditions and course of infections. Acta Hortic. 1981, 117, 37–43. [Google Scholar]
- Ibrahim, O.H.M.; Abo-Elyousr, K.A.M.; Asiry, K.A.; Alhakamy, N.A.; Mousa, M.A.A. Phytochemical characterization, antimicrobial activity and in vitro antiproliferative potential of Alchemilla vulgaris Auct root extract against prostate (PC-3), breast (MCF-7) and colorectal adenocarcinoma (Caco-2) cancer cell lines. Plants 2022, 11, 2140. [Google Scholar] [CrossRef]
- Abdel-Hafez, S.I.I.; Abo-Elyousr, K.A.M.; Abdel-Rahim, I.R. Effectiveness of plant extracts to control purple blotch and Stemphylium blight diseases of onion (Allium cepa L.) in Assiut, Egypt. Arch. Phytopathol. Plant Prot. 2014, 47, 377–387. [Google Scholar] [CrossRef]
- Ibrahim, O.H.M.; Mousa, M.A.A.; Asiry, K.A.; Alhakamy, N.A.; Abo-Elyousr, K.A.M. Azadirachta indica A. Juss fruit mesocarp epicarp extracts induce, antimicrobial antiproliferative effects against prostate, breast colorectal adenocarcinoma cancer cell lines through upregulation of proapoptotic genes. Plants 2022, 11, 1990. [Google Scholar] [CrossRef]
- Balkrishna, A.; Sakshi; Chauhan, M.; Dabas, A.; Arya, V. A Comprehensive Insight into the Phytochemical, Pharmacological Potential, and Traditional Medicinal Uses of Albizia lebbeck (L.) Benth. Evid. Based Complement. Altern. Med. 2022, 2022, 5359669. [Google Scholar] [CrossRef]
- Tawfik, M.M.; Galal, B.; Nafie, M.S.; El Bous, M.M.; El-Bana, M.I. Cytotoxic, apoptotic activities and chemical profiling of dimorphic forms of Egyptian halophyte Cakile maritima scop. J. Biomol. Struct. Dyn. 2023, 41, 147–160. [Google Scholar] [CrossRef] [PubMed]






| No. | Compound | Retention Time (min) | Peak Area % | Chemical Formula | Molecular Weight | CAS Number |
|---|---|---|---|---|---|---|
| 1 | 1,4-Benzenediol, 2-(1,1-dimethylethyl)-5-(2-propenyl)- “2-Allyl-5-t-butylhydroquinone” | 17.64 | 3.33 | C13H18O2 | 206 | 73685-60-6 |
| 2 | Methyl-9,9,10,10-D4-octadecanoate | 22.25 | 0.84 | C19H34D4O2 | 302 | 56554-85-9 |
| 3 | Isopropyl myristate “Tetradecanoic acid, 1-methylethyl ester” | 24.33 | 1.17 | C17H34O2 | 270 | 110-27-0 |
| 4 | 1,25-Dihydroxyvitamin D3, TMS derivative | 24.86 | 0.65 | C30H52O3Si | 488 | 55759-94-9 |
| 5 | Isochiapin B | 26.12 | 0.65 | C19H22O6 | 346 | NA |
| 6 | Hexadecanoic acid, methyl ester “Palmitic acid, methyl ester” | 26.29 | 1.77 | C17H34O2 | 270 | 112-39-0 |
| 7 | Hexadecanoic acid “Palmitic Acid” | 27.15 | 3.73 | C16H32O2 | 256 | 57-10-3 |
| 8 | Hexadecanoic acid, trimethylsilyl ester “Trimethylsilyl palmitate” | 28.6 | 1.69 | C19H40O2Si | 328 | 55520-89-3 |
| 9 | 7,10-Octadecadienoic acid, methyl ester | 29.37 | 2.31 | C19H34O2 | 294 | 56554-24-6 |
| 10 | 9-Octadecenoic acid (z)-, methyl ester “Oleic acid, methyl ester” | 29.49 | 6.69 | C19H36O2 | 296 | 1937-62-8 |
| 11 | 9-Octadecenoic acid (z)- “Oleic acid” | 29.61 | 1.17 | C18H34O2 | 282 | 112-80-1 |
| 12 | Methyl-9,9,10,10-D4-octadecanoate | 29.98 | 1.25 | C19H34D4O2 | 302 | 56554-85-9 |
| 13 | 9-Octadecenoic acid (z)- “Oleic acid” | 30.28 | 8.92 | C18H34O2 | 282 | 112-80-1 |
| 14 | 9-Octadecenoic acid (z)- “Oleic acid” | 30.71 | 2.42 | C18H34O2 | 282 | 112-80-1 |
| 15 | 9,12-Octadecadienoic acid (z,z)-, methyl ester “Methyl linoleate” | 31.05 | 0.77 | C19H34O2 | 294 | 112-63-0 |
| 16 | 2-Hydroxy-3-[(9E)-9-octadecenoyloxy]propyl | 34.95 | 1.64 | C39H72O5 | 620 | 2465-32-9 |
| 17 | 1-Heptatriacotanol | 35.59 | 0.8 | C37H76O | 536 | 105794-58-9 |
| 18 | 2-Hydroxy-3-[(9E)-9-octadecenoyloxy] propyl (9E)-9-octadecenoate | 35.66 | 1.38 | C39H72O5 | 620 | 2465-32-9 |
| 19 | Isochiapin B | 36.77 | 1.43 | C19H22O6 | 346 | NA |
| 20 | .psi.,.psi.-Carotene, 1,1′,2,2′-tetrahydro-1,1′-dimethoxy- “3,4,3′,4′-Tetrahydrospirilloxanthin” | 37.09 | 1.72 | C42H64O2 | 600 | 13833-01-7 |
| 21 | γ-Tocopherol | 37.64 | 8.65 | C28H48O2 | 416 | 7616-22-0 |
| 22 | Ethyl iso-allocholate | 37.9 | 4.58 | C26H44O5 | 436 | NA |
| 23 | 9,12,15-Octadecatrienoic acid, 2,3-bis[(trimethylsilyl)oxy]propyl ester, (z,z,z)- | 38.33 | 1.19 | C27H52O4Si2 | 496 | 55521-22-7 |
| 24 | 2-Hydroxy-3-[(9E)-9-octadecenoyloxy] propyl (9E)-9-octadecenoate | 39.58 | 3.16 | C39H72O5 | 620 | 2465-32-9 |
| 25 | Stigmast-5-en-3-ol, (3beta)- “β -Sitosterol” | 40.46 | 11.84 | C29H50O | 414 | 83-47-5 |
| 26 | 2,6-Bis(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo(3.3.0)octane | 40.71 | 3.62 | C20H18O6 | 354 | 7076-24-6 |
| 27 | Dodecanoic acid methyl ester “Methyl laurate” | 40.88 | 6.3 | C13H26O2 | 214 | 111-82-0 |
| 28 | Nonadecanoic acid methyl ester | 41.04 | 11.66 | C20H40O2 | 313 | 1731-94-8 |
| 29 | Docosanoic acid methyl ester “Methyl behenate” | 41.33 | 2.37 | C23H77O2 | 355 | 929-77-1 |
| 30 | Gitoxigenin | 41.50 | 0.83 | C23H34O5 | 390 | 545-26-6 |
| 31 | 4-Methoxy-hexacosanoic acid | 41.54 | 1.48 | C26H52O2 | 397 | 506-46-7 |
| No. | Compound | Retention Time Min | Concentration | ||
|---|---|---|---|---|---|
| μg/mL Acetone Extract | µg/g Dry Extract | μg/g Stem Bark DW | |||
| 1 | Catechol | 4.5 | 7.22 | 144.4 | 6.9 |
| 2 | Syringic acid | 5.1 | 5.36 | 107.2 | 5.1 |
| 3 | Cinnamic acid | 7.0 | 29.63 | 592.6 | 28.3 |
| 4 | Caffeic acid | 8.0 | 5.47 | 109.4 | 5.2 |
| 5 | Gallic acid | 9.8 | 5.06 | 101.2 | 4.8 |
| 6 | Salicylic acid | 12.0 | 6.33 | 126.6 | 6.1 |
| 7 | Ellagic acid | 12.8 | 14.96 | 299.2 | 14.3 |
| 8 | Protocatechuic acid | 15.6 | 2.36 | 47.2 | 2.3 |
| No. | Compound | Retention Time Min | Concentration | ||
|---|---|---|---|---|---|
| μg/mL Acetone Extract | µg/g Dry Extract | μg/g Stem Bark DW | |||
| 1 | Naringin | 4.6 | 7.14 | 142.8 | 6.8 |
| 2 | Rutin | 5.2 | 6.16 | 123.2 | 5.9 |
| 3 | Quercetin | 6.9 | 11.41 | 228.2 | 10.9 |
| 4 | Kaempferol | 8.1 | 4.17 | 83.4 | 4.0 |
| 5 | Luteolin | 9.0 | 6.13 | 122.6 | 5.9 |
| 6 | Hisperdin | 10.0 | 14.45 | 289 | 13.8 |
| 7 | Catechin | 12.01 | 7.14 | 142.8 | 6.8 |
| 8 | Chrysoeriol | 15.0 | 24.08 | 481.6 | 23.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, O.H.M.; Abdul-Hafeez, E.Y. The Acetone Extract of Albizia lebbeck Stem Bark and Its In Vitro Cytotoxic and Antimicrobial Activities. Horticulturae 2023, 9, 385. https://doi.org/10.3390/horticulturae9030385
Ibrahim OHM, Abdul-Hafeez EY. The Acetone Extract of Albizia lebbeck Stem Bark and Its In Vitro Cytotoxic and Antimicrobial Activities. Horticulturae. 2023; 9(3):385. https://doi.org/10.3390/horticulturae9030385
Chicago/Turabian StyleIbrahim, Omer H. M., and Essam Y. Abdul-Hafeez. 2023. "The Acetone Extract of Albizia lebbeck Stem Bark and Its In Vitro Cytotoxic and Antimicrobial Activities" Horticulturae 9, no. 3: 385. https://doi.org/10.3390/horticulturae9030385
APA StyleIbrahim, O. H. M., & Abdul-Hafeez, E. Y. (2023). The Acetone Extract of Albizia lebbeck Stem Bark and Its In Vitro Cytotoxic and Antimicrobial Activities. Horticulturae, 9(3), 385. https://doi.org/10.3390/horticulturae9030385

