Evaluation of Corn Stalk as a Substrate to Cultivate King Oyster Mushroom (Pleurotus eryngii)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum Source and Spawn Preparation
2.2. Substrate Preparation
2.3. Assay for the Growth Rate
2.4. Spawning and Fruiting Bodies
2.5. Compositional Analysis
2.6. Statistical Analysis
3. Results
3.1. Composition of Corn Stalks
3.2. Mycelia Growth Rate
3.3. The Morphology and Fruiting Characteristics of P. eryngii
3.4. Nutrient Content of the Mushrooms
3.5. The Mineral Composition of Mushrooms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Z.; Chen, Z.; Yi, J.; Feng, D. Preparation Method of Corn Stalk Fiber Material and Its Performance Investigation in Asphalt Concrete. Sustainability 2019, 11, 4050. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Xu, X.; Wang, C.; Bai, Y.; Fu, C.; Zhang, L.; Fu, R.; Wang, Y. Environmental Burdens of the Comprehensive Utilization of Straw: Wheat Straw Utilization from A Life-cycle Perspective. J. Clean. Prod. 2020, 259, 120702. [Google Scholar] [CrossRef]
- Gao, J.L.; Wang, P.; Zhou, C.H.; Li, P.; Tang, H.Y.; Zhang, J.B.; Cai, Y.M. Chemical Composition and In Vitro Digestibility of Corn Stover During Field Exposure and the Fermentation Characteristics of Silage Prepared with Microbial Additives. Asian Australas. J. Anim 2019, 32, 1854–1863. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Fu, Y.; Li, D.; Sun, X.; Chen, Y.; Li, X.; Li, Y. Effects of Corn Stalk Cultivation Substrate on the Growth of the Slippery Mushroom (Pholiota microspora). RSC Adv. 2019, 9, 5347–5353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, C.H.; Wu, C.Y.; Lu, P.L.; Kuo, Y.C.; Liang, Z.C. Biological Efficiency and Nutritional Value of the Culinary-medicinal Mushroom Auricularia Cultivated on a Sawdust Basal Substrate Supplement with Different Proportions of Grass Plants. Saudi J. Biol. Sci. 2019, 26, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Wang, F.; Fu, Y.; Li, D.; Sun, X.; Li, C.; Li, Y. Effects of Mixed Agro-residues (corn crop waste) on Lignin-degrading Enzyme Activities, Growth, and Quality of Lentinula edodes. RSC Adv. 2020, 10, 9798–9807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J. Spatial-Temporal Variability of Caragana korshinskii Vegetation Growth in the Loess Plateau. Sci. Silvae Sin. 2013, 49, 14–20. [Google Scholar]
- Qu, J.S.; Zhang, L.J.; Feng, H.P.; Yang, D.Y. Status of Development and Utilization of Biamass Caragana in Ningxia Horticultural Substrate Cultivation. North. Hortic. 2013, 23, 198–201. [Google Scholar]
- Zhu, X.Q.; Wang, Y.H.; Sun, G.Q. A Preliminary Study on the Cultivation of Pleurotus citrinipileatus by Korshinsk Peashrub Powder. Inner Mongolia Agr. Sci. Technol. 2006, 1, 68–69. [Google Scholar]
- Wang, X.M.; Zhang, J.; Wu, L.H.; Zhao, Y.L.; Li, T.; Li, J.Q.; Wang, Y.Z.; Liu, H.G. A Mini-review of Chemical Composition and Nutritional Value of Edible Wild-grown Mushroom from China. Food Chem. 2014, 151, 279–285. [Google Scholar] [CrossRef]
- Stajić, M.; Vukojević, J.; Duletićlausević, S. Biology of Pleurotus eryngii and Role in Biotechnological Processes: A Review. Crit. Rev. Biotechnol 2009, 29, 55. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.C.; Wu, K.J.; Wang, J.C.; Lin, C.H.; Wu, C.Y. Cultivation of the culinary-medicinal Lung Oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. (Agaricomycetideae) on grass plants in Taiwan. Int. J. Med. Mushrooms 2011, 13, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Kalač, P. A Review of Chemical Composition and Nutritional Value of Wild-growing and Cultivated Mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Suwandi, J.; Fuller, J.; Doronila, A.; Ng, K. Antioxidant Capacity and Mineral Contents of Edible Wild Australian Mushrooms. Food Sci. Technol. Int. 2012, 18, 367–379. [Google Scholar] [CrossRef]
- Yuan, B.; Zhao, L.; Rakariyatham, K.; Han, Y.H.; Gao, Z.L.; Muinde Kimatu, B.; Hu, Q.H.; Xiao, H. Isolation of a Novel Bioactive Protein from an Edible Mushroom Pleurotus eryngii and its Anti-inflammatory Potential. Food Funct. 2017, 8, 2175–2183. [Google Scholar] [CrossRef]
- Elbagory, M.; El-Nahrawy, S.; Omara, A.E.-D.; Eid, E.M.; Bachheti, A.; Kumar, P.; Abou Fayssal, S.; Adelodun, B.; Bachheti, R.K.; Kumar, P.; et al. Sustainable Bioconversion of Wetland Plant Biomass for Pleurotus ostreatus var. florida Cultivation: Studies on Proximate and Biochemical Characterization. Agriculture 2022, 12, 2095. [Google Scholar] [CrossRef]
- Yang, W.; Guo, F.; Wan, Z. Yield and Size of Oyster Mushroom Grown on Rice/wheat Straw Basal Substrate Supplemented with Cotton Seed Hull. Saudi J. Biol. Sci. 2013, 20, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Okano, K.; Fukui, S.; Kitao, R.; Usagawa, T. Effects of Culture Length of Pleurotus eryngii Grown on Sugarcane Bagasse on in Vitro Digestibility and Chemical Composition. Anim. Feed. Sci. Tech. 2007, 136, 240–247. [Google Scholar] [CrossRef]
- Moonmoon, M.; Uddin, M.N.; Ahmed, S.; Shelly, N.J.; Khan, M.A. Cultivation of Different Strains of King Oyster Mushroom (Pleurotus eryngii) on Sawdust and Rice Straw in Bangladesh. Saudi. J. Biol. Sci. 2010, 17, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Naraian, R.; Sahu, R.K.; Kumar, S.; Garg, S.K.; Singh, C.S.; Kanaujia, R.S. Influence of Different Nitrogen Rich Supplements During Cultivation of Pleurotus florida on Corn Cob Substrate. Environmentalist 2009, 29, 1–7. [Google Scholar] [CrossRef]
- Ryu, J.S.; Min, K.K.; Im, C.H.; Shin, P.G. Development of Cultivation Media for Extending the Shelf-life and Improving Yield of King Oyster mushrooms (Pleurotus eryngii). Sci. Hortic. 2015, 193, 121–126. [Google Scholar] [CrossRef]
- Jeznabadi, E.K.; Jafarpour, M.; Eghbalsaied, S. King Oyster Mushroom Production Using Various Sources of Agricultural Wastes in Iran. Int. J. Recycl. Org. Waste Agric. 2016, 5, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.X.; Wang, W. Factory Cultivation and Postharvest Preservation Technology of Pleurotus eryngii. Xiandai Horticulture 2022, 45, 27–28. [Google Scholar]
- Ding, C.Y. Effects of Different Cultivation Media on Quality and Economic Benefits of Pleurotus eryngii. Edible Fungi China 2020, 39, 18–21. [Google Scholar]
- Penn, C.J.; Camberato, J.J. A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.B.; Du, F.; Zou, Y.J.; Zhang, N.N.; Hu, Q.X. Study on the Formula of Mulberry Branch and Grape Branch Sawdust for Cultivating Pleurotus eryngii. Edible Fungi China 2021, 40, 29–33. [Google Scholar]
- Zhou, Y.; Li, Z.; Zhang, H.; Hu, Q.; Zou, Y. Potential Uses of Scallop Shell Powder as a Substrate for the Cultivation of King Oyster Mushroom (Pleurotus eryngii). Horticulturae 2022, 8, 333. [Google Scholar] [CrossRef]
- Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Ávila, S.; Hornung, P.S.; Júnior, A.M.; Ribani, R.H. Factors Affecting Mushroom Pleurotus spp. Saudi. J. Biol. Sci. 2016, 26, 633–646. [Google Scholar] [CrossRef]
- Naraian, R.; Narayan, O.P.; Srivastava, J. Differential Response of Oyster Shell Powder on Enzyme Profile and Nutritional Value of Oyster Mushroom Pleurotus florida PF05. Biomed. Res. Int. 2014, 2014, 386265. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.Y.; Hu, D.D.; Ma, X.T.; Li, S.G.; Gu, J.G.; Hu, Q.X. Adopting Stick Spawn Reduced the Spawn Running Time and Improved Mushroom Yield and Biological Efficiency of Pleurotus eryngii. Sci. Hortic. 2014, 175, 156–159. [Google Scholar] [CrossRef]
- Patricia Cunniff, A. Official Methods of Analysis of AOAC International, 16th ed.; Elsevier: Cambridge, UK, 1995. [Google Scholar]
- Jonathan, S.; Okon, C.; Oyelakin, A.; Oluranti, O. Nutritional Values of Oyster Mushroom (Pleurotus ostreatus) (Jacq. Fr.) Kumm. Cultivated on Different Agricultural Wastes. Nat. Sci. 2012, 10, 186–191. [Google Scholar]
- Chang, S.T.; Hayes, W.A. The Biology and Cultivation of Edible Mushrooms; Academic Press: Cambridge, MA, USA, 1978; pp. 521–557. [Google Scholar]
- Zou, Y.J.; Du, F.; Zhang, H.J.; Hu, Q.X. Evaluation of Korshinsk Peashrub (Caragana korshinskii Kom) as a Substrate for the Cultivation of Pleurotus eryngii. Waste Biomass Valorization 2019, 10, 2879–2885. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y. Characterization of Corncob-derived Biochar and Pyrolysis Kinetics in Comparison with Corn Stalk and Sawdust. Bioresour. Technol. 2014, 170, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Lechner, B.E.; Albertó, E. Search for New Naturally Occurring Strains of Pleurotus to Improve Yields: Pleurotus albidus as a Novel Proposed Species for Mushroom Production. Rev. Iberoam. Micol. 2011, 28, 148–154. [Google Scholar] [CrossRef]
- Zied, D.C.; Pardo-Giménez, A.; de Almeida Minhonia, M.T.; Villas Boasc, R.L.; Alvarez-Ortid, M.; Pardo-Gonzálezd, J.E. Characterization, Feasibility and Optimization of Agaricus subrufescens Growth Based on Chemical Elements on Casing Layer. Saudi J. Biol. Sci. 2012, 19, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Zhang, G. Effects of Different Carbon and Nitrogen Sources on Mycelium Growth of Pleurotus eryngii. Acta Edulis Fungi 2010, 75–77. [Google Scholar]
- Bernaś, E.; Jaworska, G.; Lisiewska, Z. Edible Mushrooms as a Source of Valuable Nutritive Constituents. Acta Sci. Pol. Technol. Aliment. 2006, 5, 5–20. [Google Scholar]
- Gothwal, R.; Gupta, A.; Kumar, A.; Sharma, S.; Alappat, B.J. Feasibility of Dairy Waste Water (DWW) and Distillery Spent Wash (DSW) Effluents in Increasing the Yield Potential of Pleurotus flabellatus (PF 1832) and Pleurotus sajor-caju (PS 1610) on Bagasse. 3 Biotech 2012, 2, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Ogbo, E.; Okhuoya, J.A. Bio-Absorption of Some Heavy Metals by Pleurotus tuber-regium Fr. Singer (An Edible Mushroom) from Crude Oil Polluted Soils Amended with Fertilizers and Cellulosic Wastes. Int. J. Soil Sci. 2011, 6, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Raman, J.; Jang, K.Y.; Oh, Y.L.; Oh, M.; Im, J.H.; Lakshmanan, H.; Sabaratnam, V. Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview. Mycobiology 2021, 49, 1–14. [Google Scholar] [CrossRef]
- Ma, L.; Yang, C.; Xiao, D.L.; Liu, X.Y.; Jiang, X.L.; Ying, Z.H.; Lin, Y.Q. Effects of Different Substrate Carbon to Nitrogen Ratio(C/N) on the Growth and Development of Sparassis latifolia. Mycosystema 2021, 40, 3196–3213. [Google Scholar]
- Yu, H. Study On Pretreatment of Corn Stalk and Its Use as Cultivation Medium for Edible Fungi. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2018. [Google Scholar]
- Gast, C.H.; Jansen, E.; Bierling, J.; Haanstra, L. Heavy Metals in Mushrooms and Their Relationship with Soil Characteristics. Chemosphere 1988, 17, 789–799. [Google Scholar] [CrossRef]
- Wang, Y.M. Studies on Nutritional Quality and Selenospecies in Se-enriched Pleurotus eryngii. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2017. [Google Scholar]
- Yu, H.L.; Zhang, D.; Zhang, L.J.; Li, Q.Z.; Song, C.Y.; Shang, X.D.; Bao, D.P.; Tan, Q.; Chen, H.Y.; Lv, B.B. Corncob as a Substrate for the Cultivation of Lentinula edodes. Waste Biomass Valorization 2022, 13, 929–939. [Google Scholar] [CrossRef]
- Du, F.; Zou, Y.J.; Hu, H.J.; Hu, Q.X. Selenium Tolerance of Pleurotus eryngii Under Different Culture Conditions and Selenium Morphology Analysis. Food Nutr. China 2020, 26, 16–20. [Google Scholar]
- Fang, L.; Tang, Q. Screening of Fine Strains of Se-enriched Pleurotus eryngii. J. Wuhu Inst. Technol. 2016, 18, 64–66. [Google Scholar]
- Monika, G.; Mirosław, M.; Marek, S.; Przemysław, N.; Lidia, K. The Effect of Selenium on Phenolics and Flavonoids in Selected Edible White Rot Fungi. Food Sci. Technol. 2015, 63, 726–731. [Google Scholar]
- Golian, M.; Hegedűsová, A.; Mezeyová, I.; Chlebová, Z.; Hegedűs, O.; Urminská, D.; Vollmannová, A.; Chlebo, P. Accumulation of Selected Metal Elements in Fruiting Bodies of Oyster Mushroom. Foods 2022, 11, 76. [Google Scholar] [CrossRef]
- Naito, Y.; Yoshikawa, Y.; Yoshizawa, K.; Takenouchi, A.; Yasui, H. Benefificial Effect of Bis (Hinokitiolato) Zn Complex on High-fat Diet-induced Lipid Accumulation in Mouse Liver and Kidney. In Vivo 2017, 31, 1145–1151. [Google Scholar]
- Liu, Y.; Chen, D.; You, Y.; Zeng, S.; Li, Y.; Tang, Q.; Han, G.; Liu, A.; Feng, C.; Li, C.; et al. Nutritional Composition of Boletus Mushrooms from Southwest China and their Antihyperglycemic and Antioxidant activities. Food Chem. 2016, 211, 83–91. [Google Scholar] [CrossRef]
- Singh, A.; Research, P.D.; Singh, I.S.; Pradesh, U.; Singh, S. Nutritional and Health Importance of Fresh and Dehydrated Oyster Mushroom (Pleurotus florida). J. Curr. Res. Food Sci. 2021, 2, 10–14. [Google Scholar]
Substrate | Sawdust | Sugarcane Bagasse | Corn Stalks | N | C | C:N |
---|---|---|---|---|---|---|
CK | 21 | 21 | - | 1.77 | 37.17 | 21.04 |
Y1 | 10.5 | 21 | 10.5 | 1.78 | 36.82 | 20.78 |
Y2 | 21 | 10.5 | 10.5 | 1.97 | 36.77 | 19.95 |
Y3 | - | 21 | 21 | 1.79 | 37.17 | 20.68 |
Y4 | 21 | - | 21 | 1.83 | 36.42 | 18.64 |
Y5 | - | - | 42 | 1.73 | 34.25 | 19.82 |
Material | Cellulose (%) | Hemicellulose (%) | Lignin (%) |
---|---|---|---|
Sugarcane bagasse | 27.58 | 36.87 | 14.90 |
Sawdust | 42.12 | 34.55 | 15.12 |
Corn stalks | 34.20 | 28.10 | 21.70 |
Substrate | Growth Rate in the Different Times (mm d−1) | Growth Rate (mm d−1) | |||
---|---|---|---|---|---|
7 d~12 d | 12 d~17 d | 17 d~24 d | 24 d~31 d | ||
CK | 4.01 bc | 3.18 b | 4.60 a | 3.92 c | 3.98 ± 0.18 b |
Y1 | 4.27 ab | 3.75 a | 4.21 b | 3.88 b | 4.03 ± 0.28 b |
Y2 | 4.33 a | 3.93 a | 4.73 a | 4.25 a | 4.34 ± 0.30 a |
Y3 | 3.85 c | 3.27 b | 4.19 b | 3.80 b | 3.81 ± 0.15 c |
Y4 | 3.44 d | 3.21 b | 4.17 b | 3.65 b | 3.67 ± 0.26 d |
Y5 | 3.29 d | 2.85 d | 3.23 c | 2.94 b | 3.08 ± 0.14 e |
Substrate | Days to Production (d) | Fruit Body Yield (g/bag) | Biological Efficiency (%) | Length of Fruit Body (cm) | Thickness of Stipe (cm) | Diameter of Pileus (cm) |
---|---|---|---|---|---|---|
CK | 21.0 ± 1.2 b | 275.0 ± 32.8 a | 78.57 ± 9 a | 14.5 ± 1.1 ab | 5.3 ± 0.8 ab | 6.7 ± 0.8 b |
Y1 | 21.3 ± 1.7 b | 273.1 ± 42.9 a | 78.03 ± 12 a | 14.7 ± 1.8 a | 5.6 ± 0.8 a | 7.2 ± 0.8 a |
Y2 | 20.9 ± 1.4 c | 275.5 ± 32.7 a | 78.71 ± 9 a | 14.5 ± 1.2 ab | 5.5 ± 0.8 ab | 7.0 ± 0.8 ab |
Y3 | 25.5 ± 1.3 a | 270.9 ± 49.9 a | 77.17 ± 14 a | 14.9 ± 1.4 a | 5.3 ± 0.7 ab | 6.6 ± 1.1 b |
Y4 | 25.6 ± 1.2 a | 239.4 ± 39.6 b | 68.40 ± 17 b | 13.0 ± 1.6 c | 4.6 ± 0.9 c | 7.3 ± 0.9 a |
Y5 | 21.4 ± 1.1 b | 265.8 ± 38.5 a | 75.94 ± 11 a | 14.1 ± 1.6 b | 5.1 ± 0.7 b | 7.1 ± 1.2 a |
Substrate | Protein | Ash | Fiber | Fat | Polysaccharide |
---|---|---|---|---|---|
CK | 20.74 ± 0.17 a | 6.47 ± 0.03 a | 7.10 ± 0.09 cd | 1.07 ± 0.03 d | 4.16 ± 0.01 b |
Y1 | 19.06 ± 0.03 c | 5.62 ± 0.14 d | 6.71 ± 0.24 d | 2.14 ± 0.04 a | 2.40 ± 0.13 e |
Y2 | 19.76 ± 0.14 b | 6.00 ± 0.04 c | 7.72 ± 0.22 b | 1.02 ± 0.01 e | 4.10 ± 0.01 c |
Y3 | 18.30 ± 0.19 d | 5.14 ± 0.02 e | 7.05 ± 0.23 cd | 0.92 ± 0.01 f | 2.70 ± 0.09 d |
Y4 | 17.56 ± 0.31 e | 5.22 ± 0.09 e | 7.28 ± 0.35 bc | 1.29 ± 0.01 c | 2.05 ± 0.04 f |
Y5 | 20.41 ± 0.17 a | 6.19 ± 0.06 b | 8.30 ± 0.27 a | 1.42 ± 0.04 b | 5.05 ± 0.21 a |
Elements | CK | Y1 | Y2 | Y3 | Y4 | Y5 | |
---|---|---|---|---|---|---|---|
Mg (mg kg−1) | Macronutrient elements | 1020 ± 17 a | 951 ± 8 b | 1008 ± 13 a | 1013 ± 23 a | 879 ± 27 c | 1003 ± 22 a |
Na (mg kg−1) | 284.3 ± 8.7 a | 245.3 ± 5.0 b | 290.0 ± 4.6 a | 147.3 ± 4.0 d | 163.3 ± 6.8 c | 129.0 ± 3.6 e | |
Ca (mg kg−1) | 95.6 ± 2.8 b | 66.9 ± 2.6 d | 96.3 ± 2.7 b | 68.8 ± 3.1 d | 78.2 ± 3.0 c | 110.0 ± 4.4 a | |
Zn (mg kg−1) | Micronutrient elements | 71.3 ± 1.2 b | 64.9 ± 1.1 c | 70.3 ± 1.6 b | 60.8 ± 1.6 d | 59.9 ± 0.1 d | 81.9 ± 1.2 a |
Fe (mg kg−1) | 40.1 ± 1.0 a | 31.4 ± 0.4 d | 30.2 ± 0.6 de | 33.5 ± 1.5 c | 28.5 ± 1.2 e | 37.3 ± 0.5 b | |
Mn (mg kg−1) | 6.59 ± 0.15 b | 5.78 ± 0.22 c | 7.04 ± 0.30 a | 6.12 ± 0.20 c | 5.96 ± 0.21 c | 6.92 ± 0.27 ab | |
Cu (mg kg−1) | 3.30 ± 0.28 b | 3.05 ± 0.07 bc | 3.13 ± 0.09 b | 2.73 ± 0.17c | 3.23 ± 0.19 b | 3.91 ± 0.19 a | |
Se (μg kg−1) | 54.3 ± 1.2 bc | 53.0 ± 2.6 bc | 55.7 ± 1.5 b | 68.0 ± 1.0 a | 52.7 ± 1.5 c | 66.3 ± 0.6 a | |
As (μg kg−1) | Heavy metals | 69.1 ± 4.8 d | 80.1 ± 2.3 c | 89.4 ± 307 b | 76.5 ± 5.4 c | 58.1 ± 4.8 e | 98.8 ± 2.9 a |
Pb (μg kg−1) | 130.0 ± 10.0 a | 86.0 ± 4.4 c | 72.0 ± 3.6 de | 60.7 ± 4.5 e | 79.3 ± 4.6 cd | 106.7 ± 11.5 b | |
Cd (μg kg−1) | 41.0 ± 2.8 bc | 34.5 ± 0.8 d | 41.9 ± 2.2 b | 37.3 ± 2.4 cd | 33.8 ± 3.0 d | 66.3 ± 1.2 a | |
Hg (μg kg−1) | 7.41 ± 0.62 c | 6.21 ± 0.31 d | 5.89 ± 0.43 d | 9.03 ± 0.17 b | 10.25 ± 0.93 a | 5.49 ± 0.42 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Li, Z.; Xu, C.; Pan, J.; Zhang, H.; Hu, Q.; Zou, Y. Evaluation of Corn Stalk as a Substrate to Cultivate King Oyster Mushroom (Pleurotus eryngii). Horticulturae 2023, 9, 319. https://doi.org/10.3390/horticulturae9030319
Zhou Y, Li Z, Xu C, Pan J, Zhang H, Hu Q, Zou Y. Evaluation of Corn Stalk as a Substrate to Cultivate King Oyster Mushroom (Pleurotus eryngii). Horticulturae. 2023; 9(3):319. https://doi.org/10.3390/horticulturae9030319
Chicago/Turabian StyleZhou, Yuanyuan, Zihao Li, Congtao Xu, Jinlong Pan, Haijun Zhang, Qingxiu Hu, and Yajie Zou. 2023. "Evaluation of Corn Stalk as a Substrate to Cultivate King Oyster Mushroom (Pleurotus eryngii)" Horticulturae 9, no. 3: 319. https://doi.org/10.3390/horticulturae9030319
APA StyleZhou, Y., Li, Z., Xu, C., Pan, J., Zhang, H., Hu, Q., & Zou, Y. (2023). Evaluation of Corn Stalk as a Substrate to Cultivate King Oyster Mushroom (Pleurotus eryngii). Horticulturae, 9(3), 319. https://doi.org/10.3390/horticulturae9030319