Sugar and Organic Acid Content Is Dependent on Tomato (Solanum Lycoperiscum L.) Peel Color
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Dry Matter, PH, and Color Analyses in Tomato
2.3. Tomato Sugar Analysis
2.4. Tomato Organic Acid Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT—Food and Agriculture Organization Corporate Statistical Database. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 8 February 2023).
- Padmanabhan, P.; Cheema, A.; Paliyath, G. Solanaceous Fruits Including Tomato, Eggplant, and Peppers. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 24–32. [Google Scholar] [CrossRef]
- Bergougnoux, V. The History of Tomato: From Domestication to Biopharming. Biotechnol. Adv. 2014, 32, 170–189. [Google Scholar] [CrossRef] [PubMed]
- Knapp, S.; Peralta, I.E. The Tomato (Solanum lycopersicum L., Solanaceae) and Its Botanical Relatives; Spirnger: Berlin/Heidelberg, Germany, 2016; pp. 7–21. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Sim, S.-C.; Stoffel, K.; van Deynze, A.; Buell, C.R.; Francis, D.M. Single Nucleotide Polymorphism Discovery in Cultivated Tomato via Sequencing by Synthesis. Plant Genome 2012, 5. [Google Scholar] [CrossRef]
- Sim, S.C.; Durstewitz, G.; Plieske, J.; Wieseke, R.; Ganal, M.W.; van Deynze, A.; Hamilton, J.P.; Buell, C.R.; Causse, M.; Wijeratne, S.; et al. Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. PLoS ONE 2012, 7, e40563. [Google Scholar] [CrossRef] [PubMed]
- Blanca, J.; Cañizares, J.; Cordero, L.; Pascual, L.; Diez, M.J.; Nuez, F. Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE 2012, 7, e48198. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Zhu, G.; Zhang, J.; Xu, X.; Yu, Q.; Zheng, Z.; Zhang, Z.; Lun, Y.; Li, S.; Wang, X.; et al. Genomic Analyses Provide Insights into the History of Tomato Breeding. Nat. Genet. 2014, 46, 1220–1226. [Google Scholar] [CrossRef]
- Xu, J.; Ranc, N.; Muños, S.; Rolland, S.; Bouchet, J.P.; Desplat, N.; Le Paslier, M.C.; Liang, Y.; Brunel, D.; Causse, M. Phenotypic Diversity and Association Mapping for Fruit Quality Traits in Cultivated Tomato and Related Species. Theor. Appl. Genet. 2012, 126, 567–581. [Google Scholar] [CrossRef]
- Lázaro, A. Tomato Landraces: An Analysis of Diversity and Preferences. Plant Genet. Resour. 2018, 16, 315–324. [Google Scholar] [CrossRef]
- Baldina, S.; Picarella, M.E.; Troise, A.D.; Pucci, A.; Ruggieri, V.; Ferracane, R.; Barone, A.; Fogliano, V.; Mazzucato, A. Metabolite Profiling of Italian Tomato Landraces with Different Fruit Types. Front. Plant Sci. 2016, 7, 664. [Google Scholar] [CrossRef] [Green Version]
- Migliori, C.; di Cesare, L.F.; Lo Scalzo, R.; Campanelli, G.; Ferrari, V. Effects of Organic Farming and Genotype on Alimentary and Nutraceutical Parameters in Tomato Fruits. J. Sci. Food Agric. 2012, 92, 2833–2839. [Google Scholar] [CrossRef]
- Azodanlou, R.; Darbellay, C.; Luisier, J.L.; Villettaz, J.C.; Amadò, R. Development of a Model for Quality Assessment of Tomatoes and Apricots. LWT-Food Sci. Technol. 2003, 36, 223–233. [Google Scholar] [CrossRef]
- Davies, J.N.; Kempton, R.J. Changes in the Individual Sugars of Tomato Fruit during Ripening. J. Sci. Food Agric. 1975, 26, 1103–1110. [Google Scholar] [CrossRef]
- Davies, J.N. Changes in the Non-Volatile Organic Acids of Tomato Fruit during Ripening. J. Sci. Food Agric. 1966, 17, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Loiudice, R.; Impembo, M.; Laratta, B.; Villari, G.; Lo Voi, A.; Siviero, P.; Castaldo, D. Composition of San Marzano Tomato Varieties. Food Chem. 1995, 53, 81–89. [Google Scholar] [CrossRef]
- Anthon, G.E.; Lestrange, M.; Barrett, D.M. Changes in PH, Acids, Sugars and Other Quality Parameters during Extended Vine Holding of Ripe Processing Tomatoes. J. Sci. Food Agric. 2011, 91, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.; Espinosa, F.; Galindo, P. Tomato Fruit Quality as Influenced by the Interactions between Agricultural Techniques and Harvesting Period. J. Plant Nutr. Soil Sci. 2014, 177, 443–448. [Google Scholar] [CrossRef]
- Lešić, R.; Borošić, J.; Buturac, I.; Herak Ćustić, M.; Poljak, M.; Romić, D.P. Povrćarstvo (Vegetable Crops), 3rd ed.; Zrnski d.d.: Čakovec, Croatia, 2016. [Google Scholar]
- Anjaneyulu, K.; Iyengar, B.R.V. Genotypic Variations in Tomato (Lycopersicon Esculentum) in the Recovery of Applied Nitrogen. J. Nucl. Agric. Biol. 1995, 24, 92–97. [Google Scholar]
- Ordóñez-Santos, L.E.; Arbones-Maciñeira, E.; Fernández-Perejón, J.; Lombardero-Fernández, M.; Vázquez-Odériz, L.; Romero-Rodríguez, A. Comparison of Physicochemical, Microscopic and Sensory Characteristics of Ecologically and Conventionally Grown Crops of Two Cultivars of Tomato (Lycopersicon Esculentum Mill.). J. Sci. Food Agric. 2009, 89, 743–749. [Google Scholar] [CrossRef]
- Cebolla-Cornejo, J.; Roselló, S.; Valcárcel, M.; Serrano, E.; Beltrán, J.; Nuez, F. Evaluation of Genotype and Environment Effects on Taste and Aroma Flavor Components of Spanish Fresh Tomato Varieties. J. Agric. Food Chem. 2011, 59, 2440–2450. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and Postharvest Factors Influencing Vitamin C Content of Horticultural Crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Alenazi, M.M.; Shafiq, M.; Alsadon, A.A.; Alhelal, I.M.; Alhamdan, A.M.; Solieman, T.H.I.; Ibrahim, A.A.; Shady, M.R.; Al-Selwey, W.A. Improved Functional and Nutritional Properties of Tomato Fruit during Cold Storage. Saudi J. Biol. Sci. 2020, 27, 1467–1474. [Google Scholar] [CrossRef]
- Rodica, S.; Apahidean, S.; Apahidean, M.; Măniuţiu, D.; Paulette, L. Yield, Physical and Chemical Characteristics of Greenhouse Tomato Grown on Soil and Organic Substratum. In Proceedings of the 43rd Croatian and 3rd International Symposium on Agriculture, Opatija, Croatia, 18–21 February 2008. [Google Scholar]
- Rosa-Martínez, E.; García-Martínez, M.D.; Adalid-Martínez, A.M.; Pereira-Dias, L.; Casanova, C.; Soler, E.; Figàs, M.R.; Raigón, M.D.; Plazas, M.; Soler, S.; et al. Fruit Composition Profile of Pepper, Tomato and Eggplant Varieties Grown under Uniform Conditions. Food Res. Int. 2021, 147, 110531. [Google Scholar] [CrossRef] [PubMed]
- Bastías, A.; López-Climent, M.; Valcárcel, M.; Rosello, S.; Gómez-Cadenas, A.; Casaretto, J.A. Modulation of Organic Acids and Sugar Content in Tomato Fruits by an Abscisic Acid-Regulated Transcription Factor. Physiol. Plant. 2011, 141, 215–226. [Google Scholar] [CrossRef]
- Hernández Suárez, M.; Rodríguez Rodríguez, E.; Díaz Romero, C. Analysis of Organic Acid Content in Cultivars of Tomato Harvested in Tenerife. Eur. Food Res. Technol. 2007, 226, 423–435. [Google Scholar] [CrossRef]
- Leiva-Brondo, M.; Martí, R.; Macua, J.I.; Lahoz, I.; González; Campillo, C.; Roselló, S.; Cebolla-Cornejo, J. Sugar and Acid Profile of Processing Tomato Cultivars Grown under Conventional or Organic Conditions. Acta Hortic. 2015, 1081, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.M.; Spurr, A.R. Chromoplasts of Tomato Fruits. II. The Red Tomato. Am. J. Bot. 1969, 56, 380. [Google Scholar] [CrossRef]
- Selahle, M.K.; Sivakumar, D.; Soundy, P. Effect of Photo-Selective Nettings on Post-Harvest Quality and Bioactive Compounds in Selected Tomato Cultivars. J. Sci. Food Agric. 2014, 94, 2187–2195. [Google Scholar] [CrossRef]
- Brandt, S.; Pék, Z.; Barna, É.; Lugasi, A.; Helyes, L. Lycopene Content and Colour of Ripening Tomatoes as Affected by Environmental Conditions. J. Sci. Food Agric. 2006, 86, 568–572. [Google Scholar] [CrossRef]
- Borghesi, E.; González-Miret, M.L.; Escudero-Gilete, M.L.; Malorgio, F.; Heredia, F.J.; Meléndez-Martínez, A.J. Effects of Salinity Stress on Carotenoids, Anthocyanins, and Color of Diverse Tomato Genotypes. J. Agric. Food Chem. 2011, 59, 11676–11682. [Google Scholar] [CrossRef]
- Arias, R.; Lee, T.C.; Logendra, L.; Janes, H. Correlation of Lycopene Measured by HPLC with the L*, A*, B* Color Readings of a Hydroponic Tomato and the Relationship of Maturity with Color and Lycopene Content. J. Agric. Food Chem. 2000, 48, 1697–1702. [Google Scholar] [CrossRef]
- Stinco, C.M.; Rodríguez-Pulido, F.J.; Escudero-Gilete, M.L.; Gordillo, B.; Vicario, I.M.; Meléndez-Martínez, A.J. Lycopene Isomers in Fresh and Processed Tomato Products: Correlations with Instrumental Color Measurements by Digital Image Analysis and Spectroradiometry. Food Res. Int. 2013, 50, 111–120. [Google Scholar] [CrossRef]
- Oluk, A.C.; Ata, A.; Ünlü, M.; Yazici, E.; Karaşahin, Z.; Eroğlu, E.Ç.; Canan, I. Biochemical Characterisation and Sensory Evaluation of Differently Coloured and Shaped Tomato Cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Kerkhofs, N.S.; Lister, C.E.; Savage, G.P. Change in Colour and Antioxidant Content of Tomato Cultivars Following Forced-Air Drying. Plant Foods Hum. Nutr. 2005, 60, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.R.; Lee, J.G. Ripening-Dependent Changes in Antioxidants, Color Attributes, and Antioxidant Activity of Seven Tomato (Solanum lycopersicum L.) Cultivars. J. Anal. Methods Chem. 2016, 2016, 5498618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, T.E.; Juvik, J.A.; Sullivan, J.G. Accumulation of the Components of Total Solids in Ripening Fruits of Tomato. J. Am. Soc. Hortic. Sci. 1993, 118, 286–292. [Google Scholar] [CrossRef]
- Causse, M.; Saliba-Colombani, V.; Lecomte, L.; Duffé, P.; Rousselle, P.; Buret, M. QTL Analysis of Fruit Quality in Fresh Market Tomato: A Few Chromosome Regions Control the Variation of Sensory and Instrumental Traits. J. Exp. Bot. 2002, 53, 2089–2098. [Google Scholar] [CrossRef]
Landrace | Dry Matter | PH | L | a | b |
---|---|---|---|---|---|
% | |||||
IPT499 | 6.41 ± 0.1 bc 1 | 4.25 ± 0.03 bc | 43.4 ± 0.2 b | 35.9 ± 0.3 a–c | 30.9 ± 0.5 cd |
IPT500 | 8.21 ± 0.12 a | 4.41 ± 0.04 a | 32.2 ± 1.8 c | 33.4 ± 0.6 d | 22.6 ± 1.3 e |
IPT501 | 5.98 ± 0.11 c | 4.33 ± 0.03 a–c | 43.0 ± 0.6 b | 37.3 ± 0.3 a | 30.4 ± 1.1 cd |
IPT502 | 6.90 ± 0.41 bc | 4.22 ± 0.03 bc | 45.7 ± 3 b | 34.7 ± 1.3 b–d | 34.7 ± 3.4 bc |
IPT503 | 8.36 ± 0.26 a | 4.04 ± 0.03 d | 54.3 ± 0.8 a | 34.2 ± 1.2 cd | 49.2 ± 1.5 a |
IPT504 | 6.05 ± 0.2 c | 4.21 ± 0.03 c | 46.4 ± 1 b | 36.6 ± 0.2 ab | 36.5 ± 1.2 b |
IPT506 | 5.77 ± 0.1 c | 4.27 ± 0.04 bc | 43.5 ± 0.4 b | 36.2 ± 0.4 a–c | 30.0 ± 0.4 d |
IPT507 | 5.94 ± 0.24 c | 4.34 ± 0.08 ab | 43.4 ± 0.8 b | 37.1 ± 0.3 a | 30.9 ± 1.1 cd |
p-value | *** | *** | *** | ** | *** |
Landrace | Fructooligo-Saccharides | Fructose | Glucose | Malic Acid | Citric Acid |
---|---|---|---|---|---|
g/100 g FW | mg/100 g FW | ||||
IPT499 | 0.45 ± 0.01 ab 1 | 2.22 ± 0.03 bc | 2.13 ± 0.03 b | 374 ± 23 a–c | 507 ± 34 b–d |
IPT500 | 0.40 ± 0.02 ab | 2.31 ± 0.11 b | 2.13 ± 0.13 b | 452 ± 35 ab | 443 ± 41 de |
IPT501 | 0.39 ± 0.01 b | 2.11 ± 0.04 bc | 1.98 ± 0.05 bc | 277 ± 65 c | 385 ± 41 e |
IPT502 | 0.31 ± 0.01 c | 2.11 ± 0.12 bc | 1.89 ± 0.17 bc | 349 ± 43 bc | 479 ± 22 cd |
IPT503 | 0.46 ± 0.03 a | 2.64 ± 0.03 a | 2.56 ± 0.05 a | 430 ± 49 ab | 729 ± 20 a |
IPT504 | 0.31 ± 0.01 c | 1.87 ± 0.06 d | 1.89 ± 0.06 bc | 354 ± 36 bc | 588 ± 4 b |
IPT506 | 0.25 ± 0.01 d | 1.82 ± 0.04 d | 1.84 ± 0.06 c | 394 ± 36 a–c | 573 ± 11 b |
IPT507 | 0.40 ± 0.04 b | 2.10 ± 0.07 c | 1.97 ± 0.08 bc | 484 ± 22 a | 563 ± 42 bc |
p-value | *** | *** | *** | * | *** |
Variable | Dry matter | PH | FOS | Fructose | Glucose | Malic Acid | Citric Acid | L | a | b |
---|---|---|---|---|---|---|---|---|---|---|
Dry matter | 1.00 | |||||||||
pH | −0.18 | 1.00 | ||||||||
FOS | 0.44 * | −0.14 | 1.00 | |||||||
Fructose | 0.75 * | −0.22 | 0.74 * | 1.00 | ||||||
Glucose | 0.65 * | −0.33 | 0.68 * | 0.93 * | 1.00 | |||||
Malic acid | 0.14 | −0.04 | 0.04 | 0.21 | 0.20 | 1.00 | ||||
Citric acid | 0.20 | −0.65 * | 0.00 | 0.22 | 0.37 * | 0.40 * | 1.00 | |||
L | −0.01 | −0.70 * | 0.07 | 0.21 | 0.35 * | −0.10 | 0.60 * | 1.00 | ||
a | −0.61 * | 0.12 | −0.15 | −0.44 * | −0.38 * | −0.34 | −0.13 | −0.01 | 1.00 | |
b | 0.24 | −0.76 * | 0.21 | 0.40 * | 0.52 * | −0.04 | 0.64 * | 0.93 * | −0.12 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anđelini, M.; Major, N.; Išić, N.; Kovačević, T.K.; Ban, D.; Palčić, I.; Radunić, M.; Goreta Ban, S. Sugar and Organic Acid Content Is Dependent on Tomato (Solanum Lycoperiscum L.) Peel Color. Horticulturae 2023, 9, 313. https://doi.org/10.3390/horticulturae9030313
Anđelini M, Major N, Išić N, Kovačević TK, Ban D, Palčić I, Radunić M, Goreta Ban S. Sugar and Organic Acid Content Is Dependent on Tomato (Solanum Lycoperiscum L.) Peel Color. Horticulturae. 2023; 9(3):313. https://doi.org/10.3390/horticulturae9030313
Chicago/Turabian StyleAnđelini, Magdalena, Nikola Major, Nina Išić, Tvrtko Karlo Kovačević, Dean Ban, Igor Palčić, Mira Radunić, and Smiljana Goreta Ban. 2023. "Sugar and Organic Acid Content Is Dependent on Tomato (Solanum Lycoperiscum L.) Peel Color" Horticulturae 9, no. 3: 313. https://doi.org/10.3390/horticulturae9030313
APA StyleAnđelini, M., Major, N., Išić, N., Kovačević, T. K., Ban, D., Palčić, I., Radunić, M., & Goreta Ban, S. (2023). Sugar and Organic Acid Content Is Dependent on Tomato (Solanum Lycoperiscum L.) Peel Color. Horticulturae, 9(3), 313. https://doi.org/10.3390/horticulturae9030313