Pre- and Post-Harvest Infection of Pasteurized Pickles with Fungi and Their Pectinolytic Potential to Soften the Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Various Fungi from Rotting Gherkins and DNA Extraction
2.2. Sequencing
2.3. Preparation of Spore Suspension and Inoculation
2.3.1. Inoculation of Ready-to-Sell Pickle Jars
2.3.2. Inoculation of Open Gherkin Blossoms in the Greenhouse
2.4. Greenhouse Experiment Design
2.5. Harvesting and Pasteurization of Inoculated Greenhouse Cucumbers
2.6. Texture Measurement
2.7. Sample Preparation for Measuring Pectinolytic Enzyme Activity
2.7.1. Preparation of Inoculated Cucumber Bouillon
2.7.2. Sample Preparation with Ultrafiltration
2.8. Measuring of Pectinolytic Enzyme Activity
2.8.1. Polygalacturonase Viscosity Assay at 30 °C
2.8.2. Polygalacturonase Viscosity Assay in a Substrate-Solution of up to 80 °C
2.8.3. Photometrical Assay to Measure Exo-PG Activity and Pectin Lyase at 30 °C
2.8.4. Titration Assay to Measure Pectinesterase Activity at 30 °C
2.9. Statistical Methods to Calculate Enzymatic Activity
3. Results
3.1. Various Fungi Isolated from Rotting Gherkins
3.2. Recultivability of Applied Fungi from Non-Re-Pasteurized, Ready-to-Sell Pickle Jars
3.3. Texture of Pickles from Re-Pasteurized Jars Ready for Sale, Inoculated with Various Spore Suspensions
3.4. Fungal Inoculation of Greenhouse Gherkins
3.4.1. Recultivability of Fungi Inoculated on Greenhouse Gherkins
3.4.2. Texture of Fresh and Pasteurized Inoculated Greenhouse Gherkins
3.5. Measurement of Enzymatic Activity
3.5.1. Endo-PG Activity at Different Processing Stages of Fungal-Inoculated Gherkins at Fixed pH and Temperature
3.5.2. Endo-PG Activity Measured in Fungal-Inoculated Cucumber Bouillons at a Constant Temperature and Varying pH
3.5.3. Exo-PG and Pectinlyase Activity at Different Processing Stages of Fungal-Inoculated Gherkins
3.5.4. PE Activity at Different Processing Stages of Fungal-Inoculated Gherkins
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Amounts of Inoculants | Prepared Enzyme Extracts | ||||
---|---|---|---|---|---|
Inoculants | Spores Per mL in the Jar | Raw Weight Sample [g] | Volume after Ultrafiltration [mL] | Concentration Factor | |
Re-pasteurized ready-to-sell pickles | M. hiemalis | 200 | 100.79 | 31.0 | 3.25 |
M. fragilis | 2000 | 100.89 | 31.0 | 3.25 | |
G. geotrichum | 2000 | 100.69 | 31.0 | 3.25 | |
cucumber bouillon | Control | 114.00 | 27.0 | 4.22 | |
M. hiemalis | 114.00 | 25.0 | 4.56 | ||
M. fragilis | 114.00 | 26.0 | 4.38 | ||
G. geotrichum | 114.00 | 27.0 | 4.22 | ||
Inoculated fresh greenhouse gherkins | Control | 100.17 | 29.5 | 3.40 | |
M. hiemalis | 100.35 | 19.5 | 5.15 | ||
M. fragilis | 97.83 | 26.0 | 3.76 | ||
G. geotrichum | 100.24 | 27.5 | 3.65 | ||
Mix | 100.90 | 29.0 | 3.48 | ||
Pasteurized greenhouse gherkins | Control | 100.83 | 24.5 | 4.12 | |
M. hiemalis | 100.07 | 17.0 | 5.89 | ||
M. fragilis | 94.21 | 25.0 | 3.77 | ||
G. geotrichum | 100.64 | 22.5 | 4.47 | ||
Mix | 100.50 | 24.0 | 4.19 |
Exo-PG Activity | Pectinlyase | ||
Treatment | Inoculants | Activity at 30 °C [u/g] | Activity at 30 °C [u/g] |
Cucumber bouillon | Control | - | 2.0 × 10−3 |
M. hiemalis | 7.9 × 10−4 | - | |
M. fragilis | 7.5 × 10−4 | 4.0 × 10−3 | |
G. geotrichum | 4.4 × 10−4 | 1.0 × 10−2 | |
Fresh, harvested greenhouse gherkins | Control | 9.0 × 10−4 | 1.1 × 10−2 |
M. hiemalis | 4.3 × 10−4 | 5.0 × 10−3 | |
M. fragilis | 3.8 × 10−4 | 1.0 × 10−2 | |
G. geotrichum | 3.5 × 10−4 | 3.0 × 10−3 | |
Mix | 4.8 × 10−4 | 7.0 × 10−3 | |
Pasteurized greenhouse gherkins (3 months storage) | Control | - | 1.0 × 10−2 |
M. hiemalis | - | 1.0 × 10−2 | |
M. fragilis | - | 8.0 × 10−3 | |
G. geotrichum | - | 1.2 × 10−2 | |
Mix | - | 1.3 × 10−2 | |
Re-pasteurizedready-to-sell pickles (6 months storage) | M. hiemalis | - | 5.0 × 10−3 |
M. fragilis | - | 3.0 × 10−3 | |
G. geotrichum | - | 3.0 × 10−3 |
References
- Breene, W.M.; Chou, H.-E. Texture profile analysis of cucumbers. J. Food Sci. 1972, 37, 113–117. [Google Scholar] [CrossRef]
- De Matos, A.D.; Marangon, M.; Magli, M.; Cianciabella, M.; Predieri, S.; Curioni, A.; Vincenzi, S. Sensory characterization of cucumbers pickled with verjuice as novel acidifying agent. Food Chem. 2019, 286, 78–86. [Google Scholar] [CrossRef]
- Sahoo, M.; Prakash, J. Formulation and standardization of dill based gherkin pickles: A study on physico-chemical and sensory attributes. Indian J. Nutr. Diet. 2017, 54, 387–402. [Google Scholar] [CrossRef]
- Hodges, D.M.; Toivonen, P.M. Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress. Postharvest Biol. Technol. 2008, 48, 155–162. [Google Scholar] [CrossRef]
- Navazio, J.P.; Staub, J.E. Effects of soil moisture, cultivar, and postharvest handling on pillowy fruit disorder in cucumber. J. Am. Soc. Hortic. Sci. 1994, 119, 1234–1242. [Google Scholar] [CrossRef] [Green Version]
- Demain, A.L.; Phaff, H. Cucumber curing, softening of cucumbers during curing. J. Agric. Food Chem. 1957, 5, 60–64. [Google Scholar] [CrossRef]
- Pitrat, M.; Chauvet, M.; Foury, C. Diversity, history and production of cultivated cucurbits. In Proceedings of the I International Symposium on Cucurbits 492, Adana, Turkey, 20–23 May 1997; pp. 21–28. [Google Scholar]
- Sebastian, P.; Schaefer, H.; Telford, I.R.; Renner, S.S. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc. Natl. Acad. Sci. USA 2010, 107, 14269–14273. [Google Scholar] [CrossRef] [Green Version]
- Tatlioglu, T. Cucumber—Cucumis sativus L. In Genetic Improvement of Vegetable Crops; Kalloo, G., Bergh, B., Eds.; Pergamon Press Ltd.: Oxford, UK, 1993. [Google Scholar]
- Reeve, R. Relationships of histological structure to texture of fresh and processed fruits and vegetables. J. Texture Stud. 1970, 1, 247–284. [Google Scholar] [CrossRef]
- Sajnin, C.; Gamba, G.; Gerschenson, L.N.; Rojas, A.M. Textural, histological and biochemical changes in cucumber (Cucumis sativus L.) due to immersion and variations in turgor pressure. J. Sci. Food Agric. 2003, 83, 731–740. [Google Scholar] [CrossRef]
- Voragen, A.G.; Coenen, G.-J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Bell, T.A.; Etchells, J.L.; Jones, I.D. Pectinesterase in the cucumber. Arch. Biochem. Biophys. 1951, 31, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Yadav, P.K.; Yadav, D.; Yadav, K.D.S. Pectin lyase: A review. Process Biochem. 2009, 44, 1–10. [Google Scholar] [CrossRef]
- Bell, T.; Turney, L.; Etchells, J. Influence of different organic acids on the firmness of fresh-pack pickles. J. Food Sci. 1972, 37, 446–449. [Google Scholar] [CrossRef]
- Bell, T.A.; Etchells, J.L. Influence of Salt (NaCl) on Pectinolytic Softening of Cucumbersa. J. Food Sci. 1961, 26, 84–90. [Google Scholar] [CrossRef]
- McFeeters, R.; Fleming, H. Effect of calcium ions on the thermodynamics of cucumber tissue softening. J. Food Sci. 1990, 55, 446–449. [Google Scholar] [CrossRef]
- McFeeters, R.; Fleming, H. pH effect on calcium inhibition of softening of cucumber mesocarp tissue. J. Food Sci. 1991, 56, 730–732. [Google Scholar] [CrossRef]
- Sistrunk, W.; Kozup, J. Influence of processing methodology on quality of cucumber pickles. J. Food Sci. 1982, 47, 949–953. [Google Scholar] [CrossRef]
- Kersten, A.-K.; Scharf, S.; Bandte, M.; Martin, P.; Meurer, P.; Lentzsch, P.; Büttner, C. Softening of Processed Plant Virus Infected Cucumis sativus L. Fruits. Agronomy 2021, 11, 1451. [Google Scholar] [CrossRef]
- Etchells, J.; Bell, T.; Monroe, R.; Masley, P.; Demain, A. Populations and softening enzyme activity of filamentous fungi on flowers, ovaries, and fruit of pickling cucumbers. Appl. Microbiol. 1958, 6, 427–440. [Google Scholar] [CrossRef]
- Raymond, F.; Etchells, J.; Bell, T.; Masley, P. Filamentous fungi from blossoms, ovaries, and fruit of pickling cucumbers. Mycologia 1959, 51, 492–511. [Google Scholar] [CrossRef]
- Voldřich, M.; Horsáková, I.; Čeřovský, M.; Čížková, H.; Opatová, H. Factors affecting the softening of pickled pasteurised cucumbers. Czech J. Food Sci. 2009, 27, S314. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.J.; Buescher, R.W. Potential role of native pickling cucumber polygalacturonase in softening of fresh pack pickles. J. Food Sci. 2012, 77, C443–C447. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.E.; Dennis, C. Heat stability of endo-polygalacturonases of Mucoraceous spoilage fungi in relation to canned fruits. J. Sci. Food Agric. 1980, 31, 1164–1172. [Google Scholar] [CrossRef]
- Duvetter, T.; Sila, D.; Van Buggenhout, S.; Jolie, R.; Van Loey, A.; Hendrickx, M. Pectins in processed fruit and vegetables: Part I—Stability and catalytic activity of pectinases. Compr. Rev. Food Sci. Food Saf. 2009, 8, 75–85. [Google Scholar] [CrossRef]
- Abarenkov, K.; Nilsson, R.H.; Larsson, K.-H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.; Pennanen, T. The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol. 2010, 186, 281–285. [Google Scholar] [CrossRef]
- Tedersoo, L.; Nilsson, R.H.; Abarenkov, K.; Jairus, T.; Sadam, A.; Saar, I.; Bahram, M.; Bechem, E.; Chuyong, G.; Kõljalg, U. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol. 2010, 188, 291–301. [Google Scholar] [CrossRef]
- Nirenberg, H. Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitt. Biol. Bundesanst. Land Forstwirtsch. Berlin-Dahlem. 1976, 169, 1–17. [Google Scholar]
- Thompson, R.; Fleming, H.; Hamann, D.; Monroe, R. Method for determination offirmness in cucumber slices 1. J. Texture Stud. 1982, 13, 311–324. [Google Scholar] [CrossRef]
- Scharf, S.; Kersten, A.K.; Lentzsch, P.; Meurer, P. Analysis of pectolytic enzymes and Alternaria spp. in fresh dill, mustard seeds, onions, and vinegar, and their influence on the softening of pickled cucumbers. J. Food Sci. 2022, 87, 808–818. [Google Scholar] [CrossRef]
- Thompson, R.; Fleming, H.; Monroe, R. Effects of storage conditions on firmness of brined cucumbers. J. Food Sci. 1979, 44, 843–846. [Google Scholar] [CrossRef]
- Yoo, K.M.; Hwang, I.K.; Eog, G., Jr.; Moon, B. Effects of salts and preheating temperature of brine on the texture of pickled cucumbers. J. Food Sci. 2006, 71, C97–C101. [Google Scholar] [CrossRef]
- Ziedan, E.S.H.; Khattab, A.E.-N.A.E.-H.; Sahab, A.F. New fungi causing postharvest spoilage of cucumber fruits and their molecular characterization in Egypt. J. Plant Prot. Res. 2018, 58, 362–371. [Google Scholar]
- Abdel-Sater, M.; Hussein, N.A.; Fetyan, N.A.; Gad, S.M. Biodiversity of mycobiota associated with some rotted vegetables with special reference to their celluloytic and pectinolytic abilities. J. Basic Appl. Mycol. Egypt 2016, 7, 1–8. [Google Scholar]
- Eliskases-Lechner, F.; Guéguen, M.; Panoff, J.M. Yeasts and Molds|Geotrichum candidum; Academic Press: Cambridge, MA, USA, 2011; pp. 765–771. [Google Scholar]
- Grygier, A.; Myszka, K.; Rudzińska, M. Galactomyces geotrichum-moulds from dairy products with high biotechnological potential. Acta Sci. Pol. Technol. Aliment. 2017, 16, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Bill, M.; Chidamba, L.; Gokul, J.K.; Korsten, L. Mango endophyte and epiphyte microbiome composition during fruit development and post-harvest stages. Horticulturae 2021, 7, 495. [Google Scholar] [CrossRef]
- Saito, S.; Michailides, T.; Xiao, C. Mucor rot—An emerging postharvest disease of mandarin fruit caused by Mucor piriformis and other Mucor spp. In california. Plant Dis. 2016, 100, 1054–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, Q.; Mahmoud, A.; Al-Harethi, A. Isolation and identification of fungal post-harvest rot of some fruits in Yemen. PSM Microbiol. 2016, 1, 36–44. [Google Scholar]
- Zhao, P.; Ndayambaje, J.P.; Liu, X.; Xia, X. Microbial spoilage of fruits: A review on causes and prevention methods. Food Rev. Int. 2022, 38, 225–246. [Google Scholar] [CrossRef]
- Varnaitė, R.; Paškevičius, A.; Raudonienė, V. Cellulose degradation in rye straw by micromycetes and their complexes. Ekologija 2008, 54, 29–31. [Google Scholar] [CrossRef]
- Thakur, A.; Pahwa, R.; Singh, S.; Gupta, R. Production, purification, and characterization of polygalacturonase from Mucor circinelloides ITCC 6025. Enzym. Res. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Meurer, P.; Gierschner, K. Occurrence and effect of indigenous and eventual microbial enzymes in lactic acid fermented vegetables. Acta Aliment. 1992, 21, 171–188. [Google Scholar]
Fungal Inoculum | Number of Inoculated Jars | ||
---|---|---|---|
2120 Spores/mL in the Jar | 212 Spores/mL in the Jar * | 1 × 1 cm Section of Nutrient Medium *; ** | |
Mucor hiemalis | 3 | 3 (1) | - |
Mucor fragilis | 3 | 3 (1) | - |
Mucor circinelloides | 3 | 2 (1) | - |
Fusarium oxysporum | 3 | 3 (1) | - |
Fusarium equiseti | - | - | 3 (1) |
Galactomyces. geotrichum | 3 | 3 (1) | |
Plectosphaerella cucuminera | - | - | 3 (1) |
Cladosporium sp. | 3 | 3 (1) | - |
Alternaria sp. | - | 4 (1) | - |
Endo-PG Activity at a Substrate Solution of pH 5.5 | ||
---|---|---|
Treatment | Inoculants | Activity at 30 °C [u/g] * |
Cucumber bouillon | Control | 0.06 ± 0.01 a |
Mucor hiemalis | 3.57 ± 0.05 b | |
Mucor fragilis | 6.37 ± 0.24 c | |
Galactomyces geotrichum | 7.39 ± 0.21 d | |
Fresh, harvested greenhouse gherkins | Control | 0.19 ± 0.02 a |
Mucor hiemalis | <0.07 b | |
Mucor fragilis | 0.10 ± 0.00 c | |
Galactomyces geotrichum | <0.07 a | |
Mix | 0.14 ± 0.01 d | |
Pasteurized greenhouse gherkins (3 months storage) | Control | <0.07 |
Mucor hiemalis | <0.07 | |
Mucor fragilis | <0.07 | |
Galactomyces geotrichum | <0.07 | |
Mix | <0.07 | |
Re-pasteurized ready-to-sell pickles (6 months storage) | Mucor hiemalis | <0.07 |
Mucor fragilis | <0.07 | |
Galactomyces geotrichum | <0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kersten, A.-K.; Scharf, S.; Jendro, A.; Meurer, P.; Büttner, C.; Lentzsch, P. Pre- and Post-Harvest Infection of Pasteurized Pickles with Fungi and Their Pectinolytic Potential to Soften the Product. Horticulturae 2023, 9, 312. https://doi.org/10.3390/horticulturae9030312
Kersten A-K, Scharf S, Jendro A, Meurer P, Büttner C, Lentzsch P. Pre- and Post-Harvest Infection of Pasteurized Pickles with Fungi and Their Pectinolytic Potential to Soften the Product. Horticulturae. 2023; 9(3):312. https://doi.org/10.3390/horticulturae9030312
Chicago/Turabian StyleKersten, Anne-Katrin, Sabrina Scharf, Anna Jendro, Peter Meurer, Carmen Büttner, and Peter Lentzsch. 2023. "Pre- and Post-Harvest Infection of Pasteurized Pickles with Fungi and Their Pectinolytic Potential to Soften the Product" Horticulturae 9, no. 3: 312. https://doi.org/10.3390/horticulturae9030312
APA StyleKersten, A. -K., Scharf, S., Jendro, A., Meurer, P., Büttner, C., & Lentzsch, P. (2023). Pre- and Post-Harvest Infection of Pasteurized Pickles with Fungi and Their Pectinolytic Potential to Soften the Product. Horticulturae, 9(3), 312. https://doi.org/10.3390/horticulturae9030312