Mentha arvensis and Mentha × piperita-Vital Herbs with Myriads of Pharmaceutical Benefits
Abstract
:1. Introduction
2. Phytochemicals of M. arvensis and M. × piperita
3. Uses of M. arvensis and M. × piperita
4. Antioxidant Properties of M. arvensis and M. × piperita
5. Anti-Inflammatory Activities of M. arvensis and M. × piperita
6. Anti-Bacterial Activity of M. arvensis and M. × piperita
Species | Sample Extract or Essential Oil | Origin of Bacterial Culture | Bacteria | z MIC (mg/mL) | References |
---|---|---|---|---|---|
M. × piperita | Leaf extract | Pure cultures | Staphylococcus aureus ATCC 25923 Bacillus subtilis ATCC 10707 Escherichia coli ATCC 25922 | 12.0 12.3 31.04 | [30] |
M. arvensis | Leaf extract | Pure cultures | Staphylococcus aureus ATCC 25923 Bacillus subtilis ATCC 10707 Escherichia coli ATCC 25922 | 3.0.5 2.03 33.03 | [30] |
M. × piperita | Essential oil | Pure cultures | Staphylococcus aureus ATCC 9144 Enterococcus faecalis CIP 103907 Listeria monocytogenes CRBIP 13.134 Enterobacter aerogenes CIP 104725 Escherichia coli CIP 105182 Pseudomonas aeruginosa CRBIP 19.249 Salmonella enterica CIP 105150 Salmonella typhimurium ATCC 13311 Shigella dysenteria CIP 54.51 | 8.3 8.3 10 >80 40 >80 8.3 13.3 5.8 | [88] |
M. × piperita | Essential oil | Pure cultures | Escherichia coli αDH5 Escherichia coli ATCC 25922 Pseudomonas aeruginosa Pseudomonas fluorescens Bacillus subtilis Staphylococcus aureus | 1.13 1.13 2.25 2.25 1.13 1.13 | [89] |
M. × piperita | Essential oil | Clinical oral isolates | Staphylococcus aureus Streptococcus pyogenes IBR S004 Streptococcus mutans IBR S001 Lactobacillus acidophilus IBR L001 Streptococcus salivarius IBR S006 Streptococcus sanguinis IBR S002 Enterococcus faecalis IBR E001 | 62.67 63.00 60.33 27.00 34.66 28.66 23.86 | [90] |
M. × piperita | Extract of aerial part | Clinical isolates from nosocomial patients | Staphylococcus aureus Staphylococcus epidermidis Streptococcus pyogenes Enterococcus faecalis Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa Seratia marcescens Acinetobacter baumannii Stenotrophomonas maltophilia | 5.00 2.50 1.25 2.50 5.00 10.00 20.00 10.00 40.00 40.00 | [73] |
M. × piperita | Essential oil | Pure cultures | Staphylococcus epidermidis Staphylococcus aureus Bacillus subtilis Bacillus cereus | 2.00 10.00 0.10 0.08 | [76] |
M. arvensis | Essential oil | Pure cultures | Staphylococcus epidermidis Staphylococcus aureus Bacillus subtilis Bacillus cereus | 10.00 10.00 10.00 10.00 | [76] |
M. × piperita | Essential oil | Pure cultures | Listeria monocytogenes PTCC 1163 Salmonella typhimurium ATCC 13311 | 12.50 25.00 | [74] |
M. arvensis | Essential oil | Clinical isolates from vaginal swabs | Streptococcus agalactiae ATCC 13813 Lactobacillus spp. | 1.80 1.80 | [91] |
7. Antifungal Activity of M. arvensis and M. × piperita
8. Anticancer Activities of M. arvensis and M. × piperita
9. Extracts of M. arvensis and M. × piperita in Radiation Therapy
10. Conclusions and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020, 19, 1199–1209. [Google Scholar]
- Hassan, B. Medicinal plants (importance and uses). Pharm. Anal. Acta. 2012, 3, e139. [Google Scholar]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The Application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus vulgaris. Int. J. Clin. Med. 2015, 6, 635–642. [Google Scholar] [CrossRef]
- Alami, M.M.; Ouyang, Z.; Zhang, Y.; Shu, S.; Yang, G.; Mei, Z.; Wang, X. The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites’ Biosynthesis. Int. J. Mol. Sci. 2022, 23, 15932. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.; Chandra, I. Organ specific phytochemical changes and antioxidant activities of in vivo and in vitro grown Gloriosa superba L. S. Afr. J. Bot. 2023, 152, 1–10. [Google Scholar]
- Tucker, A.O. Mentha: Economic uses. In Mint: The Genus Mentha, 1st ed.; Lawrence, B.M., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 519–528. [Google Scholar]
- Ćavar Zeljković, S.; Šišková, J.; Komzáková, K.; De Diego, N.; Kaffková, K.; Tarkowski, P. Phenolic Compounds and Biological Activity of Selected Mentha Species. Plants 2021, 10, 550. [Google Scholar]
- Arzani, A.; Zeinali, H.; Razmjo, K. Iron and magnesium concentrations of mint accessions (Mentha spp.). Plant Physiol. Biochem. 2007, 45, 323–329. [Google Scholar]
- Liu, Y.; Wang, Z.; Zhang, J. Dietary Chinese Herbs, 1st ed.; Springer: Vienna, Austria, 2015; pp. 631–636. [Google Scholar]
- Mahendran, G.; Rahman, L. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha × piperita L.)—A review. Phytother. Res. 2020, 34, 2088–2213. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, A. Therapeutic uses of peppermint—A review. J. Pharm. Sci. Res. 2015, 7, 474–476. [Google Scholar]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar]
- Spirling, L.I.; Daniels, I.R. Botanical perspectives on health peppermint: More than just an after-dinner mint. J. R. Soc. Promot. Health. 2001, 121, 62–63. [Google Scholar] [PubMed]
- Beigi, M.; Torki-Harchegani, M.; Ghasemi Pirbalouti, A. Quantity and chemical composition of essential oil of peppermint (Mentha × piperita L.) leaves under different drying methods. Int. J. Food Prop. 2018, 12, 267–276. [Google Scholar]
- Mahboubi, M.; Kazempour, N. Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) Essential oil. Songklanakarin J. Sci. Technol. 2014, 36, 83–87. [Google Scholar]
- Sivropoulou, A. Antimicrobial activity of mint essential oils. J. Agric. Food Chem. 1995, 43, 2384–2388. [Google Scholar] [CrossRef]
- Tsai, M.; Wu, C.T.; Lin, T.F.; Lin, W.; Huang, Y.C.; Yang, C.H. Chemical Composition and Biological Properties of Essential Oils of Two Mint Species. Trop. J. Pharm. Res. 2013, 12, 577–582. [Google Scholar] [CrossRef]
- Jayanthy, G.; Subramanian, S. Extraction, Isolation and Characterization of Rosmarinic Acid, a Major Polyphenol in Non-volatile Constituent of Mint Leaves. Asian J. Res. Chem. 2013, 6, 1160–1165. [Google Scholar]
- Xu, L.-L.; Xu, J.-J.; Zhong, K.-R.; Shang, Z.-P.; Wang, F.; Wang, R.-F.; Zhang, L.; Zhang, J.-Y.; Liu, B. Analysis of Non-Volatile Chemical Constituents of Menthae Haplocalycis Herba by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [PubMed]
- Grulova, D.; De Martino, L.; Mancini, E.; Salamon, I.; De Feo, V. Seasonal variability of the main components in essential oil of Mentha × piperita L. J. Sci. Food Agric. 2015, 95, 621–627. [Google Scholar]
- Kalemba, D.; Synowiec, A. Agrobiological interactions of essential oils of two menthol mints: Mentha piperita and Mentha arvensis. Molecules 2019, 25, 59. [Google Scholar] [CrossRef]
- Bacon, F.J. The botanical origin of American peppermint—Mentha piperita L. J. Am. Pharm. Assoc. 1928, 17, 1094–1096. [Google Scholar] [CrossRef]
- Singh, A.; Raina, V.; Naqvi, A.; Patra, N.; Kumar, B.; Ram, P.; Khanuja, S. Essential oil composition and chemoarrays of menthol mint (Mentha arvensis L. f. piperascens Malinvaud ex. Holmes) cultivars. Flavour Fragr. J. 2005, 20, 302–305. [Google Scholar] [CrossRef]
- Skalicka-Woźniak, K.; Walasek, M. Preparative separation of menthol and pulegone from peppermint oil (Mentha piperita L.) by high-performance counter-current chromatography. Phytochem. Lett. 2014, 10, 94–98. [Google Scholar]
- Akram, M.; Uzair, M.; Malik, N.S.; Mahmood, A.; Asif, H.M. Mentha arvensis Linn.: A review article. J. Med. Plant Res. 2011, 5, 4499–4503. [Google Scholar]
- Kumar, A.; Shukla, R.; Singh, P.; Singh, A.K.; Dubey, N.K. Use of essential oil from Mentha arvensis L. to control storage moulds and insects in stored chickpea. J. Sci. Food Agric. 2010, 89, 2643–2649. [Google Scholar] [CrossRef]
- Biswas, N.N.; Saha, S.; Ali, M.K. Antioxidant, antimicrobial, cytotoxic and analgesic activities of ethanolic extract of Mentha arvensis L. Asian Pac. J. Trop. Biomed. 2014, 4, 792–797. [Google Scholar]
- Kim, S.Y.; Han, S.D.; Kim, M.; Mony, T.J.; Lee, E.S.; Kim, K.M.; Choi, S.H.; Hong, S.H.; Choi, J.W.; Park, S.J. Mentha arvensis Essential Oil Exerts Anti-Inflammatory in LPS-Stimulated Inflammatory Responses via Inhibition of ERK/NF-κB Signaling Pathway and Anti-Atopic Dermatitis-like Effects in 2,4-Dinitrochlorobezene-Induced BALB/c Mice. Antioxidants 2021, 10, 1941. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A.H. Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J. Sci. Food Agric. 2010, 90, 1827–1836. [Google Scholar] [CrossRef]
- Gholamipourfard, K.; Salehi, M.; Banchio, E. Review: Mentha piperita phytochemicals in agriculture, food industry and medicine: Features and applications. S. Afr. J. Bot. 2021, 141, 183–195. [Google Scholar] [CrossRef]
- Ahmadi, H.; Morshedloo, M.R.; Emrahi, R.; Javanmard, A.; Rasouli, F.; Maggi, F.; Kumar, M.; Lorenzo, J.M. Introducing Three New Fruit-Scented Mints to Farmlands: Insights on Drug Yield, Essential-Oil Quality, and Antioxidant Properties. Antioxidants 2022, 11, 866. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ren, S.; Yang, H.; Tang, S.; Guo, C.; Liu, M.; Tao, Q.; Ming, T.; Xu, H. Peppermint essential oil: Its phytochemistry, biological activity, pharmacological effect and application. Biomed. Pharmacother. 2022, 154, 113559. [Google Scholar]
- Sahandi, M.S.; Mehrafarin, A.; Khalighi-Sigaroodi, F.; Sharifi, M.; Badi, H.N. Review on anatomical, phytochemical and pharmacological properties of peppermint (Mentha piperita L.). J. Med. Plants 2018, 17, 16–33. [Google Scholar]
- Farnaz, M.; Shahzad, H.; Alia, S.; Ghazala, P.; Amina, W.; Shazia, S.; Rafique, A.C.; Rashid, M.; Humayun, R.; Muhammad, I.; et al. Phyto-chemical analysis, anti-allergic and anti-inflammatory activity of Mentha arvensis in animals. Afr. J. Pharm. Pharmacol. 2012, 6, 613–619. [Google Scholar]
- Thawkar, B.S. Phytochemical and pharmacological review of Mentha arvensis. Int. J. Green Pharm. 2016, 10, 71–76. [Google Scholar]
- Mahishi, P.; Srinivasa, B.H.; Shivanna, M.B. Medicinal plant wealth of local communities in some villages in Shimoga District of Karnataka,India. J. Ethnopharmacol. 2005, 98, 307–312. [Google Scholar]
- Kumar, A.; Chattopadhyay, S. DNA damage protecting activity and antioxidant potential of pudina extract. Food Chem. 2007, 100, 1377–1384. [Google Scholar] [CrossRef]
- Oinonen, P.P.; Jokela, J.K.; Hatakka, A.I.; Vuorela, P.M. Linarin, a selective acetylcholinesterase inhibitor from Mentha arvensis. Fitoterapia 2006, 77, 429–434. [Google Scholar]
- Trevisan, S.C.C.; Menezes, A.P.P.; Barbalho, S.M.; Guiguer, É.L. Properties of mentha piperita: A brief review. World J. Pharm. Med. Res. 2017, 3, 309–313. [Google Scholar]
- Badal, R.M.; Badal, D.; Badal, P.; Khare, A.; Shrivastava, J.; Kumare, V. Pharmacological Action of Mentha piperita on Lipid Profile in Fructose-Fed Rats. Iran. J. Pharm. Res. 2011, 10, 843–848. [Google Scholar]
- Patil, S.R.; Patial, R.S.; Godghate, A.G. Mentha piperita Linn: Phytochemical, antibacterial and dipterian adulticidal approach. Int. J. Pharm. Pharm. Sci. 2016, 8, 352–355. [Google Scholar]
- Dorman, H.J.; Koşar, M.; Başer, K.H.; Hiltunen, R. Phenolic profile and antioxidant evaluation of Mentha × piperita L. (peppermint) extracts. Nat. Prod. Commun. 2009, 4, 535–542. [Google Scholar] [PubMed]
- Uribe, E.; Marín, D.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Rodríguez, A. Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants. Food Chem. 2016, 190, 559–565. [Google Scholar] [PubMed]
- Qamar, N.; Pandey, M.; Vasudevan, M.; Kumar, A.; Shasany, A.K. Glandular trichome specificity of menthol biosynthesis pathway gene promoters from Mentha × piperita. Planta. 2022, 256, 110. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, F.; Khodir, M.; Mohamed, C.; Pierre, D. Chemical composition and biological activities of Mentha species. In Aromatic and Medicinal Plants-Back to Nature, 1st ed.; EI-Shemy, H.A., Ed.; InTech: Rijeka, Croatia, 2017; Volume 10, pp. 47–79. [Google Scholar]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P.; et al. The wonderful activities of the genus Mentha: Not only antioxidant properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef] [PubMed]
- Saqib, S.; Ullah, F.; Naeem, M.; Younas, M.; Ayaz, A.; Ali, S.; Zaman, W. Mentha: Nutritional and Health Attributes to Treat Various Ailments Including Cardiovascular Diseases. Molecules 2022, 27, 6728. [Google Scholar] [CrossRef]
- Anwar, F.; Abbas, A.; Mehmood, T.; Gilani, A.H.; Rehman, N.U. Mentha: A genus rich in vital nutra-pharmaceuticals—A review. Phytother. Res. 2019, 33, 2548–2570. [Google Scholar]
- Eftekhari, A.; Khusro, A.; Ahmadian, E.; Dizaj, S.M.; Hasanzadeh, A.; Cucchiarini, M. Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: A comprehensive review. Arab. J. Chem. 2021, 14, 103106. [Google Scholar]
- Kiełtyka-Dadasiewicz, A.; Kubat-Sikorska, A. Chemical diversity of mint essential oils and their significance for aromatherapy. Arch. Physiother. Glob. Res. 2018, 22, 53–59. [Google Scholar] [CrossRef]
- Lin, S.; Wang, Y.; Wu, K.; Yu, G.; Liu, C.; Su, C.; Yi, F. Study on the Effect of Mentha × piperita L. Essential Oil on Electroencephalography upon Stimulation with Different Visual Effects. Molecules 2022, 27, 4059. [Google Scholar]
- Horky, P.; Skalickova, S.; Smerkova, K.; Skladanka, J. Essential oils as a feed additives: Pharmacokinetics and potential toxicity in monogastric animals. Animals 2019, 9, 352. [Google Scholar] [CrossRef]
- Masouri, L.; Bagherzadeh-Kasmani, F.; Mehri, M.; Rokouei, M.; Masouri, B. Mentha piperita as a promising feed additive used to protect liver, bone, and meat of Japanese quail against aflatoxin B1. Trop. Anim. Health Prod. 2022, 54, 254. [Google Scholar]
- Abdel-Wareth, A.A.A.; Lohakare, J.D. Effect of dietary supplementation of peppermint on performance, egg quality, and serum metabolic profile of Hy-Line Brown hens during the late laying period. Anim. Feed Sci. Technol. 2014, 197, 114–120. [Google Scholar] [CrossRef]
- Farnad, N.; Heidari, R.; Aslanipour, B. Phenolic composition and comparison of antioxidant activity of alcoholic extracts of Peppermint (Mentha piperita). J. Food Meas. Charact. 2014, 8, 113–121. [Google Scholar] [CrossRef]
- Anwar, F.; Alkharfy, K.M.; Najeeb-ur-Rehman; Adam, E.; Gilani, A. Chemo-geographical Variations in the Composition of Volatiles and the Biological Attributes of Mentha longifolia (L.) Essential Oils from Saudi Arabia. Int. J. Pharmacol. 2017, 13, 408–424. [Google Scholar]
- Nickavar, B.; Alinaghi, A.; Kamalinejad, M. Evaluation of the Antioxidant Properties of Five Mentha Species. Iran. J. Pharm. Res. 2008, 7, 203–209. [Google Scholar]
- Hamad Al-Mijalli, S.; Elsharkawy, E.; Abdallah, E.; Hamed, M.; El Omari, N.; Mahmud, S.; Alshahrani, M.; Naceiri Mrabti, H.; Bouyahya, A. Determination of Volatile Compounds of Mentha piperita and Lavandula multifida and Investigation of Their Antibacterial, Antioxidant, and Antidiabetic Properties. Evid. Based Complement. Alternat. Med. 2022, 2022, 9306251. [Google Scholar]
- Mimica-Dukic, N.; Bozin, B. Mentha L. species (Lamiaceae) as promising sources of bioactive secondary metabolites. Curr. Pharm. Des. 2008, 14, 3141–3150. [Google Scholar] [CrossRef]
- Kumar, A.; Khajuria, V.; Aggarwal, S. Secondary metabolites of Mentha arvensis and their biological activities. Anal. Chem. Lett. 2012, 2, 373–400. [Google Scholar] [CrossRef]
- Phatak, S.V.; Heble, M.R. Organogenesis and terpenoid synthesis in Mentha arvensis. Fitoterapia 2002, 73, 32–39. [Google Scholar] [CrossRef]
- Venkatesha, K.T.; Padalia, R.; Singh, V.R.; Upadhyay, R.K.; Chauhan, A. Correlation and path-analysis for morpho-economic traits and chemical constituents of essential oil in Corn mint (Mentha arvensis L.) accessions. Arab. J. Med. Aromat. Plants 2020, 6, 1–16. [Google Scholar]
- Bittner Fialová, S.; Kurin, E.; Trajčíková, E.; Jánošová, L.; Šušaníková, I.; Tekeľová, D.; Nagy, M.; Mučaji, P. Mentha Rhizomes as an Alternative Source of Natural Antioxidants. Molecules 2020, 25, 200. [Google Scholar] [PubMed] [Green Version]
- Mahdavikia, F.; Saharkhiz, M.J. Phytotoxic activity of essential oil and water extract of peppermint (Mentha × piperita L. CV. Mitcham). J. Appl. Res. Med. Aromat. Plants 2015, 2, 146–153. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Won, J.H.; Kim, J.Y.; Yun, K.J.; Lee, J.H.; Back, N.I.; Chung, H.G.; Chung, S.A.; Jeong, T.S.; Choi, M.S.; Lee, K.T. Gigantol isolated from the whole plants of Cymbidium goeringii inhibits the LPS-induced iNOS and COX-2 expression via NF-kappaB inactivation in RAW 264.7 macrophages cells. Planta Med. 2006, 72, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Zamora, R.; Vodovotz, Y.; Billiar, T.R. Inducible Nitric Oxide Synthase and Inflammatory Diseases. Mol. Med. 2000, 6, 347–373. [Google Scholar] [PubMed]
- Atta, A.H.; Alkofahi, A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J. Ethnopharmacol. 1998, 2, 117–124. [Google Scholar] [CrossRef]
- Hejna, M.; Kovanda, L.; Rossi, L.; Liu, Y. Mint Oils: In Vitro Ability to Perform Anti-Inflammatory, Antioxidant, and Antimicrobial Activities and to Enhance Intestinal Barrier Integrity. Antioxidants 2021, 10, 1004. [Google Scholar]
- Juergens, U.R.; Stöber, M.; Vetter, H. The anti-inflammatory activity of L-menthol compared to mint oil in human monocytes in vitro: A novel perspective for its therapeutic use in inflammatory diseases. Eur. J. Med. Res. 1998, 3, 539–545. [Google Scholar]
- Hilfiger, L.; Triaux, Z.; Marcic, C.; Héberlé, E.; Emhemmed, F.; Darbon, P.; Marchioni, E.; Petitjean, H.; Charlet, A. Anti-Hyperalgesic Properties of Menthol and Pulegone. Front. Pharmacol. 2021, 12, 3248. [Google Scholar] [CrossRef]
- Shalayel, M.H.F.; Asaad, A.M.; Qureshi, M.A.; Elhussein, A.B. Anti-bacterial activity of peppermint (Mentha piperita) extracts against some emerging multi-drug resistant human bacterial pathogens. J. Herb. Med. 2017, 7, 27–30. [Google Scholar]
- Raeisi, M.; Hashemi, M.; Ansarian, E.; Hejazi, J.; Hassanzadazar, H.; Daneshamooz, S.; Jannat, B.; Aminzare, M. Antibacterial Effect of Mentha piperita Essential Oil Against Foodborne Pathogens in Minced Meat During Storage at Abuse Refrigeration Temperature. Adv. Anim. Vet. Sci. 2019, 7, 720–726. [Google Scholar]
- Singh, R.; Shushni, M.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar]
- Heydari, M.; Zanfardino, A.; Taleei, A.; Bushehri, A.A.S.; Hadian, J.; Maresca, V.; Sorbo, S.; Napoli, M.D.; Varcamonti, M.; Basile, A.; et al. Effect of Heat Stress on Yield, Monoterpene Content and Antibacterial Activity of Essential Oils of Mentha × piperita var. Mitcham and Mentha arvensis var. piperascens. Molecules 2018, 23, 1903. [Google Scholar] [CrossRef]
- Bui-Phuc, T.; Nhu-Trang, T.T.; Cong-Hau, N. Comparison of chemical composition of essential oils obtained by hydro-distillation and microwave-assisted extraction of Japanese mint (Mentha arvensis L.) grown in Vietnam. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012039. [Google Scholar] [CrossRef]
- Ibrahim, M.; Ankwai, G.; Gungshik, J.; Taave, P. Comparative extraction of essential oils of Mentha piperita (mint) by steam distillation and enfleurage. Niger. J. Chem. Res. 2022, 26, 2021. [Google Scholar] [CrossRef]
- Osawa, K.; Saeki, T.; Yasuda, H.; Hamashima, H.; Sasatsu, M.; Arai, T. The antibacterial activities of peppermint oil and green tea polyphenols, alone and in combination, against Enterohemorrhagic Escherichia coil. Biocontrol Sci. 1999, 4, 1–7. [Google Scholar]
- Pattnaik, S.; Subramanyam, V.R.; Bapaji, M.; Kole, C.R. Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 1997, 89, 39–46. [Google Scholar] [PubMed]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef]
- Işcan, G.; Kirimer, N.; Kürkcüoğlu, M.; Başer, K.H.; Demirci, F. Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food Chem. 2002, 50, 3943–3946. [Google Scholar]
- Turgeon, T.; Wright, L. Mint. The Genus Mentha. J. Nat. Prod. 2007, 70, 1834. [Google Scholar]
- Gochev, V.; Stoyanova, A.; Girova, T.; Atanasova, T. Chemical composition and antimicrobial activity of Bulgarian peppermint oils. Bulg. Sci. Pap. 2008, 36, 83–89. [Google Scholar]
- Zhang, L.; Xu, S.-G.; Liang, W.; Mei, J.; Di, Y.-Y.; Lan, H.-H.; Yang, Y.; Wang, W.-W.; Luo, Y.-Y.; Wang, H.-Z. Antibacterial Activity and Mode of Action of Mentha arvensis Ethanol Extract against Multidrug-Resistant Acinetobacter baumannii. Trop. J. Pharm. Res. 2015, 14, 2099. [Google Scholar]
- Bibi, S.; Ali, S.; Shahidin; Ullah, I.; Rauf, A.; Arif, D.; Umar, M.; Khan, A.S.; Hussain, M.; Ghani, A.; et al. Chemical composition and anti-microbial analysis of Mentha arvensis L. and Thymus linearis Benth. essential oils of leaves. Rom. Biotechnol. Lett. 2021, 26, 2893–2900. [Google Scholar] [CrossRef]
- Bokhari, N.; Perveen, K.; Al Khulaifi, M.; Kumar, A.; Siddiqui, I. In Vitro Antibacterial Activity and Chemical Composition of Essential Oil of Mentha arvensis Linn. Leaves. J. Essent. Oil-Bear. Plants 2016, 19, 907–915. [Google Scholar]
- Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and Antimicrobial Activities of Lippia multiflora Moldenke, Mentha × piperita L. and Ocimum basilicum L. Essential Oils and Their Major Monoterpene Alcohols Alone and in Combination. Molecules 2010, 15, 7825–7839. [Google Scholar]
- Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms. Food Control 2011, 22, 1707–1714. [Google Scholar] [CrossRef]
- Nikolić, M.; Jovanović, K.K.; Marković, T.; Marković, D.; Gligorijević, N.; Radulović, S.; Soković, M. Chemical composition, antimicrobial, and cytotoxic properties of five Lamiaceae essential oils. Ind. Crops Prod. 2014, 61, 225–232. [Google Scholar] [CrossRef]
- Iseppi, R.; Tardugno, R.; Brighenti, V.; Benvenuti, S.; Sabia, C.; Pellati, F.; Messi, P. Phytochemical Composition and In Vitro Antimicrobial Activity of Essential Oils from the Lamiaceae Family against Streptococcus agalactiae and Candida albicans Biofilms. Antibiotics 2020, 9, 592. [Google Scholar] [CrossRef]
- Coutinho, H.D. Factors influencing the virulence of Candida spp. West Indian Med. J. 2009, 58, 160–163. [Google Scholar]
- Benzaid, C.; Belmadani, A.; Djeribi, R.; Rouabhia, M. The Effects of Mentha × piperita Essential Oil on C. albicans Growth, Transition, Biofilm Formation, and the Expression of Secreted Aspartyl Proteinases Genes. Antibiotics 2019, 8, 10. [Google Scholar]
- Jayan, L.; Priyadharsini, N.; Ramya, R.; Rajkumar, K. Evaluation of antifungal activity of mint, pomegranate and coriander on fluconazole-resistant Candida glabrata. J. Oral Maxillofac. Pathol. 2020, 24, 517–522. [Google Scholar] [PubMed]
- Saharkhiz, M.J.; Motamedi, M.; Zomorodian, K.; Pakshir, K.; Hemyari, K.K. Chemical Composition, Antifungal and Antibiofilm Activities of the Essential Oil of Mentha piperita L. ISRN Pharm. 2012, 2012, 718645. [Google Scholar] [CrossRef] [PubMed]
- Santos, K.K.; Matias, E.F.; Souza, C.E.; Tintino, S.R.; Braga, M.F.; Guedes, G.M.; Nogueira, L.F.; Morais, E.C.; Costa, J.G.; Menezes, I.R.; et al. Anti-Candida activity of Mentha arvensis and Turnera ulmifolia. J. Med. Food 2012, 15, 322–324. [Google Scholar] [PubMed]
- Ibrahim, S.Y.; El-Salam, M.A. Anti-dermatophyte efficacy and environmental safety of some essential oils commercial and in vitro extracted pure and combined against four keratinophilic pathogenic fungi. Environ. Health Prev. Med. 2015, 20, 279–286. [Google Scholar] [PubMed]
- Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Evaluation of the Antifungal Activity of Mentha × piperita (Lamiaceae) of Pancalieri (Turin, Italy) Essential Oil and Its Synergistic Interaction with Azoles. Molecules 2019, 24, 3148. [Google Scholar] [PubMed] [Green Version]
- Scalas, D.; Roana, J.; Mandras, N.; Banche, G.; Allizond, V.; Cuffini, A.; Tullio, V. Mentha × piperita (Huds)(Lamiaceae) essential oil of Pancalieri (Turin, Italy): Preliminary evaluation of the antifungal activity and synergistic interaction with antifungal drugs. Natural 2015, 147, 61–62. [Google Scholar]
- Nardoni, S.; Mugnaini, L.; Pistelli, L.; Leonardi, M.; Sanna, V.; Perrucci, S.; Pisseri, F.; Mancianti, F. Clinical and mycological evaluation of an herbal antifungal formulation in canine Malassezia dermatitis. J. Mycol. Med. 2014, 24, 234–240. [Google Scholar]
- Rachitha, P.; Krupashree, K.; Jayashree, G.V.; Gopalan, N.; Khanum, F. Growth Inhibition and Morphological Alteration of Fusarium sporotrichioides by Mentha piperita Essential Oil. Pharmacogn. Res. 2017, 9, 74–79. [Google Scholar]
- Camele, I.; Gruľová, D.; Elshafie, H.S. Chemical Composition and Antimicrobial Properties of Mentha × piperita cv. ‘Kristinka’ Essential Oil. Plants 2021, 10, 1567. [Google Scholar]
- Diánez, F.; Santos, M.; Parra, C.; Navarro, M.J.; Blanco, R.; Gea, F.J. Screening of antifungal activity of 12 essential oils against eight pathogenic fungi of vegetables and mushroom. Lett. Appl. Microbiol. 2018, 67, 400–410. [Google Scholar]
- Scartazzini, L.; Tosati, J.V.; Cortez, D.H.C.; Rossi, M.J.; Flôres, S.H.; Hubinger, M.D.; Di Luccio, M.; Monteiro, A.R. Gelatin edible coatings with mint essential oil (Mentha arvensis): Film characterization and antifungal properties. J. Food Sci. Technol. 2019, 56, 4045–4056. [Google Scholar]
- Pandey, A.K.; Rai, M.K.; Acharya, D. Chemical Composition and Antimycotic Activity of the Essential Oils of Corn Mint (Mentha arvensis) and Lemon Grass (Cymbopogon flexuosus) Against Human Pathogenic Fungi. Pharm. Biol. 2003, 41, 421–425. [Google Scholar] [CrossRef]
- Kaur, H.; Tandon, R.; Kalia, A.; Maini, C. Chemical composition and antifungal activity of essential oils from aerial parts of Mentha piperita and Mentha arvensis. Int. J. Pharmacol. 2018, 5, 767–773. [Google Scholar]
- Stringhini, S.; Guessous, I. The Shift From Heart Disease to Cancer as the Leading Cause of Death in High-Income Countries: A Social Epidemiology Perspective. Ann. Intern. Med. 2018, 169, 877–878. [Google Scholar] [PubMed]
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, Y.; Gupta, V.K.; Jaitak, V. Anticancer activity of essential oils: A review. J. Sci. Food Agric. 2013, 93, 3643–3653. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, M.J.; Durai, L.; Anusha, G.S.; Nagarajan, R. Nanoemulsion of Mentha arvensis Essential Oil as an Anticancer Agent in Anaplastic Thyroid Cancer Cells and as an Antibacterial Agent in Staphylococcus aureus. BioNanoScience 2021, 11, 1017–1029. [Google Scholar] [CrossRef]
- Rahimifard, N.; Haji, M.H.; Hedayati, M.; Bagheri, O.; Pishehvar, H.; Ajani, Y. Cytotoxic effects of essential oils and extracts of some Mentha species on Vero, Hela and Hep2 cell lines. J. Med. Plants 2010, 9, 88–92. [Google Scholar]
- Jain, D.; Pathak, N.; Khan, S.; Raghuram, G.V.; Bhargava, A.; Samarth, R.; Mishra, P.K. Evaluation of cytotoxicity and anticarcinogenic potential of Mentha leaf extracts. Int. J. Toxicol. 2011, 30, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, H.; Shinde, A.; Jadhav, J. Evaluation of anti-angiogenic potential of Mentha arvensis Linn. Leaf extracts using chorioallantoic membrane assay. World J. Pharm. Res. 2016, 5, 677–689. [Google Scholar]
- Kumar, A.; Samarth, R.M.; Yasmeen, S.; Sharma, A.; Sugahara, T.; Terado, T.; Kimura, H. Anticancer and radioprotective potentials of Mentha piperita. Biofactors 2004, 22, 87–92. [Google Scholar]
- Banerjee, P.P.; Bandyopadhyay, A.; Harsha, S.N.; Policegoudra, R.S.; Chattopadhyay, A. Mentha arvensis (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells. Breast Cancer 2017, 9, 265. [Google Scholar] [PubMed]
- Weecharangsan, W.; Sithithaworn, W.; Siripong, P. Cytotoxic activity of essential oils of Mentha spp. on human carcinoma cells. J. Health Res. 2014, 28, 9–12. [Google Scholar]
- Jerard, C.; Michael, B.P.; Chenicheri, S.; Vijayakumar, N.; Ramachandran, R. Rosmarinic Acid-Rich Fraction from Mentha arvensis Synchronizes Bcl/Bax Expression and Induces Go/G1 Arrest in Hepatocarcinoma Cells. Proc. Natl. Acad. Sci. USA 2019, 90, 515–522. [Google Scholar] [CrossRef]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Baudino, T.A. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol. 2015, 12, 3–20. [Google Scholar] [PubMed]
- Citrin, D.E.; Mitchell, J.B. Altering the response to radiation: Sensitizers and protectors. Semin. Oncol. 2014, 41, 848–859. [Google Scholar] [CrossRef]
- Cairnie, A.B. Adverse effects of radioprotector WR2721. Radiat. Res. 1983, 94, 221–226. [Google Scholar]
- Jagetia, G.C.; Baliga, M.S. Influence of the leaf extract of Mentha arvensis Linn. (mint) on the survival of mice exposed to different doses of gamma radiation. Strahlenther. Onkol. 2002, 178, 91–98. [Google Scholar]
- Samarth, R.M.; Goyal, P.K.; Kumar, A. Modulatory effect of Mentha piperita (Linn.) on serum phosphatases activity in Swiss albino mice against gamma irradiation. Indian J. Exp. Biol. 2001, 39, 479. [Google Scholar]
- Samarth, R.M.; Goyal, P.K.; Kumar, A. Modulation of serum phosphatases activity in Swiss albino mice against gamma irradiation by Mentha piperita Linn. Phytother. Res. 2002, 16, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Samarth, R.M.; Kumar, A. Mentha piperita (Linn.) leaf extract provides protection against radiation induced chromosomal damage in bone marrow of mice. Indian J. Exp. Biol. 2003, 41, 229–237. [Google Scholar] [PubMed]
- Bhatia, A.L.; Sharma, A.; Patni, S.; Sharma, A.L. Prophylactic effect of flaxseed oil against radiation-induced hepatotoxicity in mice. Phytother. Res. 2010, 21, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Highman, B.; Hanks, A.R. Serum intestinal alkaline phosphatase in rats after 800 R whole-body or regional x-irradiation. Proc. Soc. Exp. Biol. Med. 1970, 133, 1201–1206. [Google Scholar] [CrossRef]
- Stepan, J.J.; Havránek, T.; Jojková, K. Serum alkaline phosphatases as indicators of radiation damage in rats. Radiat. Res. 1977, 70, 406–414. [Google Scholar]
- Samarth, R.M.; Samarth, M. Protection against radiation-induced testicular damage in Swiss albino mice by Mentha piperita (Linn.). Basic Clin. Pharmacol. Toxicol. 2010, 104, 329–334. [Google Scholar]
Species | M. arvensis | M. × piperita |
---|---|---|
Plant height | 10–60 cm | 30–100 cm |
Stem | Purple at seedling stage and green at maturity, pilose | Purplish-red and glabrous |
Leaf | Pale green, densely pilose along veins and sparsely puberulent elsewhere | Dark green, glabrous or below veins bristly and densely glandular |
Flower | Corolla mauve, whorled on stems at leaf bases | Corolla white, lobes with pink halo, verticillaster form spica at the tips of stems and branches |
Species | Tissue/Sample Extract | Class | Compound | References |
---|---|---|---|---|
M. arvensis | Essential oil | Terpenoid | Geranyl acetate | [60] |
Pulegone/lsopulegone | [60] | |||
Menthonel lsomenthone | [60] | |||
Menthone | [60] | |||
Menthyl acetate | [61] | |||
Menthone | [61] | |||
Terpenoid | [62] | |||
Menthol | [61,63] | |||
Menthyl acetate | [63] | |||
Pulegone | [63] | |||
Limonene | [63] | |||
Isomenthone | [63] | |||
Menthone | [63] | |||
Isomenthone | [63] | |||
Menthol | [61,63] | |||
M. × piperita | Rhizome | Phenolic acids | Protocatechuic aldehyde | [64] |
Luteolin-7-O-rutinoside | ||||
Caffeic acid | ||||
Salvianolic acid | ||||
Lithospermic acid | ||||
Salvianolic acid B | ||||
Hesperetin-7-O-rutinoside | ||||
Rosmarinic acid | ||||
Eriodictyol-7-O-rutinoside | ||||
M. × piperita | Essential oil | Terpenoid | Sabinene | [32] |
β-Pinene | ||||
β-Myrcene | ||||
α-Terpinene | ||||
Limonene | ||||
1,8-Cineole | ||||
cis-Sabinene hydrate | ||||
Linalool | ||||
Menthone | ||||
Menthofuran | ||||
δ-Terpineol | ||||
neo-Menthol | ||||
Menthol | ||||
Terpinen-4-ol | ||||
Pulegone | ||||
Piperitone | ||||
Geranyl acetate | ||||
(E)-β-Farnesene | ||||
Germacrene D | ||||
Elixene | ||||
Viridiflorol | ||||
Monoterpene | ||||
Hydrocarbons | ||||
Oxygenated monoterpenes | ||||
Sesquiterpene hydrocarbons | ||||
M. × piperita | Leaf | Phenols | Sinapic acid | [65] |
Gallic acid | ||||
Catechin | ||||
Caffeic acid | ||||
Chloregenic acid | ||||
Rutin | ||||
Quercetin | ||||
p-Coumaric acid | ||||
Coumarin | ||||
Carvacerol | ||||
Vanilin | ||||
Trans-ferulic acid | ||||
Hesperedin | ||||
Ellagic acid | ||||
Eugenol | ||||
Hesperetin | ||||
M. × piperita | Leaf | Flavanones | Naringenin Eriodictyiol Hesperetin Apigenin Luteolin Diosmetin | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Kong, S.; Jayaraman, V.; Selvaraj, D.; Soundararajan, P.; Manivannan, A. Mentha arvensis and Mentha × piperita-Vital Herbs with Myriads of Pharmaceutical Benefits. Horticulturae 2023, 9, 224. https://doi.org/10.3390/horticulturae9020224
Wei H, Kong S, Jayaraman V, Selvaraj D, Soundararajan P, Manivannan A. Mentha arvensis and Mentha × piperita-Vital Herbs with Myriads of Pharmaceutical Benefits. Horticulturae. 2023; 9(2):224. https://doi.org/10.3390/horticulturae9020224
Chicago/Turabian StyleWei, Hao, Shuai Kong, Vanitha Jayaraman, Dhivya Selvaraj, Prabhakaran Soundararajan, and Abinaya Manivannan. 2023. "Mentha arvensis and Mentha × piperita-Vital Herbs with Myriads of Pharmaceutical Benefits" Horticulturae 9, no. 2: 224. https://doi.org/10.3390/horticulturae9020224
APA StyleWei, H., Kong, S., Jayaraman, V., Selvaraj, D., Soundararajan, P., & Manivannan, A. (2023). Mentha arvensis and Mentha × piperita-Vital Herbs with Myriads of Pharmaceutical Benefits. Horticulturae, 9(2), 224. https://doi.org/10.3390/horticulturae9020224