Investigation of Color and Bioactive Compounds of Different Colors from Pansy (Viola × wittrockiana Gams.) Dried in Hot Air Dryer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Drying Method
2.3. Color Measurements
2.4. Bioactive Compound Analyses
2.4.1. Preparation of Extracts
2.4.2. Determination of Total Phenolic Content
2.4.3. Determination of Antioxidant Activity Using DPPH
2.4.4. Total Monomeric Anthocyanin Content
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effects of Drying Air Temperatures on Drying Time
3.2. Effects of Drying Air Temperatures on Color Parameters
3.3. Effects of Drying Air Temperatures on Bioactive Compound Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelley, K.M.; Behe, B.K.; Biernbaum, J.A.; Poff, K.L. Consumer and professional chef perceptions of three edible-flower species. HortScience 2001, 36, 162–166. [Google Scholar] [CrossRef]
- Lu, B.; Li, M.; Yin, R. Phytochemical content, health benefits, and toxicology of common edible flowers: A review (2000–2015). Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. 1), S130–S148. [Google Scholar] [CrossRef] [PubMed]
- Santos, I.C.D.; Reis, S.N. Edible flowers: Traditional and current use. Ornam. Hortic. 2021, 27, 438–445. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Pereira, E.L.; Ramalhosa, E.; Saraiva, J.A. Effect of high hydrostatic pressure on the quality of four edible flowers: Viola × wittrockiana, Centaurea cyanus, Borago officinalis and Camellia japonica. Int. J. Food Sci. Technol. 2017, 52, 2455–2462. [Google Scholar] [CrossRef]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. An overview on the market of edible flowers. Food Rev. Int. 2020, 36, 258–275. [Google Scholar] [CrossRef]
- Matyjaszczyk, E.; Śmiechowska, M. Edible flowers. Benefits and risks pertaining to their consumption. Trends Food Sci. Technol. 2019, 91, 670–674. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res. Int. 2020, 129, 108868. [Google Scholar] [CrossRef]
- Shantamma, S.; Vasikaran, E.M.; Waghmare, R.; Nimbkar, S.; Moses, J.A.; Anandharamakrishnan, C. Emerging techniques for the processing and preservation of edible flowers. Future Foods 2021, 4, 100094. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, B.; Xu, B. An update on the health benefits promoted by edible flowers and involved mechanisms. Food Chem. 2021, 340, 127940. [Google Scholar] [CrossRef]
- Lagibo, A.D.; Kobza, F.; Suchánková, P. Polyploidy effects on frost tolerance and winter survival of garden pansy genotypes. Hortic. Sci. 2005, 32, 138–146. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Sun, H.Y.; Shang, X. Flower color patterning in pansy (Viola × wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. Plant Physiol. Biochem. 2014, 84, 134–141. [Google Scholar] [CrossRef]
- Warner, R.M.; Erwin, J.E. Prolonged high-temperature exposure differentially reduces growth and flowering of 12 Viola× wittrockiana Gams. cvs. Sci. Hortic. 2006, 108, 295–302. [Google Scholar] [CrossRef]
- Wittrock, V.B. Viola-Studier—A contribution to the history of the pansies having special reference to their origin. Acta Horti Bergiani 1895, 2, 441–522. [Google Scholar]
- Kroon, G.H. Reduction of ploidy level of tetraploid large-flowered garden pansies (Viola × wittrockiana Gams.) to diploid level after crossing with diploid V. tricolor L. Euphytica 1972, 21, 165–170. [Google Scholar] [CrossRef]
- Gonçalves, J.; Borges, J.C.F.; Carlos, L.D.A.; Silva, A.P.C.M.; Souza, F.A.D. Bioactive compounds in edible flowers of garden pansy in response to irrigation and mycorrhizal inoculation. Rev. Ceres 2019, 66, 407–415. [Google Scholar] [CrossRef]
- Giordano, M.; Petropoulos, S.A.; Cirillo, C.; Rouphael, Y. Biochemical, Physiological, and Molecular Aspects of Ornamental Plants Adaptation to Deficit Irrigation. Horticulturae 2021, 7, 107. [Google Scholar] [CrossRef]
- González-Barrio, R.; Periago, M.J.; Luna-Recio, C.; Garcia-Alonso, F.J.; Navarro-González, I. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem. 2018, 252, 373–380. [Google Scholar] [CrossRef]
- Skowyra, M.; Calvo, M.I.; Gallego Iradi, M.G.; Azman, N.A.B.M.; Almajano Pablos, M.P. Characterization of phytochemicals in petals of different colours from Viola × wittrockiana Gams and their correlation with antioxidant activity. J. Agric. Sci. 2014, 6, 93–105. [Google Scholar] [CrossRef]
- Mousavi, S.H.; Naghizade, B.; Pourgonabadi, S.; Ghorbani, A. Protective effect of Viola tricolor and Viola odorata extracts on serum/glucose deprivation-induced neurotoxicity: Role of reactive oxygen species. Avicenna J. Phytomed. 2016, 6, 434–441. [Google Scholar]
- Kelley, K.M.; Cameron, A.C.; Biernbaum, J.A.; Poff, K.L. Effect of storage temperature on the quality of edible flowers. Postharvest Biol. Technol. 2003, 27, 341–344. [Google Scholar] [CrossRef]
- Kelley, K.M.; Behe, B.K.; Biernbaum, J.A.; Poff, K.L. Consumer ratings of edible flower quality, mix, and color. HortTechnology 2001, 11, 644–647. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Tzionis, A.; Xylia, P.; Nicola, S.; Tzortzakis, N. Physiochemical properties of petunia edible flowers grown under saline conditions and their postharvest performance under modified atmosphere packaging and ethanol application. J. Sci. Food Agric. 2019, 99, 3644–3652. [Google Scholar] [CrossRef] [PubMed]
- Tai, C.Y.; Chen, B.H. Analysis and Stability of Carotenoids in the Flowers of Daylily (Hemerocallis disticha) as Affected by Various Treatments. J. Agric. Food Chem. 2000, 48, 5962–5968. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gast, K.L.; Smithey, S. The effects of different freeze-drying processes on the moisture content, color, and physical strength of roses and carnations. Sci. Hortic. 2000, 84, 321–332. [Google Scholar] [CrossRef]
- Kim, H.O.; Durance, T.D.; Scaman, C.H.; Kitts, D.D. Retention of alkamides in dried Echinacea purpurea. J. Agric. Food Chem. 2000, 48, 4187–4192. [Google Scholar] [CrossRef]
- Lin, S.D.; Sung, J.M.; Chen, C.L. Effect of drying and storage conditions on caffeic acid derivatives and total phenolics of Echinacea purpurea grown in Taiwan. Food Chem. 2011, 125, 226–231. [Google Scholar] [CrossRef]
- Hong-fang, J.; Ai-lin, D.; Ling-wen, Z.; Chun-yang, X.; Ming-duo, Y.; Fang-fang, L. Effects of drying methods on antioxidant properties in Robinia pseudoacacia L. flowers. J. Med. Plants Res. 2012, 6, 3233–3239. [Google Scholar] [CrossRef]
- Siriamornpun, S.; Kaisoon, O.; Meeso, N. Changes in colour, antioxidant activities and carotenoids (lycopene, β-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. J. Funct. Foods 2012, 4, 757–766. [Google Scholar] [CrossRef]
- Dorozko, J.; Kunkulberga, D.; Sivicka, I.; Kruma, Z. The influence of various drying methods on the quality of edible flower petals. In Proceedings of the 13th Baltic Conference on Food Science FoodBalt 2019 and East European Congress on Food NEEFood, Jelgala, Latvia, 2–3 May 2019; University of Life Sciences and Technologies: Jelgala, Latvia, 2019; pp. 2–3. [Google Scholar]
- Chen, X.M.; Hu, C.; Raghubeer, E.; Kitts, D.D. Effect of high pressure pasteurization on bacterial load and bioactivity of Echinacea purpurea. J. Food Sci. 2010, 75, C613–C618. [Google Scholar] [CrossRef] [PubMed]
- Koike, A.C.; Araújo, M.M.; Costa, H.S.; Almeida, M.C.; Villavicencio, A.L.C. Tolerance of edible flowers to gamma irradiation. In Proceedings of the International Nuclear Atlantic Conference, Belo Horizonte, MG, Brazil, 24–28 October 2011. [Google Scholar]
- Koike, A.; Barreira, J.C.; Barros, L.; Santos-Buelga, C.; Villavicencio, A.L.; Ferreira, I.C. Irradiation as a novel approach to improve quality of Tropaeolum majus L. flowers: Benefits in phenolic profiles and antioxidant activity. Innov. Food Sci. Emerg. Technol. 2015, 30, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Koike, A.; Barreira, J.C.; Barros, L.; Santos-Buelga, C.; Villavicencio, A.L.; Ferreira, I.C. Edible flowers of Viola tricolor L. as a new functional food: Antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation. Food Chem. 2015, 179, 6–14. [Google Scholar] [CrossRef]
- Villavicencio, A.L.; Heleno, S.A.; Calhelha, R.C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C. The influence of electron beam radiation in the nutritional value, chemical composition and bioactivities of edible flowers of Bauhinia variegata L. var. candida alba Buch.-Ham from Brazil. Food Chem. 2018, 241, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Villalta, A.M.; Ergun, M.; Berry, A.D.; Shaw, N.; Sargent, S.A. Quality changes of yellow summer squash blossoms (Cucurbita pepo) during storage. In VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition; ISHS: Leuven, Belgium, 2004; Volume 659, pp. 831–834. [Google Scholar]
- Demasi, S.; Mellano, M.G.; Falla, N.M.; Caser, M.; Scariot, V. Sensory profile, shelf life, and dynamics of bioactive compounds during cold storage of 17 edible flowers. Horticulturae 2021, 7, 166. [Google Scholar] [CrossRef]
- Rana, R.A.; Siddiqui, M.N.; Skalicky, M.; Brestic, M.; Hossain, A.; Kayesh, E.; Popov, M.; Hejnak, V.; Gupta, D.R.; Mahmud, N.U.; et al. Prospects of Nanotechnology in Improving the Productivity and Quality of Horticultural Crops. Horticulturae 2021, 7, 332. [Google Scholar] [CrossRef]
- Marchioni, I.; Taglieri, I.; Dimita, R.; Ruffoni, B.; Zinnai, A.; Venturi, F.; Sanmartin, C.; Pistelli, L. Postharvest treatments on sensorial and biochemical characteristics of Begonia cucullata Willd Edible Flowers. Foods 2022, 11, 1481. [Google Scholar] [CrossRef]
- Fernandes, L.; Saraiva, J.A.; Pereira, J.A.; Casal, S.; Ramalhosa, E. Post-harvest technologies applied to edible flowers: A review: Edible flowers preservation. Food Rev. Int. 2019, 35, 132–154. [Google Scholar] [CrossRef]
- Babalık, Ö.; Pazır, F. Domates kurutulmasında kükürt dioksit uygulaması. Gıda 1997, 22, 193–199. [Google Scholar]
- Ali, M.M.; Waleed Shafique, M.; Gull, S.; Afzal Naveed, W.; Javed, T.; Yousef, A.F.; Mauro, R.P. Alleviation of Heat Stress in Tomato by Exogenous Application of Sulfur. Horticulturae 2021, 7, 21. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, H.; Zhang, M.; Chitrakar, B.; Bhandari, B.; Wang, B. Edible flowers: Review of flower processing and extraction of bioactive compounds by novel technologies. Food Res. Int. 2019, 126, 108660. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Effects of different drying methods on the bioactive compounds and antioxidant properties of edible Centaurea (Centaurea cyanus) petals. Braz. J. Food Technol. 2018, 21, e2017211. [Google Scholar] [CrossRef]
- Ding, P.; Ling, Y.S. Browning assessment methods and polyphenol oxidase in UV-C irradiated Berangan banana fruit. Int. Food Res. J. 2014, 21, 1667–1674. [Google Scholar]
- Mengeş, H.O.; Ünver, A.; Özcan, M.M.; Ertekin, C.; Sonmete, M.H. The effects of drying parameters on drying characteristics, colorimetric differences, antioxidant capacity and total phenols of sliced kiwifruit. Erwerbs-Obstbau 2019, 61, 195–207. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Q.; Li, X.; Wang, Y.; Zhu, J.; Ning, C.; Chang, X.; Meng, X. Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innov. Food Sci. Emerg. Technol. 2016, 36, 48–58. [Google Scholar] [CrossRef]
- Dinçer, C.; Tontul, İ.; Çam, İ.B.; Özdemir, K.S.; Topuz, A.; Nadeem, H.Ş.; Tuğrul Ay, S.; Göktürk, R.S. Phenolic composition and antioxidant activity of Salvia tomentosa Miller: Effects of cultivation, harvesting year, and storage. Turk. J. Agric. For. 2013, 37, 561–567. [Google Scholar] [CrossRef]
- Fernández-León, M.F.; Fernández-León, A.M.; Lozano, M.; Ayuso, M.C.; Amodio, M.L.; Colelli, G.; González-Gómez, D. Retention of quality and functional values of broccoli ‘Parthenon’ stored in modified atmosphere packaging. Food Control 2013, 31, 302–313. [Google Scholar] [CrossRef]
- Wang, W.D.; Xu, S.Y. Degradation kinetics of anthocyanins in blackberry juice and concentrate. J. Food Eng. 2007, 82, 271–275. [Google Scholar] [CrossRef]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Protection of foods by drying. In Modern Food Microbiology; Springer: Berlin, Germany, 2005; pp. 443–456. [Google Scholar]
- Akman, H.E.; Boyar, I.; Gozlekci, S.; Saracoglu, O.; Ertekin, C. Effects of convective drying of Quince fruit (Cydonia oblonga) on color, antioxidant activity and phenolic compounds under various fruit juice dipping pre-treatments. Agriculture 2022, 12, 1224. [Google Scholar] [CrossRef]
- Bae, S.M.; Lee, S.C. Effect of hot-air drying temperature on volatile compounds in Chrysanthemum boreale M. flowers. Korean J. Food Sci. Technol. 2008, 40, 466–469. [Google Scholar]
- Selvi, K.Ç.; Kabutey, A.; Gürdil GA, K.; Herak, D.; Kurhan, Ş.; Klouček, P. The effect of infrared drying on color, projected area, drying time, and total phenolic content of rose (Rose electron) petals. Plants 2020, 9, 236. [Google Scholar] [CrossRef]
- Balladin, D.A.; Headley, O. Solar drying of rose (Rosa sp.) petals. Renew. Energy 1999, 18, 249–255. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Marchioni, I.; Dimita, R.; Gioè, G.; Pistelli, L.; Ruffoni, B.; Pistelli, L.; Najar, B. The effects of post-harvest treatments on the quality of Agastache aurantiaca edible flowers. Horticulturae 2021, 7, 83. [Google Scholar] [CrossRef]
- Zawiślak, A.; Francik, R.; Francik, S.; Knapczyk, A. Impact of drying conditions on antioxidant activity of red clover (Trifolium pratense), sweet violet (Viola odorata) and elderberry flowers (Sambucus nigra). Materials 2022, 15, 3317. [Google Scholar] [CrossRef]
- Mao, L.C.; Pan, X.; Que, F.; Fang, X.H. Antioxidant properties of water and ethanol extracts from hot air-dried and freeze-dried daylily flowers. Eur. Food Res. Technol. 2006, 222, 236–241. [Google Scholar] [CrossRef]
- Bae, S.M.; Na, A.S.; Seo, H.K.; Lee, S.C. Effects of drying conditions on the antioxidant activities and volatile compounds of Chrysanthemi Flos flowers. Prev. Nutr. Food Sci. 2009, 14, 329–334. [Google Scholar] [CrossRef]
Color | Temperature, °C | L* (Lightness) | a* (Redness) | b* (Yellowness) | C* (Chroma) | h° (Hue Angle) | ∆E (Total Color Change) | BI (Browning Index) |
---|---|---|---|---|---|---|---|---|
White | 60 | 85.34 c ± 2.33 | −1.13 a ± 1.10 | 8.82 b ± 2.13 | 8.93 b ± 2.24 | 96.27 b ± 5.58 | 7.17 b ± 2.36 | 9.57 a ± 1.92 |
70 | 82.32 b ± 2.94 | −1.14 a ± 0.71 | 9.41 bc* ± 1.72 | 9.50 bc* ± 1.77 | 96.47 b ± 3.61 | 4.58 a ± 2.17 | 10.73 b ± 1.98 | |
80 | 76.42 a ± 5.31 | −1.60 a ± 0.88 | 10.25 c ± 2.04 | 10.39 c ± 2.13 | 98.70 b ± 3.34 | 8.13 b ± 3.40 | 12.43 c ± 2.50 | |
Fresh | 82.54 b ± 3.71 | 0.52 b ± 0.87 | 4.82 a ± 1.71 | 5.10 a ± 1.67 | 61.66 a ± 7.38 | - | - | |
Orange | 60 | 44.91 b ± 3.93 | 31.06 b ± 2.81 | 30.48 a ± 2.83 | 43.62 a ± 2.56 | 44.47 a ± 4.09 | 26.88 ± 3.78 | 151.47 ± 15.18 |
70 | 44.92 b ± 5.08 | 30.14 ab* ± 3.59 | 31.27 a ± 5.02 | 43.50 a ± 5.66 | 45.88 a ± 3.27 | 29.05 ± 6.53 | 154.38 ± 21.65 | |
80 | 41.84 a ± 4.21 | 28.90 a ± 3.06 | 29.09 a ± 4.04 | 41.08 a ± 4.31 | 45.07 a ± 3.79 | 28.02 ± 5.21 | 154.92 ± 16.79 | |
Fresh | 54.05 c ± 2.65 | 37.83 c ± 4.90 | 54.57 b ± 4.25 | 66.52 b ± 4.97 | 55.35 b ± 3.46 | - | - | |
Bordeaux | 60 | 14.63 b ± 2.96 | −5.47 a ± 3.87 | −1.73 a ± 2.07 | 6.08 a ± 3.88 | 201.80 c ± 26.63 | 27.77 ± 3.84 | −42.67 ± 37.89 |
70 | 14.67 b ± 1.76 | −4.40 a ± 3.27 | −0.72 b ± 1.23 | 4.65 a ± 3.23 | 185.72 b ± 29.02 | 26.21 ± 3.26 | −28.48 ± 24.38 | |
80 | 12.76 a ± 3.35 | −3.82 a ± 3.27 | −1.22 ab* ± 1.90 | 4.23 a ± 3.52 | 194.60 bc* ± 26.37 | 27.12 ± 3.49 | −35.87 ± 46.01 | |
Fresh | 12.38 a ± 2.49 | 21.99 b ± 5.13 | 1.98 c ± 1.41 | 22.11 b ± 5.11 | 5.30 a ± 5.11 | - | - | |
Yellow | 60 | 59.98 ab* ± 5.24 | 23.47 c ± 4.88 | 61.43 ab* ± 4.51 | 66.00 b ± 3.36 | 69.00 a ± 5.06 | 34.94 ± 6.36 | 245.01 ± 31.55 |
70 | 60.83 b ± 4.98 | 20.08 b ± 4.56 | 62.73 b ± 4.44 | 65.97 b ± 4.05 | 72.18 b ± 4.21 | 33.15 ± 6.26 | 242.72 ± 19.98 | |
80 | 58.07 a ± 4.61 | 19.19 b ± 5.02 | 59.70 a ± 4.52 | 62.91 a ± 4.48 | 72.20 b ± 4.61 | 33.43 ± 5.80 | 241.13 ± 21.73 | |
Fresh | 71.63 c ± 2.50 | 12.77 a ± 3.11 | 91.34 c ± 3.21 | 92.30 c ± 3.18 | 82.04 c ± 2.28 | - | - |
Color | Temperature (°C) | Total Phenolic Content (mg/g GAE) | Antioxidant Activity (mg/g TE) | Anthocyanin Content (mg Malvidin Glucoside/g) |
---|---|---|---|---|
White | 60 | 14.98 b ± 3.04 | 4.40 b ± 1.27 | 0.183 b ± 0.04 |
70 | 12.36 b ± 0.76 | 1.16 a ± 1.06 | 0.308 c ± 0.01 | |
80 | 14.11 b ± 0.97 | 8.31 c ± 1.96 | 0.300 c ± 0.01 | |
Fresh | 1.98 a ± 0.08 | 0.29 a ± 0.15 | 0.001 a ± 0.00 | |
Orange | 60 | 74.04 c ± 2.66 | 240.36 d ± 14.85 | 0.199 b ± 0.02 |
70 | 68.86 b ± 1.32 | 211.14 c ± 11.60 | 0.215 b ± 0.01 | |
80 | 76.89 c ± 1.24 | 152.78 b ± 16.74 | 0.226 b ± 0.03 | |
Fresh | 7.37 a ± 0.37 | 15.88 a ± 1.79 | 0.001 a ± 0.00 | |
Bordeaux | 60 | 65.52 b ± 1.59 | 259.38 c ± 11.92 | 25.571 c ± 0.89 |
70 | 66.65 b ± 2.49 | 243.22 c ± 12.91 | 9.474 b ± 0.25 | |
80 | 63.78 b ± 2.91 | 196.31 b ± 9.40 | 8.439 b ± 1.91 | |
Fresh | 7.18 a ± 0.45 | 26.93 a ± 1.91 | 2.448 a ± 0.02 | |
Yellow | 60 | 61.64 bc* ± 0.94 | 210.39 d ± 7.61 | 0.196 b ± 0.03 |
70 | 60.75 b ± 1.84 | 186.18 c ± 9.94 | 0.285 c ± 0.07 | |
80 | 63.12 c ± 0.86 | 153.24 b ± 15.43 | 0.276 bc* ± 0.05 | |
Fresh | 7.44 a ± 0.71 | 18.61 a ± 4.41 | 0.001 a ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hazar, D.; Boyar, I.; Dincer, C.; Ertekin, C. Investigation of Color and Bioactive Compounds of Different Colors from Pansy (Viola × wittrockiana Gams.) Dried in Hot Air Dryer. Horticulturae 2023, 9, 186. https://doi.org/10.3390/horticulturae9020186
Hazar D, Boyar I, Dincer C, Ertekin C. Investigation of Color and Bioactive Compounds of Different Colors from Pansy (Viola × wittrockiana Gams.) Dried in Hot Air Dryer. Horticulturae. 2023; 9(2):186. https://doi.org/10.3390/horticulturae9020186
Chicago/Turabian StyleHazar, Deniz, Ismail Boyar, Cuneyt Dincer, and Can Ertekin. 2023. "Investigation of Color and Bioactive Compounds of Different Colors from Pansy (Viola × wittrockiana Gams.) Dried in Hot Air Dryer" Horticulturae 9, no. 2: 186. https://doi.org/10.3390/horticulturae9020186