Evaluation of Multispectral Data Acquired from UAV Platform in Olive Orchard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection
2.3. Multispectral Data from UAV and Flight Scheduling
2.4. Image Processing
2.5. Biometric Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Statistics, Food and Agriculture Organization of the United Nations; FAOSTAT: Rome, Italy, 2020. [Google Scholar]
- De Gennaro, B.; Notarnicola, B.; Roselli, L.; Tassielli, G. Innovative Olive-Growing Models: An Environmental and Economic Assessment. J. Clean. Prod. 2012, 28, 70–80. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision Agriculture–A Worldwide Overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Roma, E.; Catania, P. Precision Oliviculture: Research Topics, Challenges, and Opportunities—A Review. Remote Sens. 2022, 14, 1668. [Google Scholar] [CrossRef]
- Senay, G.B.; Ward, A.D.; Lyon, J.G.; Fausey, N.R.; Nokes, S.E. Manipulation of High Spatial Resolution Aircraft Remote Sensing Data for Use in Site-Specific Farming. Trans. ASAE 1998, 41, 489. [Google Scholar] [CrossRef]
- Zhang, C.; Valente, J.; Kooistra, L.; Guo, L.; Wang, W. Orchard Management with Small Unmanned Aerial Vehicles: A Survey of Sensing and Analysis Approaches. Precis. Agric. 2021, 22, 2007–2052. [Google Scholar] [CrossRef]
- Fountas, S.; Aggelopoulou, K.; Gemtos, T.A. Precision Agriculture: Crop Management for Improved Productivity and Reduced Environmental Impact or Improved Sustainability. Supply Chain. Manag. Sustain. Food Netw. 2015, 41–65. [Google Scholar] [CrossRef]
- Matese, A.; di Gennaro, S.F. Technology in Precision Viticulture: A State of the Art Review. Int. J. Wine Res. 2015, 7, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Noori, O.; Panda, S.S. Site-Specific Management of Common Olive: Remote Sensing, Geospatial, and Advanced Image Processing Applications. Comput. Electron. Agric. 2016, 127, 680–689. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas. Remote Sens. 2015, 7, 5584–5610. [Google Scholar] [CrossRef] [Green Version]
- Agüera-Vega, J.; Blanco, G.; Castillo, F.; Castro-Garcia, S.; Gil-Ribes, J.; Perez-Ruiz, M. Determination of Field Capacity and Yield Mapping in Olive Harvesting Using Remote Data Acquisition. In Precision Agriculture’13; Springer: Berlin, Germany, 2013; pp. 691–696. [Google Scholar]
- Apan, A.; Young, F.R.; Phinn, S.; Held, A.; Favier, J. Mapping Olive Varieties and Within-Field Spatial Variability Using High Resolution QuickBird Imagery; Spatial Sciences Institute: Los Angeles, CA, USA, 2004. [Google Scholar]
- Anifantis, A.S.; Camposeo, S.; Vivaldi, G.A.; Santoro, F.; Pascuzzi, S. Comparison of UAV Photogrammetry and 3D Modeling Techniques with Other Currently Used Methods for Estimation of the Tree Row Volume of a Super-High-Density Olive Orchard. Agriculture 2019, 9, 233. [Google Scholar] [CrossRef]
- Hernández-Clemente, R.; Navarro-Cerrillo, R.M.; Ramírez, F.J.R.; Hornero, A.; Zarco-Tejada, P.J. A Novel Methodology to Estimate Single-Tree Biophysical Parameters from 3D Digital Imagery Compared to Aerial Laser Scanner Data. Remote Sens. 2014, 6, 11627–11648. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Escobar, R. Use and Abuse of Nitrogen in Olive Fertilization. Acta Hortic. 2011, 888, 249–257. [Google Scholar] [CrossRef]
- Ferguson, R.B.; Hergert, G.W.; Schepers, J.; Gotway, C.; Cahoon, J.; Peterson, T. Site-Specific Nitrogen Management of Irrigated Maize: Yield and Soil Residual Nitrate Effects. Soil Sci. Soc. Am. J. 2002, 66, 544–553. [Google Scholar] [CrossRef]
- Van Evert, F.K.; Gaitán-Cremaschi, D.; Fountas, S.; Kempenaar, C. Can Precision Agriculture Increase the Profitability and Sustainability of the Production of Potatoes and Olives? Sustainability 2017, 9, 1863. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Escobar, R.; Antonaya-Baena, M.; Sánchez-Zamora, M.; Molina-Soria, C. The Amount of Nitrogen Applied and Nutritional Status of Olive Plants Affect Nitrogen Uptake Efficiency. Sci. Hortic. 2014, 167, 1–4. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; García Novelo, J.; Sánchez Zamora, M.; Uceda, M.; Beltrán, G.; Aguilera, M. Efecto Del Abonado Nitrogenado En La Producción y La Calidad Del Aceite de Oliva; Dirección General de Investigación y Formación Agraria y Pesquera, Ed.; Jornadas de Investigación y Transferencia de Tecnologıa al Sector Oleıcola: Córdoba, Spain, 2002; pp. 299–302. [Google Scholar]
- Aggelopoulou, K.; Pateras, D.; Fountas, S.; Gemtos, T.; Nanos, G. Soil Spatial Variability and Site-Specific Fertilization Maps in an Apple Orchard. Precis. Agric. 2011, 12, 118–129. [Google Scholar] [CrossRef]
- Fountas, S.; Aggelopoulou, K.; Bouloulis, C.; Nanos, G.; Wulfsohn, D.; Gemtos, T.; Paraskevopoulos, A.; Galanis, M. Site-Specific Management in an Olive Tree Plantation. Precis. Agric. 2011, 12, 179–195. [Google Scholar] [CrossRef]
- López-Granados, F.; Jurado-Expósito, M.; Alamo, S.; Garcıa-Torres, L. Leaf Nutrient Spatial Variability and Site-Specific Fertilization Maps within Olive (Olea Europaea L.) Orchards. Eur. J. Agron. 2004, 21, 209–222. [Google Scholar] [CrossRef]
- Caruso, G.; Palai, G.; D’onofrio, C.; Gucci, R. Sustainable Management of Water and Soil in Olive Orchards and Vineyards under Climate Change. Agrochimica 2019, 125. [Google Scholar]
- Caruso, G.; Zarco-Tejada, P.J.; González-Dugo, V.; Moriondo, M.; Tozzini, L.; Palai, G.; Rallo, G.; Hornero, A.; Primicerio, J.; Gucci, R. High-Resolution Imagery Acquired from an Unmanned Platform to Estimate Biophysical and Geometrical Parameters of Olive Trees under Different Irrigation Regimes. PLoS ONE 2019, 14, e0210804. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sánchez, J.; López-Granados, F.; Serrano, N.; Arquero, O.; Peña, J.M. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology. PLoS ONE 2015, 10, e0130479. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Palai, G.; Marra, F.P.; Caruso, T. High-Resolution UAV Imagery for Field Olive (Olea Europaea L.) Phenotyping. Horticulturae 2021, 7, 258. [Google Scholar] [CrossRef]
- Huang, S.-W.; Jin, J.-Y.; Yang, L.-P.; Bai, Y.-L. Spatial Variability of Soil Nutrients and Influencing Factors in a Vegetable Production Area of Hebei Province in China. Nutr. Cycl. Agroecosystems 2006, 75, 201–212. [Google Scholar] [CrossRef]
- Rosell, J.; Sanz, R. A Review of Methods and Applications of the Geometric Characterization of Tree Crops in Agricultural Activities. Comput. Electron. Agric. 2012, 81, 124–141. [Google Scholar] [CrossRef] [Green Version]
- Sola-Guirado, R.R.; Bayano-Tejero, S.; Rodríguez-Lizana, A.; Gil-Ribes, J.A.; Miranda-Fuentes, A. Assessment of the Accuracy of a Multi-Beam LED Scanner Sensor for Measuring Olive Canopies. Sensors 2018, 18, 4406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree Height Quantification Using Very High Resolution Imagery Acquired from an Unmanned Aerial Vehicle (UAV) and Automatic 3D Photo-Reconstruction Methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Stateras, D.; Kalivas, D. Assessment of Olive Tree Canopy Characteristics and Yield Forecast Model Using High Resolution UAV Imagery. Agriculture 2020, 10, 385. [Google Scholar] [CrossRef]
- Miranda-Fuentes, A.; Llorens, J.; Gamarra-Diezma, J.L.; Gil-Ribes, J.A.; Gil, E. Towards an Optimized Method of Olive Tree Crown Volume Measurement. Sensors 2015, 15, 3671–3687. [Google Scholar] [CrossRef] [Green Version]
- Blackmore, S. The Role of Yield Maps in Precision Farming. Ph.D. Thesis, Cranfield University, Bedford, UK, 2003. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC Type III Final Report; Goddard Space Flight Center: Greenbelt, MD, USA, 1974; Volume 371. Available online: https://ntrs.nasa.gov/citations/19750020419 (accessed on 12 December 2022).
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Manna, P.; Bonfante, A.; Colandrea, M.; Di Vaio, C.; Langella, G.; Marotta, L.; Mileti, F.A.; Minieri, L.; Terribile, F.; Vingiani, S. A Geospatial Decision Support System to Assist Olive Growing at the Landscape Scale. Comput. Electron. Agric. 2020, 168, 105143. [Google Scholar] [CrossRef]
- Aiello, G.; Giovino, I.; Vallone, M.; Catania, P.; Argento, A. A Decision Support System Based on Multisensor Data Fusion for Sustainable Greenhouse Management. J. Clean. Prod. 2018, 172, 4057–4065. [Google Scholar] [CrossRef]
- Delgado, G.; Aranda, V.; Martínez, J.C.; Marañón, M.S.; Serrano, J.; Sánchez, D.; Miranda, M.A.V. Building a Fuzzy Logic Information Network and a Decision-Support System for Olive Cultivation in Andalusia. Span. J. Agric. Res. 2008, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Vallone, M.; Aiello, G.; Bono, F.; De Pasquale, C.; Presti, G.; Catania, P. An Innovative Malaxer Equipped with SCADA Platform for Improving Extra Virgin Olive Oil Quality. Sensors 2022, 22, 2289. [Google Scholar] [CrossRef]
- Catania, P.; Gaglio, R.; Orlando, S.; Settanni, L.; Vallone, M. Design and Implementation of a Smart System to Control Aromatic Herb Dehydration Process. Agriculture 2020, 10, 332. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated; Gebrüder Borntraeger: Stuttgart, Germany, 2006; Volume 15, pp. 259–263. [Google Scholar]
- Catania, P.; Orlando, S.; Roma, E.; Vallone, M. Vineyard Design Supported by GPS Application. Acta Hortic. 2021, 1314, 227–234. [Google Scholar] [CrossRef]
- Catania, P.; Comparetti, A.; Febo, P.; Morello, G.; Orlando, S.; Roma, E.; Vallone, M. Positioning Accuracy Comparison of GNSS Receivers Used for Mapping and Guidance of Agricultural Machines. Agronomy 2020, 10, 924. [Google Scholar] [CrossRef]
- Furferi, R.; Governi, L.; Volpe, Y. ANN-Based Method for Olive Ripening Index Automatic Prediction. J. Food Eng. 2010, 101, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Aiello, G.; Vallone, M.; Catania, P. Optimising the Efficiency of Olive Harvesting Considering Operator Safety. Biosyst. Eng. 2019, 185, 15–24. [Google Scholar] [CrossRef]
- QGIS.Org. QGIS Geographic Information System; QGIS Association, 2022. Available online: https://www.qgis.org/en/site/ (accessed on 12 December 2022).
- Pastor Muñoz-Cobo, M. Cultivo Del Olivo Con Riego Localizado; Junta de Andalucía, Consejería de Agricultura y Pesca: Sevilla, Spain, 2005.
- Barranco Navero, D.; Fernandez Escobar, R.; Rallo Romero, L. El Cultivo Del Olivo, 7th ed.; Mundi-Prensa Libros: Barcelona, Spain, 2017. [Google Scholar]
- Akdemir, B.; Saglam, C.; Belliturk, K.; Makaraci, A.; Urusan, A.; Atar, E. Effect of Spatial Variability on Fertiliser Requirement of Olive Orchard Cultivated for Oil Production. J. Environ. Prot. Ecol. 2018, 19, 319–329. [Google Scholar]
- MarÃn, L.; Ferná ndez-Escobar, R. Optim. Nitrogen Fertil. Olive Orchards. 1996, pp. 411–414. Available online: https://www.actahort.org/books/448/448_76.htm (accessed on 12 December 2022).
- West, P.W. Measurements. In Tree and Forest Measurement; Springer: Berlin, Germany, 2009; pp. 5–10. [Google Scholar]
- Zarco-Tejada, P.; Sepulcre-Cantó, G. Remote Sensing of Vegetation Biophysical Parameters for Detecting Stress Condition and Land Cover Changes. Estudios de la Zona no Saturada del Suelo Vol. VIII 2007, 37–44. [Google Scholar]
- Berni, J.A.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Liang, S. Quantitative Remote Sensing of Land Surfaces; Wiley series in remote sensing; Wiley-Interscience: Hoboken, NJ, USA, 2004. [Google Scholar]
- Xie, Q.; Huang, W.; Liang, D.; Chen, P.; Wu, C.; Yang, G.; Zhang, J.; Huang, L.; Zhang, D. Leaf Area Index Estimation Using Vegetation Indices Derived from Airborne Hyperspectral Images in Winter Wheat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3586–3594. [Google Scholar] [CrossRef]
- Gómez, J.; Zarco-Tejada, P.; García-Morillo, J.; Gama, J.; Soriano, M. Determining Biophysical Parameters for Olive Trees Using CASI-Airborne and Quickbird-Satellite Imagery. Agron. J. 2011, 103, 644–654. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catania, P.; Roma, E.; Orlando, S.; Vallone, M. Evaluation of Multispectral Data Acquired from UAV Platform in Olive Orchard. Horticulturae 2023, 9, 133. https://doi.org/10.3390/horticulturae9020133
Catania P, Roma E, Orlando S, Vallone M. Evaluation of Multispectral Data Acquired from UAV Platform in Olive Orchard. Horticulturae. 2023; 9(2):133. https://doi.org/10.3390/horticulturae9020133
Chicago/Turabian StyleCatania, Pietro, Eliseo Roma, Santo Orlando, and Mariangela Vallone. 2023. "Evaluation of Multispectral Data Acquired from UAV Platform in Olive Orchard" Horticulturae 9, no. 2: 133. https://doi.org/10.3390/horticulturae9020133
APA StyleCatania, P., Roma, E., Orlando, S., & Vallone, M. (2023). Evaluation of Multispectral Data Acquired from UAV Platform in Olive Orchard. Horticulturae, 9(2), 133. https://doi.org/10.3390/horticulturae9020133