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Abstract: Precision agriculture is a management strategy to improve resource efficiency, production,
quality, profitability and sustainability of the crops. In recent years, olive tree management is
increasingly focused on determining the correct health status of the plants in order to distribute
the main resource using different technologies. In the olive grove, the focus is often on the use of
multispectral information from UAVs (Unmanned Aerial Vehicle), but it is not known how important
spectral and biometric information actually is for the agronomic management of the olive grove. The
aim of this study was to investigate the ability of multispectral data acquired from a UAV platform
to predict nutritional status, biometric characteristics, vegetative condition and production of olive
orchard as tool to DSS. Data were collected on vegetative characteristics closely related to vigour
such as trunk cross-sectional area (TCSA), Nitrogen concentration of the leaves, canopy area and
canopy volume. The production was collected for each plant to create an accurate yield map. The
flight was carried out with a UAV equipped with a multispectral camera, at an altitude of 50 m and
with RTK correction. The flight made it possible to determine the biometric condition and the spectral
features through the normalized difference vegetation index (NDVI). The NDVI map allowed to
determine the canopy area. The Structure for Motion (SfM) algorithm allow to determine the 3D
canopy volume. The experiment showed that the NDVI was able to determine with high accuracy the
vegetative characteristic as canopy area (r = 0.87 ***), TCSA (r = 0.58 ***) and production (r = 0.63 ***).
The vegetative parameters are closely correlated with the production, especially the canopy area
(r = 0.75 ***). Data clustering showed that the production of individual plants is closely dependent on
leaf nitrogen concentration and vigour status.

Keywords: DSS; NDVI; precision oliviculture; remote sensing

1. Introduction

In recent years, there has been an increase in olive growing and in the consumption of
extra virgin olive oil (EVOO, [1]). It is cultivated almost entirely (over 98%) in countries
of the Mediterranean area where traditional agronomic practices are used. However, a
continuous change of landscape and cultivation techniques has been observed and requires
appropriate agronomic choices for a successful crop. This situation, poses new challenges
to ensure environmental and economic sustainability of olive farms [2]. These agronomic
techniques are able to modify the vegetative and productive activity of the olive tree
and require appropriate choices depending on the agro-climatic context (phytosanitary
management, irrigation, soil management, pruning, fertilization, etc . . . ). Instead, the
management of each single plant may depend on various conditions and thus requires
differentiated management practices.

Since 1990’s precision agriculture (PA) gave the farmer the possibility of changing crop
management. Indeed, PA is a strategy of management which takes into account variability
with the goal of increase crop efficiency and production quality and quantity. Variability
can be expressed in several ways. As reported by Zhang et al., (2002) [3], variability
affecting agricultural production can be classified into six groups: yield variability; field
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variability; soil variability; crop variability; variability related to abnormal factors; and
management variability. Moreover, there are various sensors and platforms which can
be used to investigate variability [4–6]. Senay et al., (1998) [5] distinguish three ways of
measuring spatial variability in the field: continuously, discretely (e.g., point sampling of
soil or plant properties), and remotely (e.g., through aerial photographs). Discrete sampling
is generally characterized by a high precision of the investigated variable but cannot
describe the complete variability and need precision geo-statistic techniques to spatialise
the data [7–9]. Therefore, remote sensing represents the most important technique of
acquisition data for olive growth in precision agriculture management [4,10]. This, can be
performed using platforms at different distance from the object, which determines the area
wideness [11,12]. Precisely, in the olive orchard the most important platform used is the
Unmanned Aerial Vehicle (UAV, [4,6]) because it allows to determine huge areas in a low
time of flight and can be equipped with different sensors [13,14].

In olive orchards traditionally managed, fertilizers and other inputs are applied at
uniform rates without considering the field spatial variability [15]. This management
may result in under-application or over-application of inputs with obvious economic and
environmental problems [16,17]. Furthermore, the abuse of the main agronomic source as
fertilizers and water can compromise the quantity and the quality of the production [18,19].
Therefore, it is important to know the spatial variability of soil, crop and climate in order
to apply the best site-specific management and to improve economic and environmental
sustainability in olive orchard. Soil variability is probably able to determine a more general
state of fertility of the entire agro-ecosystem [7,20,21] while, the climate variability source
is low modifiable. For this reason, it is better to investigate directly the crop characteristics.

The crop health status can be observed from several crop traits such as: nutritional [22,23],
structural-biophysical [24,25], spectral [26], and productive [21,27]. The structural-biophysical
status is strictly related to the vigour behaviour and can be measured in several ways such as
TCSA (trunk cross section area) [9,26], LAI (Leaf Area Index) [24] or canopy volume [25].

The nutritional status is investigated using the analysis of leaves, as made by López-
Granados et al., (2004) [22] who created a site-specific fertilization map for olive trees based
on leaf nutrient spatial variability.

The knowledge of the biophysical characteristics of the plants is being very successful,
in the last years, because it can be estimated using different sensors [28] such as LiDAR [29],
low cost RGB cameras [30], and other, with high correlation with the spatial health condition
of the olive tree [31]. If the real conditions of the foliage volume were known precisely, it
was possible to better regulate some treatments associated with it, such as phytosanitary
treatments, obtaining considerable savings in economic and environmental terms [17,32].
The production of each plant is a good indicator of health status but can be determined
only at the end of the year and can depend on other parameters [33].

Since the beginning of PA, the use of multi and hyperspectral information from the
crop has increased because spectral information’s are closely related to the health status of
each tree. This information can be obtained through the use of Vegetation Index (VI),widely
applied in the olive grove [4,34,35]. It is able to investigate with high precision a huge
area and the main vegetative characteristics that are closely related with productivity.
Furthermore, by succeeding in modifying the vegetative characteristics, it is possible to
achieve a vegetative-productive balance and maximum efficiency of the agro-ecosystem.

Recent advances in modelling and decision support systems (DSS) applied to agri-
culture promise to bring about important positive changes in olive orchard management.
In order to be applied in olive grove, they require a high level of specific information
providing a good understanding of the growing conditions of the plants [36,37]. In the
literature, several studies have investigated the potential of the new technologies proposed
for intelligent agriculture on the determination of certain crop parameters. Therefore the
agricultural sector needs good indicators to accurately and reliably analyse multispectral
plant information in order to be applied in precision agriculture using DSS [38–40]. The
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olive growing sector needs information on the agronomic practices to be applied during
the growing cycle to optimize crop management.

Based on the above, the aim of this study was to investigate the ability of multispectral
data acquired from a UAV platform to predict nutritional status, biometric characteristics,
vegetative condition and production of olive orchard as tool to DSS.

2. Materials and Methods
2.1. Study Area

The study area is located in Calatafimi Segesta (Trapani, Italy); it has a surface of
5860 m2 and a perimeter of 344 m with flat orography (Figure 1). According to the Koppen–
Geiger’s classification, the climate of the area is classified as Csa (Mediterranean hot
summer climates; [41]). Climatic data of the year show a mean annual air temperature
ranging from 18 ◦C to 22 ◦C and a mean annual precipitation of 550 mm (Sicilian Agrome-
teorological Information Service). The soil moisture regime is xeric, border with the aridic
one, and the temperature regime is thermic.
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Figure 1. Geographical position of the study area in Sicily (Italy).

The study was carried out during the 2021 crop season in an olive orchard managed
with ordinary practices in rainfall system. The olive grove, cv. Cerasuola, was in full
productivity at the time of the experimentation. The plot layout has traditional training
system with distance of 5 m × 5 m; the total number of trees considered in the tests was
211 (Figure 2).
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Figure 3 shows the flowchart of the methods used for data acquisition and processing.
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Figure 3. Overall flowchart of the experimental process.

2.2. Field Data Collection

Plot perimeter and plants were georeferenced on DOY (day of years) 161 using the
instrument Stonex S7-G (S7-G, StoneX, Paderno Dugnano, Italy) with differential RTK
(Real Time Kinematic) correction as used in other studies to have a good accuracy and
precision [42,43]. This instrument is able to receive L1 (1575.42 MHz) and L2 (1227.60 MHz)
frequencies of the main constellation and it is also equipped with a slot for a SIM card and
a GSM/GPRS/EDGE modem, in order to obtain real-time differential correction data from
the RTK ground station network (CORS). On DOY 163 the TCSA at 0.50 m from the ground
(trying to exclude any hyperplasic nodes typical of the olive tree) was measured for all
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plants [9]. On day 164, 50 trees were randomly selected from the field in which the height
and diameter of the crown were measured manually with a ruler.

Field samplings were carried out in order to investigate nutritional status using a
regular 15 m × 11 m grid on DOY 205 [22]. The sampling point was identified at the
intersection point (node) of the sampling grid, excluding the most external part of the
field (Figure 4). A total number of 36 points was sampled. The sample was represented
by an experimental unit of four adjacent olive trees. Each leaf sample consisted of four
sub-samples of 25 healthy, fully expanded and mature leaves, collected from the central
portion of the current season’s unshaded branches at a height of 1.5 m above the ground
surface, at the four cardinal points of each olive tree.
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Figure 4. Sample grid and sample points used for nutritional and soil condition characterization.

After sampling, the leaves were dried at 70 ◦C for 24 h and milled to pass through a
0.25 mm mesh. Leaf samples were analyzed to determine the total nitrogen content (N) by
the Kjeldahl method.

The olives were picked with a hand-held electric harvester model OLIVION P230
(Pellenc, SI, Italy; Figure 5), when their maturity index was equal to 2.38, determined
according to Furferi et al., (2010) [44]. Two operators had the task of laying and wrapping
the nets under each plant. Finally, the production of each plant and that of the whole plot
were evaluated quantifying the harvested olives using a proper load cell [45].

2.3. Multispectral Data from UAV and Flight Scheduling

Multispectral data were acquired through an aerial survey using a Phantom4 Multi-
spectral (DJI, Shenzhen, China). The Unmanned Aerial Vehicle (UAV) is equipped with
four rotors on a rotating wing, one brightness sensor at the top. It is also capable of image
position compensation as the relative positions of the CMOS sensor centers of the six cam-
eras and the phase center of the on-board D-RTK antenna, are stored in the Exif information
of each image. The multi-frequency Global Navigation Satellite System (GNSS) positioning
system can see and receive signals from the main constellations.
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The multispectral camera has six 1/2.9” CMOS sensors, that is an RGB sensor for
visible light imaging and five monochrome sensors for multispectral imaging with a final
resolution of 2.08 MP pixels. The monochromatic bands are Blue (B), Green (G), Red
(R), Red-Edge (RE) and Near InfraRed (NIR), respectively with the following central
wavelengths: 450 nm, 560 nm, 650 nm, 730 nm and 840 nm. The spectral resolution for R,
G, B, RE bands is ±16 nm and ±26 nm for the NIR band. The lens has 62.7◦ FoV (Field of
View), 5.74 mm focal length and f/2.2 aperture.

The flight was conducted in 2021 with automatic configuration using the waypoints
and RTK mode for correcting geospatial data. The flight was performed at approximately
12:00 noon at a flight of 50 m, generating a ground surface distance (GSD) of 2.6 cm. Five
GCPs (Ground Control Point) were placed before the flight. The GCPs were georefer-
enced using the Stonex S7-G instrument with an external dual-frequency antenna (L1/L2;
Stonex geodetic antenna) in RTK mode and averaging about 60 coordinate points. Image
acquisition was made at an average speed of 10 m s−1 in stop-and-go mode to minimize
speed-related distortions. Both front overlap ratio and side overlap ratio were 70% while
the gimbal pitch was set at 90◦ (downwards).

2.4. Image Processing

The photogrammetric reconstruction was carried out using Agisoft Photoscan Pro-
fessional version 1.7.3. The photogrammetric process employed is the classic scheme to
reconstruct the orthomosaic multi-bands. Precisely, the different band image has been
downloaded and uploaded in the software. The next steps were alignments, GCP upload,
calibration in reflectance. Once the preparation was complete, the dens cloud, the Digital
Elevation Model (DEM) and finally the orthomosaic multiband were constructed.

For geo-spatial data analysis and processing the open-source software QGIS ver.
3.2 [46] was used. The main geostatistical methods were used to create the various maps
that allowed to compare and analyze the variability found in the olive orchard. Through a
process of rasterization and vectorialization algorithm, it was possible to extract different
information on the tree ([24]; Figure 6). The canopy area (CA) and crown volume (CV), were
the bio-metric information while the spectral information was derived from the calculation
of the main vegetation index (VI) used in the literature to determine vigour characteris-
tics [4]. The VI used was the Normalized Difference Vegetation Index (NDVI; [34]) that was
calculated using Equation (1).

NDVI =
ρNir − ρred
ρNir + ρred

(1)
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CA was extracted starting from the NDVI map among several OBIA steps. The first
step was the image segmentation to differentiate the canopy from the background. It was
performed using the K-means algorithm executed in a Saga tool of raster image analysis.

The DSM was extracted directly from the photogrammetric processing while the DTM
was derived from some terrain point random selected and spatialized using a geostatistical
method (Figure 7). After calculating DTM and DSM, it was possible to determine the CV
using the following Equation (2) as defined in [24]:

CV = (DSM − DTM)− TrH (2)

where DSM is the Digital Surface Model; DTM is the Digital Terrain Model; TrH is the trunk
height (mean value of the 50 selected plants).

2.5. Biometric Data Analysis

The aptitude of the orthomosaic and their DSMs to build the tree structures and to
retrieve their geometric features was evaluated. These parameters are namely projected
area of the canopy (CA) and crown volume (CV); they were evaluated by comparing the
UAV-estimated values and the on-ground values observed in the validation fields. In the
case of the CA, the same methodology was applied in Torres-Sánchez et al., (2015) [25]
in order to better quantify this variable. For this purpose, fifty olive trees were randomly
selected in the field and their shape was outlined manually using the orthomosaic image to
be used as an observed measure. The results of the GEOBIA (geographic object-based image
analysis) analysis on the estimation of the CA and CV were compared to the observed
measures to calculate the area of coincidence for each olive tree and calculate the overall
accuracy. In the same olive trees selected for CA, the CV quantification and validation
were applied. CV* was estimated starting from the manual measurement, assuming an
ellipsoid form and applying a validated method (Equation (3)) for olive tree geometric
measurements using the parameters measured on DOY 164 [25,47].

CV∗ =
π

6
∗
(

Cl ∗ Cw

2

)2
∗ Th

2
(3)

where Cl is the Canopy length (m); Cw is the Canopy width (m); Th is the tree canopy
height (m). The effectiveness of the entire procedure to measure volume and area of the
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canopy of the fifty selected trees was evaluated by calculating the root mean square error
(RMSE) and correlation coefficient derived from the regression fit.
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3. Results

In our experiment we evaluated the nutritional, spectral, vegetative and production
spatial variability in the olive grove. With regard to the crop nutritional status, it was
investigated only TN, that showed a concentration below the threshold in all the samples
as obtained by other authors [48–50]. Indeed, the total N concentration of plant leaves
ranged from 0.4% to 1.46%, with a mean value of 0.92%. By geostatistical analyzing the
maps, it was possible to obtain TN spatial variability.

Regarding the vigor characteristics, such as TCSA, a certain heterogeneity among
the plants in the field was observed. The mean TCSA value of the whole plot was
297.3 cm2 ± 109.6. These differences were reflected in growth and production activity
as showed also in Noori and Panda (2016). Indeed, the TCSA values were statistically
significant correlated with different variables expressing plant vigour such as canopy area
extracted from the multispectral image (r = 0.65 ***; Figure 8a). TCSA also statistically sig-
nificant correlated with NDVI (r = 0.58 ***; Figure 8b) and productivity values (r = 0.42 ***,
data not show).
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NDVI, CA and CV have been calculated using the drone’s multispectral image and
GIS processing; therefore, they made it possible to quickly and easily investigate the
variability of the field. NDVI, CA and CV had respectively an average value of 0.71 ± 0.06,
7.7 ± 2.09 m2 and 18.02 ± 2.2m3. Crossing all the vigour parameters such as CA, CV, and
TCSA, the plants were clustered in three vigour groups (C1, C2, C3) using K-means as
cluster algorithm. These cluster groups represent the three-vigour classes: High (HV),
Medium (MV) and Low Vigour (LV).

The three vigour groups showed clear differences in terms of vigour (Figure 9). The
three parameters showed an increasing data trend for the three vigor groups. CA showed
values of 5.4 m2 ± 0.8, 8.15 m2 ± 0.6 and 9.6 m2 ± 0.65 for the three-vigour levels, respec-
tively; NDVI showed values of 0.64 ± 0.02, 0.72 ± 0.02 and 0.78 ± 0.02 going from C1 to C3;
CV showed values of 15.6 m3 ± 0.84, 18.5 m3 ± 0.73 and 20.1 m3 ± 0.80 for the three-vigour
levels. From the statistical analysis, it appears that the NDVI of each individual tree was
able to describe the variability of the field especially in terms of vigour characteristics. In
fact, NDVI statistically significant correlated with the values of canopy area (r = 0.87 ***,
Figure 10a). Furthermore, the NDVI showed a good relationship with production activity
(r = 0.63 ***, Figure 10b).

Also CA had a good influence on the productivity of the olive grove. Indeed, it was
observed that productivity depends on the canopy area of the single plants (r = 0.75 ***,
Figure 11). This result is supported by PCA analysis, where it was possible identify as the
trees with high and low vigour were clustered with high and low production respectively
(Figure 12). The average production and CA of all plants were used as a threshold to
distinguish high and low production and canopy area.

The application of image reconstruction using SfM techniques allowed the generation
of detailed DSM, DTM and orthomosaic, as shown in Figure 13. CV showed a good ability
in reconstructing the geometry for each individual tree in the whole plot. Indeed, it showed
a strong relation with the other vigour parameter and with the production capacity of the
plants (r = 0.74 ***).



Horticulturae 2023, 9, 133 10 of 17
Horticulturae 2023, 9, x FOR PEER REVIEW 10 of 18 
 

 

  
(a) (b) 

 

Figure 9. (a) CA and NDVI values (±st. dev) for the three clusters; (b) CV and NDVI values (±st. 
dev) for the three clusters. 

  
(a) (b) 

Figure 10. (a) Correlation value between NDVI and Canopy area (m2); (b) NDVI and Production 
kg/plant). 

Also CA had a good influence on the productivity of the olive grove. Indeed, it was 
observed that productivity depends on the canopy area of the single plants (r = 0.75***, 
Figure 11). This result is supported by PCA analysis, where it was possible identify as the 
trees with high and low vigour were clustered with high and low production respectively 
(Figure 12). The average production and CA of all plants were used as a threshold to dis-
tinguish high and low production and canopy area. 

Figure 9. (a) CA and NDVI values (±st. dev) for the three clusters; (b) CV and NDVI values (±st.
dev) for the three clusters.

Horticulturae 2023, 9, x FOR PEER REVIEW 10 of 18 
 

 

  
(a) (b) 

 

Figure 9. (a) CA and NDVI values (±st. dev) for the three clusters; (b) CV and NDVI values (±st. 
dev) for the three clusters. 

  
(a) (b) 

Figure 10. (a) Correlation value between NDVI and Canopy area (m2); (b) NDVI and Production 
kg/plant). 

Also CA had a good influence on the productivity of the olive grove. Indeed, it was 
observed that productivity depends on the canopy area of the single plants (r = 0.75***, 
Figure 11). This result is supported by PCA analysis, where it was possible identify as the 
trees with high and low vigour were clustered with high and low production respectively 
(Figure 12). The average production and CA of all plants were used as a threshold to dis-
tinguish high and low production and canopy area. 

Figure 10. (a) Correlation value between NDVI and Canopy area (m2); (b) NDVI and Production
kg/plant).

Starting from the CA and CV calculated using the Qgis software, it was possible to
carry out data validation using the ground truth with a good accuracy. In fact, the accuracy
assessment between the observed and estimated values for CA resulted in RMSE equal to
0.54 and a statistically significant close linear relationship with R2 = 0.98 ***.
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CV showed an underestimation of the final volume when compared to field measure-
ments. In this case, the coefficient of determination was R2 = 0.67 *** with RMSE equal to
9.5 m3 (Figure 14). Volume differences between the observed and estimated values do not
denote real errors of the UAV-based measurements because the ground-based values were
derived by applying the geometric equation that considers trees as full, ellipsoid shapes
producing inaccurate estimates [25,51]. In contrast, the three-dimensional products derived
from the 3D reconstruction, reproduce the irregular shape of the canopy, yielding better
estimates of tree volume as showed in Figure 15.
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between ground measured and UAV-estimated CA.

Starting from the leaves sampling, it was possible determine the crop nitrogen status.
The mean nitrogen concentration of the whole plot was 0.94 % depending of the tree
and influenced only by the production activity (data not show), while the vegetative
characteristic wasn’t correlated with it. It was also possible to cross the different information
with GIS program because yield depends on vegetative and nutritional status. Using the
three groups of cluster and plotting their score of nitrogen concentration and canopy area,
it was observed that the whole plot showed clear heterogeneities. These clusters were
statistically different p (<0.001) in terms of productivity by ANOVA analysis (Figure 16).
Moreover, the ANOVA test showed that CA has a greater effect than nitrogen concentration.
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4. Discussion

The technologies available today in precision farming are able to describe and deter-
mine the health status of the olive grove. Variability can be observed both in terms of soil
and cultivation characteristics but the last ones are the most important to investigate the
variability as showed in other studies [24,52]. Indeed, in our study the crop health status
was determined using the vegetative, spectral and productive activity of individual trees.
As confirmed by different studies, these parameters are strictly related and their knowledge
can be used to opportunely manage the orchard [21,24,53]. As previously mentioned, the
plant health was the most important factor in determining the production result. In the
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present work it was expressed from spectral, biometric and nutritional point of views. In
general, the nutritional status of all the plants was deficient, as the whole plot had a foliar
nitrogen concentration below the minimum threshold. Probably, the nutritional status
was the main limiting factor for plant growth in the considered plot as found in another
study [7]. The low NDVI values found [9,22] and the entire vegetative heterogeneity de-
tected could be explained by the deficient nutritional status of the plants. Indeed, the
nutritional condition for each plant was not correlated well with the vegetative parame-
ters. However, this deficiency was one of the determining factors for plant production as
obtained by PCA that supported the plant clustering into three groups (Figure 16).

To express the vegetative variable, i.e., vigour, it was decided to use the TCSA, the
canopy projection area and the canopy volume. Since the characteristics express a condition
of vegetative vigour, all variables showed at least moderate correlations (Figure 8). TCSA is
a condition formed over the years of cultivation and it cannot describe the annual condition
of the plant, while the area of the canopy certainly expresses a precise condition at an
exact moment. Probably, for this reason the canopy area was indeed more correlated with
plant production and NDVI (Figure 10). The crop spectral conditions were investigated
by calculating NDVI that describes the general vegetative and nutritional conditions of
each plant because the bands used for its calculation (NIR and red) are strongly related
with them [54,55]. In this study, the NDVI showed low values, especially where conditions
of low vigour and low nitrogen concentration in the leaves were found. As also show in
other studies [24,56] the NDVI has a good relation with the vegetative status (Figure 10).
Moreover, when it correlates with the CA, it was able to discern the plants with high or low
productivity with good precision (Figure 10a). When it was correlated with production,
it was able to underline the plant with high vigour (precisely with high canopy area;
(Figure 10b). NDVI showed better correlations with canopy area than the vigour parameters
because the multispectral bands used in the calculation are sensitive to both effects: leaf
efficiency (red band) and canopy structural conditions (NIR band) [54]. Since production
was mainly linked to the availability of plant resources and therefore to CA, NDVI always
proved to be a good indicator and predictor of production even in non-optimal nutritional
conditions. These results emphasize that NDVI is more capable to determine the vegetative
parameters than production. Therefore, by having precise multispectral and RGB images of
the entire olive orchard, it is possible to use this information to obtain crop status data that
can be used in development models or DSS for the optimization of agronomic management.

Crossing the spectral, biometric, productive and nutritional characteristics of each
plant by cluster analysis very interesting results appear. Three statistically different clusters
(C1, C2, C3) were identified by cluster analysis according to their vigour and nutrient
characteristics (Figures 9 and 16). The production of the three clusters showed statistically
significant differences. C3 was the most productive and vigorous, while C1 was the lowest
(Figure 9). It shows that the productivity of the plants is positively related to the develop-
ment of the canopy and secondarily to the nutritional conditions. High productivity was
observed for plants with a very vigorous canopy and discrete foliar nitrogen concentrations.
These results confirm that vegetative conditions were the main determinants of production,
while nutritional status had no effect. These results are also supported by PCA (Figure 16).
Indeed, plants with high production and CA are classified as a more similar group than
those with low production and CA. This effect can be explained by the greater availability
of accumulated resources in the reserve organs of the more vigorous plants.

The UAV equipped with multispectral and RGB camera showed a good capacity to
extract the vegetative information using spectral and biometric data. They can be able
to predict the production and consequently to better manage variability with significant
environmental, agronomic and economic benefits [17,20]. Geometric reconstruction showed
interesting results. The high value of RMSE obtained between observed and estimated data
were found in previous studies [13,25]. These volume differences were caused by ground
measurements applying the geometric equation as explained in Figure 15 [25,51]. Indeed,
similar magnitudes were observed between the two approaches; in fact, the largest and
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smallest trees on the ground remained the same in the geometric reconstruction. Therefore,
if one assumes that data from 3D reconstruction are able to determine a better estimate of CV,
it is possible to better balance and manage certain agronomic practices such as variable-rate
treatments, resulting in significant product savings. Such savings consequently translate
into greater environmental and economic sustainability. CV showed a strong relationship
with CA and TCSA, pointing out that vigour conditions are interconnected. From the
cluster analysis, the vigour conditions were able to differentiate the real health status of
each tree expressed by its production. Getting accurate data on plant vigour is an important
condition to obtain the best growth pattern of the olive tree and to better manage the
orchard [31].

5. Conclusions

This study was able to assess how the main growth parameters measured via a high-
resolution remote platform and multispectral and RGB sensors processed on various GIS
platforms can express the real field conditions and influence site-specific management of
the olive grove. It was possible to verify that the new technologies available in precision
agriculture allow to obtain various information on the health status of olive trees. Precisely,
the UAV platform equipped with multispectral and RGB cameras was able to determine,
through the GIS analysis, the main vegetative characteristics such as TCSA, CA and CV.
They can be modified with the different agronomic practices to improve crop efficiency.
UAV technology has demonstrated an excellent ability to efficiently produce spectral and
geometric data of hundreds of agricultural trees at field level in a timely and accurate
manner, offering a viable alternative to hard and inefficient field work by investigating
the entire spatial variability of the orchard within minutes. In addition, the GIS platforms
used were able to spatialize the collected point samples data, such as the nutritional ones.
All geo-referenced information allows the creation of maps of orchard heterogeneity and
the identification of incorrect growing conditions. This heterogeneity was expressed as
spatial variability of different growth and production parameters. Knowing this variability
is the key point for the creation of specific maps that allow the construction and use
of accurate DSS systems for olive orchard management optimization. In this way, a
site-specific management strategy can be applied to increase profitability by improving
input utilization (fertilizers, pesticides, water, etc.) and field operations (pruning, spray
application, irrigation, harvesting). The results obtained in this paper derive from the first
study carried out in Sicily, a region of Italy that produces quality extra virgin olive oils.
Further data and experimental results will be needed to validate these results.
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