The Role of Reactive Oxygen Species in the In Vitro Germination and Growth of the Petunia (Petunia hybrida E. Vilm.) Male Gametophyte
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Object
2.2. Pollen Cultivation
2.3. Detection of ROS Generation (Intravital Fluorescence Microscopy)
2.4. Statistical Processing
3. Results and Discussion
3.1. Effect of Hydrogen Peroxide on the In Vitro Germination Rate of Pollen Grains of Self-Compatible and Self-Incompatible Petunia Clones
3.2. Effect of Hydrogen Peroxide on the Pollen Tube Length of Self-Compatible and Self-Incompatible Petunia Clones Cultivated In Vitro
3.3. Effect of DPI on the In Vitro Germination of the P. hydrida Male Gametophyte
3.4. Effect of DPI on the In Vitro Growth of P. hydrida Male Gametophyte
3.5. Detection of ROS Generation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baillie, A.L.; Sloan, J.; Qu, L.-J.; Smith, L.M. Signalling between the Sexes during Pollen Tube Reception. Trends Plant Sci. 2023, 1–12. [Google Scholar] [CrossRef]
- Foreman, J.; Demidchik, V.; Bothwell, J.H.; Mylona, P.; Miedema, H.; Torres, M.A.; Linstead, P.; Costa, S.; Brownlee, C.; Jones, J.D.G.; et al. Reactive Oxygen Species Produced by NADPH Oxidase Regulate Plant Cell Growth. Nature 2003, 422, 442–446. [Google Scholar] [CrossRef]
- Monshausen, G.B.; Bibikova, T.N.; Messerli, M.A.; Shi, C.; Gilroy, S. Oscillations in Extracellular pH and Reactive Oxygen Species Modulate Tip Growth of Arabidopsis Root Hairs. Proc. Natl. Acad. Sci. USA 2007, 104, 20996–21001. [Google Scholar] [CrossRef]
- Potocký, M.; Jones, M.A.; Bezvoda, R.; Smirnoff, N.; Žárský, V. Reactive Oxygen Species Produced by NADPH Oxidase are Involved in Pollen Tube Growth. New Phytol. 2007, 174, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Coelho, S.M.; Brownlee, C.; Bothwell, J.H. A Tip-High, Ca2+-Interdependent, Reactive Oxygen Species Gradient is Associated with Polarized Growth in Fucus Serratus Zygotes. Planta 2008, 227, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-L.; Wu, J.; Xu, G.-H.; Gao, Y.B.; Chen, G.; Wu, J.-Y.; Wu, H.Q.; Zhang, S.-L. S-RNase Disrupts Tip-Localized Reactive Oxygen Species and Induces Nuclear DNA Degradation in Incompatible Pollen Tubes of Pyrus pyrifolia. J. Cell Sci. 2010, 123, 4301–4309. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, K.A.; Bancroft, J.; Bosch, M.; Ings, J.; Smirnoff, N.; Franklin-Tong, V.E. Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of papaver. Plant Physiol. 2011, 156, 404–416. [Google Scholar] [CrossRef]
- Breygina, M.M.; Klimenko, E.; Podolyan, A.; Voronkov, A. Dynamics of Pollen Activation and the Role of H+-ATPase in Pollen Germination in Blue Spruce (Picea pungens). Plants 2020, 9, 1760. [Google Scholar] [CrossRef] [PubMed]
- Breygina, M.; Schekaleva, O.; Klimenko, E.; Luneva, O. The Balance between Different ROS on Tobacco Stigma during Flowering and Its Role in Pollen Germination. Plants 2022, 11, 993. [Google Scholar] [CrossRef]
- Breygina, M.; Voronkov, A.; Galin, I.; Akhiyarova, G.; Polevova, S.; Klimenko, E.; Ivanov, I.; Kudoyarova, G. Dynamics of Endogenous Levels and Subcellular Localization of ABA and Cytokinins during Pollen Germination in Spruce and Tobacco. Protoplasma 2023, 260, 237–248. [Google Scholar] [CrossRef]
- Mignolet-Spruyt, L.; Xu, E.; Idänheimo, N.; Hoeberichts, F.A.; Mühlenbock, P.; Brosché, M.; Van Breusegem, F.; Kangasjärvi, J. Spreading the News: Subcellular and Organellar Reactive Oxygen Species Production and Signalling. J. Exp. Bot. 2016, 67, 3831–3844. [Google Scholar] [CrossRef] [PubMed]
- Maksimov, N.; Evmenyeva, A.; Breygina, M.; Yermakov, I. The Role of Reactive Oxygen Species in Pollen Germination in Picea pungens (Blue Spruce). Plant Reprod. 2018, 31, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Andreev, I.M.; Timofeeva, G.V.; Minkina, Y.V.; Kovaleva, L.V. Effects of Exogenous Phytohormones on Intracellular pH of Petunia hybrida Pollen Grains. Russ. J. Plant Physiol. 2007, 54, 626–632. [Google Scholar] [CrossRef]
- Kovaleva, L.; Zakharova, E. Hormonal Status of the Pollen-Pistil System at the Progamic Phase of Fertilization after Compatible and Incompatible Pollination in Petunia hybrida L. Sex. Plant Reprod. 2003, 16, 191–196. [Google Scholar] [CrossRef]
- Kovaleva, L.V.; Voronkov, A.S.; Zakharova, E.V. Role of Auxin and Cytokinin in the Regulation of the Actin Cytoskeleton in the in Vitro Germinating Male Gametophyte of Petunia. Russ. J. Plant Physiol. 2015, 62, 179–186. [Google Scholar] [CrossRef]
- Kovaleva, L.V.; Zakharova, E.V.; Voronkov, A.S.; Timofeeva, G.V.; Andreev, I.M. Role of Abscisic Acid and Ethylene in the Control of Water Transport-Driving Forces in Germinating Petunia Male Gametophyte. Russ. J. Plant Physiol. 2017, 64, 782–793. [Google Scholar] [CrossRef]
- Zakharova, E.V.; Khaliluev, M.R.; Kovaleva, L.V. Hormonal Signaling in the Progamic Phase of Fertilization in Plants. Horticulturae 2022, 8, 365. [Google Scholar] [CrossRef]
- Zakharova, E.; Khanina, T.; Knyazev, A.; Milyukova, N.; Kovaleva, L.V. Hormonal Signaling during dPCD: Cytokinin as the Determinant of RNase-Based Self-Incompatibility in Solanaceae. Biomolecules 2023, 13, 1033. [Google Scholar] [CrossRef]
- Voronkov, A.S.; Andreev, I.M.; Timofeeva, G.V.; Kovaleva, L.V. Electrogenic Activity of Plasma Membrane H+-ATPase in Germinating Male Gametophyte of Petunia and Its Stimulation by Exogenous Auxin: Mediatory Role of Calcium and Reactive Oxygen Species. Russ. J. Plant Physiol. 2010, 57, 401–407. [Google Scholar] [CrossRef]
- Kovaleva, L.V.; Voronkov, A.S.; Zakharova, E.V.; Minkina, Y.V.; Timofeeva, G.V.; Andreev, I.M. Exogenous IAA and ABA Stimulate Germination of Petunia Male Gametophyte by Activating Ca2+-Dependent K+-Channels and by Modulating the Activity of Plasmalemma H+-ATPase and Actin Cytoskeleton. Russ. J. Dev. Biol. 2016, 47, 109–121. [Google Scholar] [CrossRef]
- Hiscock, S.; Bright, J.; McInnis, S.M.; Desikan, R.; Hancock, J.T. Signaling on the Stigma. Plant Signal. Behav. 2007, 2, 23–24. [Google Scholar] [CrossRef] [PubMed]
- Breygina, M.; Klimenko, E. ROS and Ions in Cell Signaling during Sexual Plant Reproduction. Int. J. Mol. Sci. 2020, 21, 9476. [Google Scholar] [CrossRef]
- Kovaleva, L.V.; Zakharova, E.V.; Minkina, Y.V.; Timofeeva, G.V.; Andreev, I.M. Germination and In Vitro Growth of Petunia Male Gametophyte Are Affected by Exogenous Hormones and Involve the Changes in the Endogenous Hormone Level. Russ. J. Plant Physiol. 2005, 52, 521–526. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, Z. Rapid Tip Growth: Insights from Pollen Tubes. Semin. Cell Dev. Biol. 2011, 22, 816–824. [Google Scholar] [CrossRef]
- Hepler, P.K.; Winship, L.J. The Pollen Tube Clear Zone: Clues to the Mechanism of Polarized Growth. J. Integr. Plant Biol. 2015, 57, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Hepler, P.K.; Lovy-Wheeler, A.; McKenna, S.T.; Kunkel, J.G. Ions and Pollen Tube Growth. In The Pollen Tube: A Cellular and Molecular Perspective; Malhó, R., Ed.; Plant Cell Monographs; Springer: Berlin/Heidelberg, Germany, 2006; pp. 47–69. ISBN 978-3-540-34276-2. [Google Scholar]
- Ge, Z.; Cheung, A.Y.; Qu, L.-J. Pollen Tube Integrity Regulation in Flowering Plants: Insights from Molecular Assemblies on the Pollen Tube Surface. New Phytol. 2019, 222, 687–693. [Google Scholar] [CrossRef]
- 28. Feiguelman, G; Fu, Y.; Yalovsky, S. ROP GTPases structure-function and signaling pathways. Plant Physiol. 2018, 176, 57–79. [CrossRef]
- Wudick, M.M.; Feijó, J.A. At the Intersection: Merging Ca2+ and ROS Signaling Pathways in Pollen. Mol. Plant 2014, 7, 1595–1597. [Google Scholar] [CrossRef]
- Gutermuth, T.; Lassig, R.; Portes, M.-T.; Maierhofer, T.; Romeis, T.; Borst, J.-W.; Hedrich, R.; Feijó, J.A.; Konrad, K.R. Pollen Tube Growth Regulation by Free Anions Depends on the Interaction between the Anion Channel SLAH3 and Calcium-Dependent Protein Kinases CPK2 and CPK20. Plant Cell 2013, 25, 4525–4543. [Google Scholar] [CrossRef]
- Podolyan, A.; Maksimov, N.; Breygina, M. Redox-Regulation of Ion Homeostasis in Growing Lily Pollen Tubes. J. Plant Physiol. 2019, 243, 153050. [Google Scholar] [CrossRef]
- Smirnova, A.V.; Matveyeva, N.P.; Yermakov, I.P. Reactive Oxygen Species Are Involved in Regulation of Pollen Wall Cytomechanics. Plant Biol. 2014, 16, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Lassig, R.; Gutermuth, T.; Bey, T.D.; Konrad, K.R.; Romeis, T. Pollen Tube NAD(P)H Oxidases Act as a Speed Control to Dampen Growth Rate Oscillations during Polarized Cell Growth. Plant J. 2014, 78, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Postiglione, A.E.; Muday, G.K. The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling. Front. Plant Sci. 2020, 11, 968. [Google Scholar] [CrossRef] [PubMed]
- Mir, A.R.; Siddiqui, H.; Alam, P.; Hayat, S. Foliar Spray of Auxin/IAA Modulates Photosynthesis, Elemental Composition, ROS Localization and Antioxidant Machinery to Promote Growth of Brassica Juncea. Physiol. Mol. Biol. Plants 2020, 26, 2503–2520. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, S.; Zhang, Q.; Cui, M.; Zhao, M.; Li, N.; Wang, S.; Wu, R.; Zhang, L.; Cao, Y.; et al. The Interaction of ABA and ROS in Plant Growth and Stress Resistances. Front. Plant Sci. 2022, 13, 1050132. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Yuan, S.; Xie, B.; Li, Q.; Wang, Q.; Shao, M. IAA Plays an Important Role in Alkaline Stress Tolerance by Modulating Root Development and ROS Detoxifying Systems in Rice Plants. Int. J. Mol. Sci. 2022, 23, 14817. [Google Scholar] [CrossRef]
- Bánfi, B.; Tirone, F.; Durussel, I.; Knisz, J.; Moskwa, P.; Molnár, G.Z.; Krause, K.-H.; Cox, J.A. Mechanism of Ca2+ Activation of the NADPH Oxidase 5 (NOX5). J. Biol. Chem. 2004, 279, 18583–18591. [Google Scholar] [CrossRef]
- Cárdenas, L.; McKenna, S.T.; Kunkel, J.G.; Hepler, P.K. NAD(P)H Oscillates in Pollen Tubes and Is Correlated with Tip Growth. Plant Physiol. 2006, 142, 1460–1468. [Google Scholar] [CrossRef]
- Speranza, A.; Crinelli, R.; Scoccianti, V.; Geitmann, A. Reactive Oxygen Species Are Involved in Pollen Tube Initiation in Kiwifruit. Plant Biol. 2012, 14, 64–76. [Google Scholar] [CrossRef]
- Feng, H.; Liu, C.; Fu, R.; Zhang, M.; Li, H.; Shen, L.; Wei, Q.; Sun, X.; Xu, L.; Ni, B.; et al. Lorelei-Like Gpi-Anchored Proteins 2/3 Regulate Pollen Tube Growth as Chaperones and Coreceptors for Anxur/Bups Receptor Kinases in Arabidopsis. Mol. Plant 2019, 12, 1612–1623. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Ju, Y.; Kessler, S.A. Reactive Oxygen Species as Mediators of Gametophyte Development and Double Fertilization in Flowering Plants. Front. Plant Sci. 2020, 11, 1199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.J.; Zhang, X.S.; Gao, X.-Q. ROS in the Male–Female Interactions During Pollination: Function and Regulation. Front. Plant Sci. 2020, 11, 177. [Google Scholar] [CrossRef] [PubMed]
Variant | Rate (%) of Germinated PGs of SC Clone | Rate (%) of Germinated PGs of SI Clone |
---|---|---|
1 h cultivation | ||
Control | 33.8 ± 0.5 | 18.2 ± 1.0 |
DPI, 1 µM | 14.9 ± 0.7 | 9.8 ± 0.6 |
DPI, 0.5 µM | 20.0 ± 0.7 | 18.7 ± 0.7 |
2 h cultivation | ||
Control | 45.3 ± 1.2 | 22.5 ± 1.5 |
DPI, 1 µM | 31.8 ± 2.4 | 10.8 ± 0.3 |
DPI, 0.5 µM | 40.4 ± 4.6 | 19.6 ± 1.8 |
3 h cultivation | ||
Control | 50.7 ± 4.1 | 37.2 ± 2.8 |
DPI, 1 µM | 32.0 ± 2.4 | 27.8 ± 2.4 |
DPI, 0.5 µM | 43.0 ± 3.7 | 28.7 ± 1.9 |
Variant | PT Length of SC Clone, µm | PT Length of SI Clone, µm |
---|---|---|
1 h cultivation | ||
Control | 34.2 ± 19.4 | 5.0 ± 0.8 |
DPI, 1 µM | 14.4 ± 7.4 | 6.3 ± 2.0 |
DPI, 0.5 µM | 25.0 ± 18.4 | 10.0 ± 5.2 |
2 h cultivation | ||
Control | 55.4 ± 8.6 | 10.1 ± 4.5 |
DPI, 1 µM | 20.7 ± 9.4 | 10.1 ± 6.6 |
DPI, 0.5 µM | 33.0 ± 8.6 | 62.0 ± 51.2 |
3 h cultivation | ||
Control | 110.6 ± 29.7 | 69.4 ± 28.8 |
DPI, 1 µM | 33.4 ± 10.1 | 34.7 ± 9.1 |
DPI, 0.5 µM | 93.0 ± 38.4 | 56.9 ± 12.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharova, E.V.; Khanina, T.P.; Golivanov, Y.Y.; Khaliluev, M.R. The Role of Reactive Oxygen Species in the In Vitro Germination and Growth of the Petunia (Petunia hybrida E. Vilm.) Male Gametophyte. Horticulturae 2023, 9, 1326. https://doi.org/10.3390/horticulturae9121326
Zakharova EV, Khanina TP, Golivanov YY, Khaliluev MR. The Role of Reactive Oxygen Species in the In Vitro Germination and Growth of the Petunia (Petunia hybrida E. Vilm.) Male Gametophyte. Horticulturae. 2023; 9(12):1326. https://doi.org/10.3390/horticulturae9121326
Chicago/Turabian StyleZakharova, Ekaterina V., Tatiana P. Khanina, Yaroslav Yu. Golivanov, and Marat R. Khaliluev. 2023. "The Role of Reactive Oxygen Species in the In Vitro Germination and Growth of the Petunia (Petunia hybrida E. Vilm.) Male Gametophyte" Horticulturae 9, no. 12: 1326. https://doi.org/10.3390/horticulturae9121326
APA StyleZakharova, E. V., Khanina, T. P., Golivanov, Y. Y., & Khaliluev, M. R. (2023). The Role of Reactive Oxygen Species in the In Vitro Germination and Growth of the Petunia (Petunia hybrida E. Vilm.) Male Gametophyte. Horticulturae, 9(12), 1326. https://doi.org/10.3390/horticulturae9121326