Enhancing Propagation of Orostachys spp. Offsets through Exogenous GA3 Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design and Treatment Applications
2.3. Data Gathered
2.4. Care and Management
2.5. Statistical Analysis
3. Results
3.1. Survival Rate and Growth
3.2. Plant Growth Parameters
3.3. Moisture Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.H.; Kim, H.; Lee, C. Analysis of genetic relationships among Korean native Orostachys species using RAPD. Korean J. Hortic. Sci. Technol. 2001, 19, 159–162. [Google Scholar]
- An, J.; Moon, J.C.; Jang, C.S. Markers for distinguishing Orostachys species by SYBR green-based real-time PCR and verification of their application in commercial O. japonica food products. Appl. Biol. Chem. 2018, 61, 499–508. [Google Scholar] [CrossRef]
- Chon, Y.S.; Lee, S.W.; Jeong, K.J.; Ha, S.Y.; Bae, J.H.; Yun, J.G. Growth and quality affected by light intensity, potting media and fertilization level in potted Orostachys ‘Nungyu bawisol’. J. Bio-Environ. Control 2011, 20, 357–364. [Google Scholar]
- Ryu, J.H.; Lee, H.B.; Kim, C.M.; Jung, H.H.; Kim, K.S. Cold tolerance of ground cover plants for use as green roofs and walls. Korean J. Hortic. Sci. Technol. 2014, 32, 590–599. [Google Scholar] [CrossRef]
- Jung, J.H.; Park, N.B. Morphological characteristics and material comparison of native Orostachys species (Orostachys japonica (Maxim.) A. Berger, Orostachys minuta (Kom.) A. Berger, Orostachys chongsunensis Y.N. Lee). J. Pract. Agric. Fish Res. 2019, 21, 5–13. [Google Scholar]
- Chen, J.Y. Development characteristics and cultivation techniques of Orostachys fimbriata. South China Agric. 2011, 5, 15–18. [Google Scholar]
- Lee, J.; Son, H.; Lee, K.H.; Kim, S.; Myagmar, G.; Kim, S.Y.; Chun, Y.; Yoo, H.Y. Identification and characterization of major flavonoids in extracts from an unexplored medicinal herb Orostachys fimbriata. Horticulturae 2022, 8, 1092. [Google Scholar] [CrossRef]
- Shin, D.Y.; Lee, W.S.; Jung, J.H.; Hong, S.H.; Park, C.; Kim, H.J.; Kim, G.-Y.; Hwang, H.J.; Kim, G.S.; Jung, J.-M.; et al. Flavonoids from Orostachys japonicus A. Berger inhibit the invasion of LnCaP prostate carcinoma cells by inactivating akt and modulating tight junctions. Int. J. Mol. Sci. 2013, 14, 18407–18420. [Google Scholar] [CrossRef]
- Hu, D.; Su, F.; Yang, G.; Wang, J.; Zhang, Y. Purification, structural characterization, and anti-inflammatory effects of a novel polysaccharide isolated from Orostachys fimbriata. Molecules 2021, 26, 7116. [Google Scholar] [CrossRef]
- Hur, S.; Jang, E.; Lee, J.-H. Beneficial actions of Orostachys japonica and its compounds against tumors via MAPK signaling pathways. Nutrients 2021, 13, 555. [Google Scholar] [CrossRef]
- Lee, S.G.; Kim, J.S.; Lee, H.-S.; Lim, Y.-M.; So, J.-H.; Hahn, D.; Ha, Y.S.; Nam, J.-O. Bioconverted Orostachys japonicas extracts suppress angiogenic activity of Ms-1 endothelial cells. Int. J. Mol. Sci. 2017, 18, 2615. [Google Scholar] [CrossRef]
- Piao, X.C.; Zhang, W.B.; Jiang, J.; Jin, Y.H.; Park, P.J.; Kim, S.E.; Lian, M.L. Cell suspension culture of Orostachys cartilaginous in bioreactor systems for bioactive compound production and evaluation of their antioxidant properties. Acta Physiol. Plant. 2017, 39, 70. [Google Scholar] [CrossRef]
- Li, Q.W.; Hou, D.M.; Liang, M.Q.; Liu, R.N. Construction of rapid propagation system for Orostachys fimbriatus. Acta Agricult. Zhejiangensis 2014, 26, 84–88. [Google Scholar]
- Gorelick, R. Why vegetative propagation of leaf cuttings is possible in succulent and semi-succulent plants. Haseltonia 2015, 20, 51–57. [Google Scholar] [CrossRef]
- Succulents Australia. Available online: https://www.succulents-australia-sales.com/blogs/blog/orostachys-iwarenge-chinese-dunce-cap-succulent-care (accessed on 25 May 2023).
- Soppe, W.J.; Bentsink, L. Dormancy in plants. In eLS; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 1–7. [Google Scholar]
- Cabahug, R.A.M.; Nam, S.Y.; Lim, K.B.; Jeon, J.K.; Hwang, Y.J. Propagation techniques for ornamental succulents. Flower Res. J. 2018, 26, 90–101. [Google Scholar] [CrossRef]
- Hartmann, T.; Kester, D.E.; Davies, T.F., Jr.; Geneve, R.L. Hartmann & Kester’s Plant Propagation Principles and Practices, 8th ed.; Pearson Education Ltd.: England, UK, 2014; pp. 20–398. [Google Scholar]
- Ogawa, M.; Hanada, A.; Yamauchi, Y.; Kuwahara, A.; Kamiya, Y.; Yamaguchi, S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 2003, 15, 1591–1604. [Google Scholar] [CrossRef] [PubMed]
- Kucera, B.; Cohn, M.A.; Leubner-Metzger, G. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 2005, 15, 281–307. [Google Scholar] [CrossRef]
- Finkelstein, R.; Reeves, W.; Ariizumi, T.; Steber, C. Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 2008, 59, 387–415. [Google Scholar] [CrossRef]
- Taiz, L.; Moller, I.M.; Murphy, A.; Zeiger, E. Germination and establishment. In Plant Physiology and Development, 7th ed.; Sinauer Associates: England, UK, 2022; pp. 431–580. [Google Scholar]
- Rahman, M.H.; Haque, M.S.; Karim, M.A.; Ahmed, M. Effects of gibberellic acid (GA3) on breaking dormancy in garlic (Allium sativum L.). Int. J. Agric. Biol. 2005, 8, 63–65. [Google Scholar]
- Chang, Y.S.; Sung, F.H. Effects of gibberellic acid and dormancy-breaking chemicals on flower development of Rhododendron pulchrum Sweet and R. scabrum Don. Sci. Hortic. 2000, 83, 331–337. [Google Scholar] [CrossRef]
- Pavia, E.; Robitaille, H. Breaking bud rest on detached apple shoots: Interaction of gibberellic acid with some rest-breaking chemicals. HortScience 1978, 13, 57–58. [Google Scholar] [CrossRef]
- Guttridge, C.G. Interaction of photoperiod, chilling and exogenous gibberellic acid on growth of strawberry petioles. Ann. Bot. 1970, 34, 349–364. [Google Scholar] [CrossRef]
- Lang, G.A.; Early, J.D.; Martin, G.C.; Darnell, R.L. Endo-, para, and ecodormancy: Physiological terminology and classification for dormancy research. HortScience 1987, 22, 371–377. [Google Scholar] [CrossRef]
- Horvath, D.P.; Anderson, J.V.L.; Chao, W.S.; Foley, M.E. Knowing when to grow: Signals regulating bud dormancy. Trends Plant Sci. 2003, 8, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, C.; Ramirez-Parra, E.; Castellano, M.M.; del Pozo, J.C. G(1) to S transition: More than a cell cycle engine switch. Curr. Opin. Plant Biol. 2002, 5, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Sauter, M. Differential expression of a CAK (CDC2-activating kinase)-like protein kinase, cyclins and CDC2 genes from rice during the cell cycle and in response to gibberellin. Plant J. 1997, 11, 181–190. [Google Scholar] [CrossRef]
- Horvath, D.P.; Chao, W.S.; Anderson, J.V. Molecular analysis of signals controlling dormancy and growth in underground adventitious buds of leafy spurge. Plant Physiol. 2002, 128, 1439–1446. [Google Scholar] [CrossRef]
- Kang, Y.M.; Moon, B.C.; Choi, M.S. Production of useful compounds and application of propagation in Korean medicinal plants. Plant Med. 2014, 80, 33. [Google Scholar] [CrossRef]
- Kim, W.J.; Jung, H.Y.; Min, J.Y.; Park, D.J.; Kim, Y.D.; Kang, Y.M.; Choi, M.S. Effects of growth regulators on shoot regeneration and polysaccharide production of Orostachys japonicus Berger. Korean J. Med. Crop Sci. 2004, 12, 391–396. [Google Scholar]
- Lee, I.J. Practical application of plant growth regulator on horticultural crops. J. Hort. Sci. 2003, 10, 211–217. [Google Scholar]
- Brian, P.W. Effects of gibberellins on plant growth and development. Biol. Rev. 1959, 34, 37–77. [Google Scholar] [CrossRef]
- Lance, B.; Reid, D.M.; Thorpe, T.A. Endogenous gibberellins and growth of tobacco callus cultures. Physiol. Plant. 1976, 36, 287–292. [Google Scholar] [CrossRef]
- Guttridge, C.; Thompson, P. Effect of gibberellic acid on length and number of epidermal cells in petioles of strawberry. Nature 1959, 183, 197–198. [Google Scholar] [CrossRef] [PubMed]
- Cline, M.N.; Neely, D. The histology and histochemistry of wound-healing process in Geranium cuttings. J. Am. Soc. Hortic. Sci. 1983, 108, 496–502. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant callus: Mechanisms of induction and repression. Plant Cell 2023, 25, 3159–3173. [Google Scholar] [CrossRef]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Stobbe, H.; Schmitt, U.; Eckstein, D.; Dujesiefken, D. Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Ann. Bot. 2002, 89, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T. Biotechnology applications of plant callus cultures. Engineering 2019, 5, 50–59. [Google Scholar] [CrossRef]
- Tamaki, T.; Kubo, S.; Shimomura, K.; Umehara, M. Effects of gibberellin and abscisic acid on asexual reproduction from Graptopetalum paraguayense leaves. J. Plant Growth Regul. 2020, 39, 1373–1380. [Google Scholar] [CrossRef]
- Kato, J. Studies on the physiological effect of gibberellin (i): On the differential activity between gibberellin and auxin. Mem. Coll. Sci. Univ. Kyoto Ser. B 1953, 20, 189–193. [Google Scholar]
- Larson, P.R. Gibberellic acid-induced growth of dormant hardwood cuttings. For. Sci. 1960, 6, 232–239. [Google Scholar]
- Sarkar, M.A.H.; Hossain, M.I.; Uddin, A.F.M.J.; Uddin, M.A.N.; Sarkar, M.D. Vegetative, floral and yield attributes of gladiolus in response to gibberellic acid and corm size. Sci. Agric. 2014, 7, 142–146. [Google Scholar]
- Chandra, B.; Palni, L.M.S.; Nandi, S.K. Propagation and conservation of Picrorhiza kurrooa Royle ex Benth.: An endangered himalayan medicinal herb of high commercial value. Biodivers Conserv. 2006, 15, 2325–2338. [Google Scholar] [CrossRef]
- Desta, B.; Tena, N.; Amare, G. Regulation of garlic bulb dormancy. Asian J. Res. Rev. Agric. 2022, 4, 1–5. [Google Scholar]
- Soliman, A.G.M.; Alkharpotly, A.A.; Gabal, A.A.A.; Abido, A.I.A. The performance of globe artichoke plants as affected by propagation methods and spraying with gibberellic acid. J. Adv. Agric. Res. 2019, 24, 1–33. [Google Scholar]
- Ge, N.; Jia, J.S.; Yang, L.; Huang, R.M.; Wang, Q.Y.; Chen, C.; Meng, Z.G.; Li, L.G.; Chen, J.W. Exogenous gibberellic acid shortening after-ripening process and promoting seed germination in a medicinal plant Panax notoginseng. BMC Plant Biol. 2023, 23, 67. [Google Scholar] [CrossRef] [PubMed]
- Nedunchezhiyan, V.; Palanivel, M.; Akhila Jabeen, P.A.; Thangavel, P.; Ramakrishnan, B.; Velusamy, M.; Muthusamy, S.; Edm, I.A. Effects of gibberellic acid on seed dormancy of black gram (Vigna mungo L.). J. App. Biol. Biotech. 2023, 11, 256–259. [Google Scholar] [CrossRef]
- Salomão, A.N.; Mundim, R.C. Germination of papaya seed in response to desiccation, exposure to subzero temperatures, and gibberellic acid. HortScience 2000, 35, 904–906. [Google Scholar] [CrossRef]
- Bhalla, R.; Kumar, A. Response of plant bio-regulators on dormancy breaking in gladiolus. J. Ornam. Hortic. 2008, 11, 1–8. [Google Scholar]
- Miyamoto, K.; Ueda, J.; Kamisaka, S. Gibberellin-enhanced sugar accumulation in growing subhooks of etiolated Pisum sativum seedings. Effects of gibberellic acid, indoleacetic acid and cycloheximide on invertase activity, sugar accumulation and growth. Physiol. Plant. 1993, 88, 301–306. [Google Scholar] [CrossRef]
- Beauvieux, R.; Wenden, B.; Dirlewanger, E. Bud dormancy in perennial fruit tree species: A pivotal role for oxidative cues. Front. Plant Sci. 2018, 9, 657. [Google Scholar] [CrossRef]
- Zhuang, W.; Gao, Z.; Wang, L.; Zhong, W.; Ni, Z.; Zhang, Z. Comparative proteomic and transcriptomic approaches to address the active role of GA4 in Japanese apricot flower bud dormancy release. J. Exp. Bot. 2013, 64, 4953–4966. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, W. Chemical regulators of gibberellin status and their application in plant production. Ann. Plant Rev. 2016, 49, 359–403. [Google Scholar]
- Gupta, R.; Chakrabarty, S.K. Gibberellic acid in plant. Plant Signal. Behav. 2013, 8, 9. [Google Scholar] [CrossRef]
- Sun, T. Gibberellin signal transduction in stem elongation and leaf growth. In Plant Hormones; Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 308–328. [Google Scholar]
- Taiz, L.; Zeiger, E. Gibberellins: Regulators of plant height. In Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2002; pp. 461–492. [Google Scholar]
- Mehouachi, J.; Tadeo, F.R.; Zaragoza, S.; Primo-Millo, E.; Talon, M. Effects of gibberellic acid and paclobutrazol on growth and carbohydrate accumulation in shoots and roots of citrus rootstock seedlings. J. Hortic. Sci. 1996, 71, 747–754. [Google Scholar] [CrossRef]
- Lustosa Sobrinho, R.; Zoz, T.; Finato, T.; Oliveira, C.E.d.S.; Neto, S.S.d.O.; Zoz, A.; Alaraidh, I.A.; Okla, M.K.; Alwasel, Y.A.; Beemster, G.; et al. Jatropha curcas L. as a plant model for studies on vegetative propagation of native forest plants. Plants 2022, 11, 2457. [Google Scholar] [CrossRef] [PubMed]
- Bidadi, H.; Yamaguchi, S.; Asahina, M.; Satoh, S. Effects of shoot-applied gibberellin/gibberellin-biosynthesis inhibitors on root growth and expression of gibberellin biosynthesis genes in Arabidopsis thaliana. Plant Root 2010, 4, 4–11. [Google Scholar] [CrossRef]
- Binenbaum, J.; Weinstain, R.; Shani, E. Gibberellin localization and transport in plants. Review 2018, 23, 410–421. [Google Scholar] [CrossRef]
- Ishii, Y.; Yamano, A.; Idota, S. Effects of short-day and gibberellic acid treatments on summer vegetative propagation of napier grass (Pennisetum purpureum Schumach). Int. J. Agron. 2016, 2016, 9606914. [Google Scholar] [CrossRef]
- Inada, S.; Shimmen, T. Regulation of elongation growth by gibberellin in root segments of Lemna minor. Plant Cell Physiol. 2000, 41, 932–939. [Google Scholar] [CrossRef]
- Schwabe, W.W. A simple technique for vegetative propagation of sugar beet. Ann. Appl. Biol. 1980, 94, 269–272. [Google Scholar] [CrossRef]
- Li, J.; Sima, W.; Ouyang, B.; Wang, T.; Ziaf, K.; Luo, Z.; Liu, L.; Li, H.; Chen, M.; Huang, Y.; et al. Tomato SIDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. J. Exp. Bot. 2012, 63, 6407–6420. [Google Scholar] [CrossRef] [PubMed]
- Sprangers, K.; Thys, S.; Dusschoten, D.V.; Beemster, G.T.S. Giberrellin enhances the anisotopy of cell expansion in the growth zone of the maize leaf. Front. Plant Sci. 2020, 11, 1163. [Google Scholar] [CrossRef]
- Leben, C.; Alder, E.F.; Chichuk, A. Influence of gibberellic acid on the growth of Kentucky bluegrass. Agron. J. 1959, 51, 116–117. [Google Scholar] [CrossRef]
- Caldiz, D.O.; Clúa, A.; Beltrano, J.; Tenenbaum, S.D. Ground cover, photosynthetic rate and tuber yield of potato (Solanum tuberosum L.) crops from seed tubers with different physiological age modified by foliar applications of plant growth regulators. Potato Res. 1998, 41, 175–185. [Google Scholar] [CrossRef]
- Bishnoi, N.R.; Krishnamoorthy, H.N. Effect of waterlogging and gibberellic acid on leaf gas exchange in peanut (Arachis hypogaea L.). J. Plant Physiol. 1992, 139, 503–505. [Google Scholar] [CrossRef]
- Budiarto, R.; Mubarok, S.; Nanda, M.A.; Nabiyyu, M.; Jaya, M.H.I.S. The increase in kaffir lime leaf production due to gibberellin is diminished by pruning. Horticulturae 2023, 9, 1018. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, S.; Chen, F.; Teng, N.; Fang, W.; Guan, Z. Anatomical structure and gravitropic response of the creeping shoots of ground-cover chrysanthemum ‘Yuhuajinhua’. Plant Growth Regul. 2008, 56, 141–150. [Google Scholar] [CrossRef]
- Douglas, G.C.; Rutledge, C.B.; Casey, A.D.; Richardson, D.H.S. Micropropagation of floribunda, ground cover and miniature roses. Plant Cell Tissue Organ Cult. 1989, 19, 55–64. [Google Scholar] [CrossRef]
- Nelissen, H.; Rymenm, B.; Jikumaru, Y.; Demuynck, K.; Lijsebettens, M.V.; Kamiya, Y.; Inze, D.; Beemster, G.T.S. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Curr. Biol. 2012, 22, 1183–1187. [Google Scholar] [CrossRef]
- Zhu, G.; An, L.; Jia, X.; Chen, X.; Zhou, G.; Mclaughlin, N. Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chil. J. Agric. Res. 2019, 79, 415–424. [Google Scholar] [CrossRef]
- Wang, M.; Chen, J.; Zhang, X.; Li, S.; Zhang, T.; Li, W.; Lin, L. Gibberellin A3 induces polyaerial shoot formation and increases the propagation rate in Paris polyphylla rhizomes. Ind. Crops Prod. 2021, 167, 113511. [Google Scholar] [CrossRef]
- Hartmann, A.; Senning, M.; Hedden, P.; Sonnewald, U.; Sonnewald, S. Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol. 2011, 155, 776–796. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Shiraiwa, N.; Itai, A.; Honda, I. Involvement of gibberellins in the regulation of tillering in Welsh Onion (Allium fistulosum L.). Hortic. J. 2015, 84, 334–341. [Google Scholar] [CrossRef]
Species | Treatments (mg·L−1) | Plant Sizes (cm) | Offset Parameters | Leaf Sizes (cm) | Ground Cover (cm2) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Shoot Height | Shoot Width | Stem Diameter | Root Length | No. of Offsets | Length (cm) | Length | Width | |||
O. fimbriata | 0 (Control) | 3.15 ± 0.17 z b y | 3.77 ± 0.38 b | 0.24 ± 0.01 c | 5.03 ± 0.75 a | 16.0 ± 0.61 a | 3.29 ± 0.94 a | 2.58 ± 0.10 d | 0.50 ± 0.06 b | 14.9 ± 1.89 c |
200 | 4.71 ± 0.31 a | 5.19 ± 0.50 a | 0.27 ± 0.02 bc | 4.78 ± 0.40 a | 18.0 ± 1.54 a | 1.59 ± 0.48 a | 2.88 ± 0.18 c | 0.48 ± 0.09 b | 26.2 ± 2.86 b | |
400 | 5.08 ± 0.26 a | 5.58 ± 0.48 a | 0.31 ± 0.01 b | 3.93 ± 0.67 a | 19.6 ± 1.34 a | 1.87 ± 0.55 a | 3.43 ± 0.12 b | 0.54 ± 0.07 b | 32.0 ± 2.59 a | |
600 | 5.31 ± 0.21 a | 6.04 ± 0.53 a | 0.35 ± 0.01 a | 5.46 ± 0.59 a | 19.6 ± 1.76 a | 2.19 ± 0.87 a | 3.87 ± 0.14 a | 0.60 ± 0.05 a | 38.0 ± 3.05 a | |
Significance x | ** | ** | ** | NS | NS | NS | ** | ** | ** | |
O. japonica | 0 (Control) | 3.73 ± 0.13 b | 4.83 ± 0.28 a | 0.37 ± 0.02 a | 6.36 ± 0.38 a | 9.5 ± 0.87 a | 1.98 ± 0.11 b | 3.08 ± 0.23 a | 0.60 ± 0.00 a | 23.7 ± 1.93 a |
200 | 6.65 ± 0.16 a | 4.75 ± 0.22 a | 0.37 ± 0.03 a | 5.78 ± 0.26 ab | 8.3 ± 0.82 a | 3.73 ± 0.16 a | 3.54 ± 0.15 a | 0.63 ± 0.01 a | 23.0 ± 1.58 a | |
400 | 6.52 ± 0.30 a | 4.82 ± 0.19 a | 0.41 ± 0.01 a | 4.69 ± 0.19 b | 9.3 ± 1.11 a | 3.87 ± 0.20 a | 3.27 ± 0.20 a | 0.63 ± 0.02 a | 23.6 ± 1.43 a | |
600 | 6.67 ± 0.24 a | 4.54 ± 0.38 a | 0.40 ± 0.01 a | 5.50 ± 0.28 ab | 8.8 ± 0.75 a | 3.23 ± 0.15 a | 3.42 ± 0.25 a | 0.64 ± 0.02 a | 21.3 ± 2.56 a | |
Significance | ** | NS | NS | * | NS | ** | NS | NS | NS | |
O. minuta | 0 (Control) | 1.88 ± 0.21 c | 2.66 ± 0.32 b | 0.22 ± 0.01 d | 4.40 ± 0.66 a | 8.7 ± 0.97 c | 0.78 ± 0.16 c | 1.43 ± 0.12 c | 0.40 ± 0.02 c | 8.6 ± 2.34 d |
200 | 3.42 ± 0.24 b | 4.17 ± 0.22 a | 0.27 ± 0.01 c | 5.31 ± 0.42 a | 16.8 ± 1.64 ab | 1.62 ± 0.19 b | 2.44 ± 0.21 b | 0.44 ± 0.02 b | 17.8 ± 1.66 c | |
400 | 3.83 ± 0.18 b | 4.96 ± 0.24 a | 0.30 ± 0.01 b | 5.15 ± 0.38 a | 20.5 ± 1.84 a | 1.99 ± 0.12 b | 3.16 ± 0.28 ab | 0.48 ± 0.03 b | 25.1 ± 1.85 b | |
600 | 5.15 ± 0.29 a | 5.18 ± 0.27 a | 0.37 ± 0.01 a | 4.78 ± 0.52 a | 13.6 ± 2.36 b | 2.42 ± 0.17 a | 3.62 ± 0.26 a | 0.53 ± 0.02 a | 27.7 ± 2.03 a | |
Significance | ** | ** | ** | NS | ** | ** | ** | ** | ** |
Species | Treatments (mg·L−1) | Fresh Weight (g) | Dry Weight (g) | Moisture Content (%) | |||
---|---|---|---|---|---|---|---|
Shoot | Root | Shoot | Root | Shoot | Root | ||
O. fimbriata | 0 (Control) | 3.06 ± 0.23 z d y | 0.03 ± 0.00 d | 0.17 ± 0.02 b | 0.01 ± 0.00 b | 94.3 ± 0.26 a | 72.2 ± 1.11 a |
200 | 3.85 ± 0.28 c | 0.04 ± 0.00 c | 0.19 ± 0.02 b | 0.01 ± 0.00 b | 94.9 ± 0.15 a | 73.8 ± 2.49 a | |
400 | 5.05 ± 0.40 b | 0.05 ± 0.01 b | 0.36 ± 0.06 b | 0.01 ± 0.00 b | 93.3 ± 0.56 a | 74.7 ± 2.12 a | |
600 | 6.44 ± 0.51 a | 0.07 ± 0.01 a | 0.65 ± 0.12 a | 0.02 ± 0.01 a | 90.4 ± 0.68 b | 75.5 ± 1.30 a | |
Significance x | ** | ** | ** | ** | ** | NS | |
O. japonica | 0 (Control) | 7.66 ± 0.97 a | 0.18 ± 0.02 a | 0.55 ± 0.09 a | 0.04 ± 0.00 a | 92.7 ± 0.29 a | 75.9 ± 1.68 a |
200 | 10.21 ± 0.89 a | 0.18 ± 0.01 a | 0.64 ± 0.10 a | 0.04 ± 0.01 a | 93.8 ± 0.38 a | 75.6 ± 0.72 a | |
400 | 10.03 ± 1.39 a | 0.17 ± 0.02 a | 0.64 ± 0.12 a | 0.04 ± 0.00 a | 93.7 ± 0.23 a | 77.5 ± 1.25 a | |
600 | 10.37 ± 1.07 a | 0.14 ± 0.03 a | 0.85 ± 0.18 a | 0.03 ± 0.01 a | 92.3 ± 0.85 a | 77.1 ± 0.87 a | |
Significance | NS | NS | NS | NS | NS | NS | |
O. minuta | 0 (Control) | 1.83 ± 0.34 d | 0.03 ± 0.01 c | 0.10 ± 0.03 b | 0.01 ± 0.00 b | 92.8 ± 0.60 b | 73.4 ± 2.57 a |
200 | 4.32 ± 0.42 c | 0.07 ± 0.01 ab | 0.26 ± 0.04 b | 0.02 ± 0.00 a | 94.0 ± 0.13 a | 74.5 ± 1.88 a | |
400 | 5.40 ± 0.36 b | 0.06 ± 0.00 b | 0.30 ± 0.03 b | 0.01 ± 0.00 b | 94.5 ± 0.12 a | 77.1 ± 1.11 a | |
600 | 7.23 ± 0.65 a | 0.09 ± 0.01 a | 0.67 ± 0.10 a | 0.02 ± 0.00 a | 91.2 ± 0.78 b | 76.0 ± 1.35 a | |
Significance | ** | ** | ** | ** | ** | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Shin, E.J.; Nam, S.Y. Enhancing Propagation of Orostachys spp. Offsets through Exogenous GA3 Application. Horticulturae 2023, 9, 1280. https://doi.org/10.3390/horticulturae9121280
Lee JH, Shin EJ, Nam SY. Enhancing Propagation of Orostachys spp. Offsets through Exogenous GA3 Application. Horticulturae. 2023; 9(12):1280. https://doi.org/10.3390/horticulturae9121280
Chicago/Turabian StyleLee, Jae Hwan, Eun Ji Shin, and Sang Yong Nam. 2023. "Enhancing Propagation of Orostachys spp. Offsets through Exogenous GA3 Application" Horticulturae 9, no. 12: 1280. https://doi.org/10.3390/horticulturae9121280
APA StyleLee, J. H., Shin, E. J., & Nam, S. Y. (2023). Enhancing Propagation of Orostachys spp. Offsets through Exogenous GA3 Application. Horticulturae, 9(12), 1280. https://doi.org/10.3390/horticulturae9121280