The Variability of Proximate Composition, Sugars, and Vitamin C in Natural, Organic, and Biodynamic, and Fermented Leaves of Fireweed (Chamerion angustifolium (L.) Holub (Onagraceae))
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment
2.2. Plant Material and Solid-Phase Fermentation
- Control (naturally grown): 3.6 kg for control, 3.6 kg for fermentation 24 h, and 1.2 kg for 48 h.
- Fireweed grew organically: 3.6 kg for control, 3.6 kg for fermentation 24 h, and 3.6 kg for 48 h.
- Fireweed that has been grown biodynamically: 3.6 kg for control, 3.6 kg for fermentation 24 h, and 3.6 kg for 48 h.
2.3. Laboratory Analyses
2.3.1. Chemicals and Reagents
2.3.2. Sugars Identification and Quantification
2.3.3. Vitamin C Analysis
2.3.4. Fibers, Ash, and Proteins Analysis
2.4. Statistical Analysis
3. Results
Chemical Composition of Fireweed Leaves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reganold, J.P.; Papendick, R.; Parr, J.F. Sustainable agriculture. Sci. Am. 1990, 262, 112–120. [Google Scholar] [CrossRef]
- Carpenter-Boggs, L.; Kennedy, A.C.; Reganold, J.P. Organic and biodynamic management effects on soil biology. Soil Sci. Soc. Am. J. 2000, 64, 1651–1659. [Google Scholar] [CrossRef]
- Marschner, P.; Crowley, D.; Yang, C.H. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 2004, 261, 199–208. [Google Scholar] [CrossRef]
- Girvan, M.S.; Bullimore, J.; Pretty, J.N.; Osborn, A.M.; Ball, A.S. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 2003, 69, 1800–1809. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef] [PubMed]
- Jariene, E.; Vaitkeviciene, N.; Ingold, R.; Peschke, J. Effect of Biodynamic Preparations on the Soil Biological and Agrochemical Properties and Potato Tubers Quality. Evolving Agriculture and Food: Opening Up Biodynamic Research, September 5th to 8th 2018. Conference Documents. Dornach, Switzerland. 2018; p. 36. Available online: https://www.biodynamics.com/sites/default/files/scan/%5BOpen%20Agriculture%5D%20Effect%20of%20biodynamic%20preparations%20on%20the%20soil%20biological%20and%20agrochemical%20properties%20and%20c.pdf (accessed on 10 November 2023).
- Adamczak, A.; Dreger, M.; Seidler-Łożykowska, K.; Wielgus, K. Fireweed (Epilobium angustifolium L.): Botany, phytochemistry and traditional uses. A review. Int. J. Ed. Inst. Nat. Fibres Med. Plants 2019, 65, 51–63. [Google Scholar] [CrossRef]
- Kosman, V.; Shikov, A.; Pozharitskaya, O.; Makarov, V.; Galambosi, B.; Kauppinen, S. Variation of chemical composition of Epilobium angustifolium during fermentation. Planta Medica 2013, 79, PJ42. [Google Scholar] [CrossRef]
- Production, Processing and Labelling. International Standard for the Use and Certification of Demeter, Biodynamic and Related Trademarks. Biodynamic Federation—Demeter International: Darmstadt, Germany, 2022. Available online: https://demeter.net/wp-content/uploads/2022/10/20220929_BFDI_Standard_englVersion_final_fs.pdf (accessed on 20 October 2023).
- Ponder, A.; Hallmann, E. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. J. Food Compos. Anal. 2020, 87, 103429. [Google Scholar] [CrossRef]
- 71/250/EEC; First Commission Directive of 15 June 1971 Establishing Community Methods of Analysis for the Official Control of Feeding-Stuffs. European Commission: Luxembourg, The Netherlands, 1971.
- ISO 5984:2022; Animal Feeding Stuffs. Determination of Crude Ash. Third Edition. International Organization for Standardization—ISO: Geneva, Switzerland, 2022.
- ISO 5983-1:2005; Animal Feeding Stuffs. Determination of Nitrogen Content and Calculation of Crude Protein Content. Part 1: Kjeldahl Method. International Organization for—ISO: Geneva, Switzerland, 2005.
- dos Santos Nascimento, L.B.; Gori, A.; Degano, I.; Mandoli, A.; Ferrini, F.; Brunetti, C. Comparison between Fermentation and Ultrasound-Assisted Extraction: Which Is the Most Efficient Method to Obtain Antioxidant Polyphenols from Sambucus nigra and Punica granatum Fruits? Horticulturae 2021, 7, 386. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Augmenting bioactivity of plant-based foods using fermentation. In A Handbook on High Value Fermentation Products; Saran, S., Babu, V., Chaubey, A., Eds.; Wiley: Hoboken, NJ, USA, 2019; Volume 2. [Google Scholar]
- Couto, S.R.; Sanroman, A. Application of solid-phase fermentation to food industry: A review. J. Food Eng. 2006, 76, 291–302. [Google Scholar] [CrossRef]
- Lee, M.Y.; Seo, H.S.; Singh, D.; Lee, S.J.; Lee, C.H. Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng. J. Ginseng Res. 2020, 44, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Tveden-Nyborg, P.; Lykkesfeldt, J. Does vitamin C deficiency increase lifestyle-associated vascular disease progression? Evidence based on experimental and clinical studies. Antioxid. Redox Signal. 2013, 19, 2084–2104. [Google Scholar] [CrossRef] [PubMed]
- Frei, B.; Birlouez-Aragon, I.; Lykkesfeldt, J. Authors’ perspective: What is the optimum intake of vitamin C in humans? Crit. Rev. Food Sci. Nutr. 2012, 52, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.C.M.; Das, A.B. Potential mechanisms of action for vitamin C in cancer: Reviewing the evidence. Front. Physiol. 2018, 9, 809. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Buettner, G.R.; Bruno, R.S. The relationship between vitamin C status, the gut-liver axis, and metabolic syndrome. Redox Biol. 2019, 21, 101091. [Google Scholar] [CrossRef] [PubMed]
- Lasinskas, M.; Jarienė, E. The content of phenolic acids in the different duration fermented leaves of fireweed (Chamerion angustifolium (L.) Holub). Agric. Sci. 2019, 26, 111–115. [Google Scholar] [CrossRef]
- Lasinskas, M.; Jariene, E.; Vaitkeviciene, N.; Hallmann, E.; Najman, K. Effect of Different Durations of Solid - Phase Fermentation for Fireweed (Chamerion angustifolium (L.) Holub) Leaves on the Content of Polyphenols and Antioxidant Activity In Vitro. Molecules 2020, 25, 1011. [Google Scholar] [CrossRef] [PubMed]
Production System | Fibers | Ash | Proteins |
---|---|---|---|
%, D.M. | |||
Biodynamic | 10.17 ± 0.21 1 AB 2 | 6.52 ± 0.13 A | 18.15 ± 0.50 A |
Organic | 10.37 ± 0.22 A | 4.66 ± 0.21 C | 15.89 ± 0.38 C |
Natural | 9.91 ± 0.26 B | 5.36 ± 0.18 B | 17.15 ± 0.64 B |
Control | 10.04 ± 0.14 a | 5.36 ± 0.90 a | 16.59 ± 0.97 a |
24 h | 10.04 ± 0.32 a | 5.51 ± 0.85 a | 17.07 ± 1.12 a |
48 h | 10.35 ± 0.29 a | 5.68 ± 0.79 a | 17.52 ± 1.08 a |
p-Value | |||
Production systems | 0.0127 | <0.0001 | <0.0001 |
Fermentation duration time (h) | N.S. 3 | N.S. | N.S. |
Production System | Duration | Fibers | Ash | Proteins |
---|---|---|---|---|
%, D.M. | ||||
Biodynamic | Control | 10.08 ± 0.09 1 bc 2 | 6.43 ± 0.01 a | 17.72 ± 0.09 ab |
24 h | 10.05 ± 0.31 bc | 6.54 ± 0.08 a | 18.29 ± 0.09 a | |
48 h | 10.37 ± 0.02 ab | 6.60 ± 0.22 a | 18.41 ± 0.83 a | |
Organic | Control | 10.15 ± 0.04 bc | 4.44 ± 0.03 e | 15.58 ± 0.05 e |
24 h | 10.34 ± 0.11 ab | 4.69 ± 0.02 de | 15.80 ± 0.24 de | |
48 h | 10.61 ± 0.12 a | 4.87 ± 0.17 d | 16.28 ± 0.40 de | |
Natural | Control | 9.89 ± 0.15 c | 5.22 ± 0.01 c | 16.47 ± 0.27 cd |
24 h | 9.73 ± 0.17 c | 5.30 ± 0.14 bc | 17.11 ± 0.14 bc | |
48 h | 10.10 ± 0.39 bc | 5.55 ± 0.14 b | 17.86 ± 0.20 ab | |
p-Value | ||||
Production systems × fermentation duration time (h) | N.S. | N.S. 3 | N.S. |
Production System | Total Sugars | Fructose | Glucose | Sucrose |
---|---|---|---|---|
Biodynamic | 5.86 ± 0.4 1 A 2 | 2.01 ± 0.1 A | 3.30 ± 0.2 A | 0.55 ± 0.1 B |
Organic | 5.95 ± 0.3 A | 1.98 ± 0.1 A | 3.42 ± 0.1 A | 0.55 ± 0.1 B |
Natural | 5.86 ± 0.5 A | 1.99 ± 0.1 A | 3.30 ± 0.3 A | 0.57 ± 0.1 A |
Control | 7.08 ± 0.05 a | 2.30 ± 0.01 a | 3.89 ± 0.04 a | 0.89 ± 0.01 a |
24 h | 6.37 ± 0.07 b | 2.07 ± 0.03 b | 3.51 ± 0.06 b | 0.78 ± 0.01 b |
48 h | 4.23 ± 0.09 c | 1.61 ± 0.01 c | 2.62 ± 0.08 c | not detected |
p-Value | ||||
Production systems | N.S. 3 | N.S. | N.S. | 0.0001 |
Fermentation duration time (h) | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Production Systems | Fermentation Duration Time | Total Sugars | Fructose | Glucose | Sucrose |
---|---|---|---|---|---|
Biodynamic | Control | 7.15 ± 0.05 1 a 2 | 2.32 ± 0.03 a | 3.94 ± 0.04 a | 0.88 ± 0.01 a |
24 h | 6.23 ± 0.04 b | 2.14 ± 0.01 b | 3.31 ± 0.04 b | 0.77 ± 0.01 b | |
48 h | 4.21 ± 0.02 c | 1.56 ± 0.03 c | 2.65 ± 0.01 c | not detected | |
Organic | Control | 6.91 ± 0.06 a | 2.26 ± 0.01 a | 3.75 ± 0.05 a | 0.89 ± 0.01 a |
24 h | 6.22 ± 0.04 b | 1.97 ± 0.04 b | 3.49 ± 0.03 b | 0.76 ± 0.01 b | |
48 h | 4.73 ± 0.15 c | 1.72 ± 0.04 c | 3.01 ± 0.12 c | not detected | |
Natural | Control | 7.19 ± 0.02 a | 2.32 ± 0.01 a | 3.97 ± 0.02 a | 0.90 ± 0.01 a |
24 h | 6.65 ± 0.05 b | 2.11 ± 0.04 b | 3.74 ± 0.01 b | 0.81 ± 0.01 b | |
48 h | 3.74 ± 0.08 c | 1.55 ± 0.02 c | 2.19 ± 0.09 | not detected | |
p-Value | |||||
Interaction | <0.0001 | 0.0003 | <0.0001 | 0.0002 |
Production Systems | Vitamin C | Dehydroascorbic Acid | L-ascorbic Acid |
---|---|---|---|
Biodynamic | 261.35 ± 14.0 1 C 2 | 123.90 ± 10.3 C | 137.45 ± 4.1 A |
Organic | 515.29 ± 71.7 A | 411.67 ± 61.5 B | 103.61 ± 11.7 B |
Natural | 447.06 ± 38.1 B | 382.42 ± 34.0 A | 64.64 ± 6.0 C |
Control | 247.19 ± 12.8 c | 166.14 ± 20.9 c | 81.05 ± 10.9 c |
24 h | 441.80 ± 50.8 b | 347.86 ± 58.4 b | 93.94 ± 11.2 b |
48 h | 534.70 ± 40.8 a | 403.99 ± 51.1 a | 130.71 ± 10.5 a |
p-Value | |||
Production systems | <0.0001 | <0.0001 | <0.0001 |
Fermentation duration time (h) | <0.0001 | <0.0001 | <0.0001 |
Production Systems | Duration | Vitamin C | Dehydroascorbic Acid | L-ascorbic Acid |
---|---|---|---|---|
Biodynamic | Control | 224.74 ± 2.1 1 e 2 | 98.39 ± 0.7 e | 126.35 ± 1.7 c |
24 h | 239.79 ± 4.2 e | 105.89 ± 1.8 e | 133.90 ± 4.6 b | |
48 h | 319.51 ± 3.5 d | 167.41 ± 0.5 d | 152.10 ± 2.9 a | |
Organic | Control | 221.69 ± 4.7 e | 156.29 ± 6.2 d | 65.40 ± 1.8 e |
24 h | 601.51 ± 21.4 ab | 506.26 ± 21.2 b | 95.24 ± 1.4 d | |
48 h | 722.67 ± 13.3 a | 572.48 ± 13.6 a | 150.19 ± 0.3 a | |
Natural | Control | 295.15 ± 17.2 e | 243.75 ± 17.9 c | 51.39 ± 0.7 f |
24 h | 484.12 ± 5.3 c | 431.43 ± 5.3 b | 52.68 ± 0.2 f | |
48 h | 561.91 ± 14.2 b | 472.07 ± 13.1 b | 89.83 ± 1.5 d | |
p-Value | ||||
Production systems × fermentation duration time (h) | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasinskas, M.; Jariene, E.; Vaitkeviciene, N.; Kulaitiene, J.; Trumbeckaite, S.; Velicka, A.; Hallmann, E. The Variability of Proximate Composition, Sugars, and Vitamin C in Natural, Organic, and Biodynamic, and Fermented Leaves of Fireweed (Chamerion angustifolium (L.) Holub (Onagraceae)). Horticulturae 2023, 9, 1245. https://doi.org/10.3390/horticulturae9111245
Lasinskas M, Jariene E, Vaitkeviciene N, Kulaitiene J, Trumbeckaite S, Velicka A, Hallmann E. The Variability of Proximate Composition, Sugars, and Vitamin C in Natural, Organic, and Biodynamic, and Fermented Leaves of Fireweed (Chamerion angustifolium (L.) Holub (Onagraceae)). Horticulturae. 2023; 9(11):1245. https://doi.org/10.3390/horticulturae9111245
Chicago/Turabian StyleLasinskas, Marius, Elvyra Jariene, Nijole Vaitkeviciene, Jurgita Kulaitiene, Sonata Trumbeckaite, Aloyzas Velicka, and Ewelina Hallmann. 2023. "The Variability of Proximate Composition, Sugars, and Vitamin C in Natural, Organic, and Biodynamic, and Fermented Leaves of Fireweed (Chamerion angustifolium (L.) Holub (Onagraceae))" Horticulturae 9, no. 11: 1245. https://doi.org/10.3390/horticulturae9111245
APA StyleLasinskas, M., Jariene, E., Vaitkeviciene, N., Kulaitiene, J., Trumbeckaite, S., Velicka, A., & Hallmann, E. (2023). The Variability of Proximate Composition, Sugars, and Vitamin C in Natural, Organic, and Biodynamic, and Fermented Leaves of Fireweed (Chamerion angustifolium (L.) Holub (Onagraceae)). Horticulturae, 9(11), 1245. https://doi.org/10.3390/horticulturae9111245