Influence of Selenium, Titanium, and Silicon Nanoparticles on the Growth, Yield, and Fruit Quality of Mango under Drought Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description and Its Design
2.2. Vegetative Growth Parameters
2.3. Fruit Set Percentages, Fruit Drop Percentages and Fruit Yield
2.4. Fruit Quality
2.4.1. Fruit Physical Characteristics
2.4.2. Fruit Chemical Characteristics
2.5. Mineral Content
2.6. Statistical Analysis
3. Results
3.1. Vegetative Growth Parameters
3.2. Shoot Number, Fruit Set and Drop Percentage, and Yield
3.3. Fruit Quality
3.3.1. Physical Fruit Characteristics
3.3.2. Fruit Chemical Characteristics
3.4. Mineral Content from Macronutrients
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations. 2021. Available online: http://faostat-fao.org (accessed on 19 December 2021).
- Helaly, M.N.; El-Hoseiny, H.; El-Sheery, N.I.; Rastogi, A.; Kalaji, H.M. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiol. Biochem. 2017, 118, 31–44. [Google Scholar] [CrossRef]
- Haseeb, G.M.; Ghounim, I.E.-S.; Hmmam, I.; Mustafa, M.R. Evaluation of four newly introduced mango (Mangifera indica L.) cultivars grown under El-Giza conditions. Plant Arch. 2020, 20, 9405–9410. Available online: https://www.researchgate.net/publication/348372942 (accessed on 19 December 2021).
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Mango (Mangifera Indica L.)- Morphology, Taxonomy, Composition and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas; Springer: Cham, Switzerlands, 2021. [Google Scholar] [CrossRef]
- Divya, G.; Arunachalam, R. A study on adoption level of mango growers on the recommended technologies in Krishnagiri district of Tamil Nadu. Madras Agric.J. 2020, 107, 1. [Google Scholar] [CrossRef]
- Laxman, R.; Annapoornamma, C.; Biradar, G. Mango. In Abiotic Stress Physiology of Horticultural Crops; Springer: New Delhi, India, 2016; pp. 169–181. [Google Scholar]
- Almutairi, K.F.; Górnik, K.; Ayoub, A.; Abada, H.S.; Mosa, W.F.A. Performance of mango trees under the spraying of some biostimulants. Sustainability 2023, 15, 15543. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Moharrami, F.; Sarikhani, S.; Padervand, M. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci. Rep. 2020, 10, 17672. [Google Scholar] [CrossRef]
- Gholami, R.; Zahedi, S.M. Identifying superior drought-tolerant olive genotypes and their biochemical and some physiological responses to various irrigation levels. J. Plant Nutr. 2019, 42, 2057–2069. [Google Scholar] [CrossRef]
- Harfouche, A.; Meilan, R.; Altman, A. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol. 2014, 34, 1181–1198. [Google Scholar] [CrossRef]
- Jaberzadeh, A.; Moaveni, P.; Moghadam, H.R.T.; Zahedi, H. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not. Bot. Horti. Agrobo. 2013, 41, 201–207. [Google Scholar] [CrossRef]
- Mousavi Kouhi, S.M.; Lahouti, M.; Ganjeali, A.; Entezari, M.H. Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): Investigating a wide range of concentrations. Toxicol. Environ. Chem. 2014, 96, 861–868. [Google Scholar] [CrossRef]
- Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W.-N.; Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 2015, 7, 1584–1594. [Google Scholar] [CrossRef]
- Kolenčík, M.; Nemček, L.; Šebesta, M.; Urík, M.; Ernst, D.; Kratošová, G.; Konvičková, Z. Effect of TiO2 as plant growth-stimulating nanomaterial on crop production. In Plant Responses to Nanomaterials. Nanotechnology in the Life Sciences; Singh, V.P., Singh, S., Tripathi, D.K., Prasad, S.M., Chauhan, D.K., Eds.; Springer: Cham, Switzerlands, 2021; pp. 129–144. [Google Scholar] [CrossRef]
- Reddy, M.P.; Shakoor, R.; Parande, G.; Manakari, V.; Ubaid, F.; Mohamed, A.; Gupta, M. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog. Nat. Sci. Mater. 2017, 27, 606–614. [Google Scholar] [CrossRef]
- Valizadeh; Pavithra, G.J.; Rajashekar Reddy, B.; Salimath, M.; Geetha, K.; Shankar, A. Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Indian J. Plant Physiol. 2017, 22, 287–294. [Google Scholar] [CrossRef]
- Valizadeh, M.; Milic, V. The effects of balanced nutrient managements and nano-fertilizers effects on crop production in semi-arid areas. Curr. Opin. Food Sci. 2016, 5, 31. Available online: https://www.proquest.com/scholarly-journals/effects-balanced-nutrient-managements-nano/docview/1891435075/se-2 (accessed on 19 December 2021).
- Rai, M.K.; Deshmukh, S.; Ingle, A.; Gade, A. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, K.S.; Manikandan, A.; Thirunavukkarasu, M.; Rahale, C.S. Nano-fertilizers for balanced crop nutrition. In Nanotechnologies in Food and Agriculture; Springer: Cham, Switzerland, 2015; pp. 69–80. [Google Scholar] [CrossRef]
- Sekhon, B.S. Nanotechnology in agri-food production: An overview. Nanotechnol. Sci. Appl. 2014, 7, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Roosta, H.R.; Jalali, M.; Ali Vakili Shahrbabaki, S.M. Effect of nano Fe-chelate, Fe-EDDHA and FeSO4 on vegetative growth, physiological parameters and some nutrient elements concentrations of four varieties of lettuce (Lactuca sativa L.) in NFT system. J. Plant Nutr. 2015, 38, 2176–2184. [Google Scholar] [CrossRef]
- Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef]
- Luo, Y.; Wei, Y.; Sun, S.; Wang, J.; Wang, W.; Han, D.; Shao, H.; Jia, H.; Fu, Y. Selenium modulates the level of auxin to alleviate the toxicity of cadmium in tobacco. Int. J. Mol. Sci. 2019, 20, 3772. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, D.; Jiang, X.; Cao, Z. Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza sativa). Environ. Geochem. Health 2004, 26, 325–330. [Google Scholar] [CrossRef]
- Ríos, J.; Blasco, B.; Cervilla, L.; Rosales, M.; Sanchez-Rodriguez, E.; Romero, L.; Ruiz, J. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann. Appl. Biol. 2009, 154, 107–116. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Alam, M.M.; Nahar, K.; Ahamed, K.U.; Fujita, M. Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Aust. J. Crop Sci. 2014, 8, 631–639. [Google Scholar]
- Babaei, A.; Ranglová, K.; Malapascua, J.R.; Masojídek, J. The synergistic effect of Selenium (selenite,–SeO3 2−) dose and irradiance intensity in Chlorella cultures. AMB Express 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Wei, C.; Tu, S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013, 87, 58–68. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Devi, D.D.; Shanker, A.K.; Sheeba, J.A.; Bangarusamy, U. Selenium–an antioxidative protectant in soybean during senescence. Plant Soil 2005, 272, 77–86. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol. Trace Elem. Res. 2009, 132, 259–269. [Google Scholar] [CrossRef]
- Cartes, P.; Jara, A.; Pinilla, L.; Rosas, A.; Mora, M. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Ann. Appl. Biol. 2010, 156, 297–307. [Google Scholar] [CrossRef]
- Mroczek-Zdyrska, M.; Wójcik, M. The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol. Trace Elem. Res. 2012, 147, 320–328. [Google Scholar] [CrossRef]
- Yao, X.; Chu, J.; Wang, G. Effects of selenium on wheat seedlings under drought stress. Biol. Trace Elem. Res. 2009, 130, 283–290. [Google Scholar] [CrossRef]
- Puccinelli, M.; Pezzarossa, B.; Rosellini, I.; Malorgio, F. Selenium enrichment enhances the quality and shelf life of basil leaves. Plants 2020, 9, 801. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, C.; Wang, Y.; Wang, X. Effects of selenium fertilizer on fruit quality and plant resistance of blueberry. IOP Conf. Ser. Earth Environ. Sci. IOP Publ. 2018, 199, 032071. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I. Effect of foliar application of growth biostimulant on quality and nutritive value of meadow sward. Ecol. Chem. Eng. A 2013, 20, 1205–1211. [Google Scholar] [CrossRef]
- Gómez-Merino, F.C.; Trejo-Téllez, L.I. The Role of Beneficial Elements in Triggering Adaptive Responses to Environmental Stressors and Improving Plant Performance. In Biotic and Abiotic Stress Tolerance in Plants; Vats, S., Ed.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X.; Pan, D. Titanium as a beneficial element for crop production. Front. Plant Sci. 2017, 8, 597. [Google Scholar] [CrossRef] [PubMed]
- Bacilieri, F.S.; Pereira de Vasconcelos, A.C.; Quintao Lana, R.M.; Mageste, J.G.; Torres, J.L.R. Titanium (Ti) in plant nutrition-A review. Aust. J. Crop Sci. 2017, 11, 382–386. [Google Scholar] [CrossRef]
- Choi, H.G.; Moon, B.Y.; Bekhzod, K.; Park, K.S.; Kwon, J.K.; Lee, J.H.; Cho, M.W.; Kang, N.J. Effects of foliar fertilization containing titanium dioxide on growth, yield and quality of strawberries during cultivation. Hortic. Environ. Biotechnol. 2015, 56, 575–581. [Google Scholar] [CrossRef]
- Kleiber, T.; Markiewicz, B. Application of Tytanit in greenhouse tomato growing. Acta Sci. Pol. Hortorum Cultus 2013, 12, 117–126. [Google Scholar]
- Broadley, M.; Brown, P.; Cakmak, I.; Ma, J.F.; Rengel, Z.; Zhao, F. Chapter 8—Beneficial Elements. In Marschner’s Mineral Nutrition of Higher Plants (Third Edition); Elsevier: Amsterdam, The Netherlands, 2012; pp. 249–269. [Google Scholar]
- Liu, B.; Feng, S.; Yang, L.; Li, C.; Luo, Z.; Wang, T.; Gong, J. Bifacial passivation of n-silicon metal–insulator–semiconductor photoelectrodes for efficient oxygen and hydrogen evolution reactions. Energy Environ. Sci. 2020, 13, 221–228. [Google Scholar] [CrossRef]
- López-Pérez, M.C.; Pérez-Labrada, F.; Ramírez-Pérez, L.J.; Juárez-Maldonado, A.; Morales-Díaz, A.B.; González-Morales, S.; García-Dávila, L.R.; García-Mata, J.; Benavides-Mendoza, A. Dynamic modeling of silicon bioavailability, uptake, transport, and accumulation: Applicability in improving the nutritional quality of tomato. Front. Plant Sci. 2018, 9, 647. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Huynh, W.Q.; Kronzucker, H.J. The role of silicon in higher plants under salinity and drought stress. Front. Plant Sci. 2016, 7, 1072. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Hatami, M.; Khavazi, K. Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turkish J. Biol. 2013, 37, 350–360. [Google Scholar] [CrossRef]
- Haghighi, M.; Pessarakli, M. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 2013, 161, 111–117. [Google Scholar] [CrossRef]
- Eraslan, F.; Inal, A.; Pilbeam, D.J.; Gunes, A. Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regul. 2008, 55, 207–219. [Google Scholar] [CrossRef]
- Hussain, S.; Shuxian, L.; Mumtaz, M.; Shafiq, I.; Iqbal, N.; Brestic, M.; Shoaib, M.; Sisi, Q.; Li, W.; Mei, X.; et al. Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max (L.) Merr.). J. Hazard. Mater. 2021, 401, 123256. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Li, P.; Fan, F.; Li, Z.; Liang, Y. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE 2014, 9, e113782. [Google Scholar] [CrossRef]
- Ahmad, S.U.; Szilvási, T.; Irran, E.; Inoue, S. An NHC-stabilized silicon analogue of acylium ion: Synthesis, structure, reactivity, and theoretical studies. J. Am. Chem. Soc. 2015, 137, 5828–5836. [Google Scholar] [CrossRef]
- Liang, Y.; Nikolic, M.; Bélanger, R.; Gong, H.; Song, A. Silicon-Mediated Tolerance to Salt Stress. In Silicon in Agriculture; Springer: Dordrecht, The Netherlands, 2015; pp. 123–142. [Google Scholar] [CrossRef]
- Patil, A.; Durgude, A.; Pharande, A.; Kadlag, A.; Nimbalkar, C. Effect of calcium silicate as a silicon source on growth and yield of rice plants. Int. J. Chem. Stud. 2017, 5, 545–549. [Google Scholar]
- Eneji, A.E.; Inanaga, S.; Muranaka, S.; Li, J.; Hattori, T.; An, P.; Tsuji, W. Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J. Plant Nutr. 2008, 31, 355–365. [Google Scholar] [CrossRef]
- Kaya, C.; Tuna, A.L.; Guneri, M.; Ashraf, M. Mitigation effects of silicon on tomato plants bearing fruit grown at high boron levels. J. Plant Nutr. 2011, 34, 1985–1994. [Google Scholar] [CrossRef]
- Kaluwa, K.; Bertling, I.; Bower, J. Effect of postharvest silicon application on “hass” avocado fruit physiology. Acta Hortic. 2011, 911, 565–571. [Google Scholar] [CrossRef]
- Peris-Felipo, F.J.; Benavent-Gil, Y.; Hernández-Apaolaza, L. Silicon beneficial effects on yield, fruit quality and shelf-life of strawberries grown in different culture substrates under different iron status. Plant Physiol. Biochem. 2020, 152, 23–31. [Google Scholar] [CrossRef]
- Demirsoy, H. Leaf area estimation in some species of fruit tree by using models as a non-destructive method. Fruits 2009, 64, 45–51. [Google Scholar] [CrossRef]
- El-Hady, S.; Eman, L.; Haggag, M.; Abdel-Migeed, M.; Desouky, I. Studies on sex compatiblity of some olive cultivars. Res. J. Agric. Biol. Sci. 2007, 3, 504–509. Available online: https://www.researchgate.net/publication/281265322 (accessed on 1 January 2007).
- Magness, J.R.; Taylor, G.F. An Improved Type of Pressure Tester for the Determination of Fruit Maturity; Department of Agriculture: Washington, DC, USA, 1925; p. 1982. [Google Scholar]
- Association of Official Agricultural Chemists, A. Official Methods of Analysis of the Association of Analytical Chemists International; Association of Official Agricultural Chemists (AOAC): Gaithersburg, MD, USA, 2005. [Google Scholar]
- Nielsen, S.S. Vitamin C Determination by Indophenol Method. In Food Analysis Laboratory Manual; Springer International Publishing: Cham, Switzerland, 2017; pp. 143–146. [Google Scholar] [CrossRef]
- Nielsen, S.S. Phenol-Sulfuric Acid Method for Total Carbohydrates. In Food Analysis Laboratory Manual; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2010; pp. 47–53. [Google Scholar] [CrossRef]
- Arrobas, M.; Afonso, S.; Rodrigues, M.Â. Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses. Sci. Hortic. 2018, 228, 113–121. [Google Scholar] [CrossRef]
- Wang, H.; Pampati, N.; McCormick, W.M.; Bhattacharyya, L. Protein nitrogen determination by Kjeldahl digestion and ion chromatography. J. Pharm. Sci. 2016, 105, 1851–1857. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of phosphorus compounds in plant tissues: From colourimetry to advanced instrumental analytical chemistry. Plant Methods 2022, 18, 22. [Google Scholar] [CrossRef]
- Asch, J.; Johnson, K.; Mondal, S.; Asch, F. Comprehensive assessment of extraction methods for plant tissue samples for determining sodium and potassium via flame photometer and chloride via automated flow analysis. J. Plant. Nutr. Soil Sci. 2022, 185, 308–316. [Google Scholar] [CrossRef]
- Snedecor, G.; Cochran, W. Statistical Methods. In Analysis and Book; Iowa State University Press: Ames, IA, USA, 1990; pp. 129–131. [Google Scholar]
- Chauhan, R.; Awasthi, S.; Srivastava, S.; Dwivedi, S.; Pilon-Smits, E.A.; Dhankher, O.P.; Tripathi, R.D. Understanding selenium metabolism in plants and its role as a beneficial element. Crit. Rev. Environm. Sci. Technol. 2019, 49, 1937–1958. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.; Seppanen, M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem. 2010, 48, 999–1007. [Google Scholar] [CrossRef]
- Yu, B.; Zhang, Y.; Zheng, W.; Fan, C.; Chen, T. Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg. Chem. 2012, 51, 8956–8963. [Google Scholar] [CrossRef]
- Zhong, Y.; Cheng, J.J. Effects of selenite on unicellular green microalga Chlorella pyrenoidosa: Bioaccumulation of selenium, enhancement of photosynthetic pigments, and amino acid production. J. Agric. Food Chem. 2017, 65, 10875–10883. [Google Scholar] [CrossRef]
- Broadley, M.R.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; McGrath, S.P. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 2010, 332, 5–18. [Google Scholar] [CrossRef]
- Sajedi, N.A.; Ardakani, M.R.; Madani, H.; Naderi, A.; Miransari, M. The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol. Mol. Biol. Plants 2011, 17, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, V.V.; Kholodova, V.; Kuznetsov, V.V.; Yagodin, B. Selenium regulates the water status of plants exposed to drought. Dokl. Biol. Sci. 2003, 390, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, M.; Abolghasemi, R.; da Silva, J.A.T. Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci. Hortic. 2014, 178, 231–240. [Google Scholar] [CrossRef]
- Ibrahim, H.; Al-Wasfy, M. The promotive impact of using silicon and selenium with potassium and boron on fruiting of Valencia orange trees grown under Minia region conditions. World Rural Observ. 2014, 6, 28–36. [Google Scholar]
- Babalar, M.; Mohebbi, S.; Zamani, Z.; Askari, M.A. Effect of foliar application with sodium selenate on selenium biofortification and fruit quality maintenance of Starking Delicious apple during storage. J. Sci. Food Agric. 2019, 99, 5149–5156. [Google Scholar] [CrossRef]
- Zhu, S.; Liang, Y.; Gao, D.; An, X.; Kong, F. Spraying foliar selenium fertilizer on quality of table grape (Vitis vinifera L.) from different source varieties. Sci. Hortic. 2017, 218, 87–94. [Google Scholar] [CrossRef]
- Mosa, W.F.; Behiry, S.I.; Ali, H.M.; Abdelkhalek, A.; Sas-Paszt, L.; Al-Huqail, A.A.; Ali, M.M.; Salem, M.Z. Pomegranate trees quality under drought conditions using potassium silicate, nanosilver, and selenium spray with valorization of peels as fungicide extracts. Sci. Rep. 2022, 12, 6363. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Z.; Zhou, J.; Zhou, D.; Chen, B.; Huang, L.; Zhang, Z.; Liu, X. Effects of a foliar spray of selenite or selenate at different growth stages on selenium distribution and quality of blueberries. J. Sci. Food Agric. 2018, 98, 4700–4706. [Google Scholar] [CrossRef]
- Grenda, A. Activator of metabolism processes. Chemicals in sustainable agriculture. Czech Republic 2003, 4, 263–269. [Google Scholar]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant. Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Wojcik, P.; Klamkowski, K. Szampion apple tree response to foliar titanium application. J. Plant Nutr. 2005, 27, 2033–2046. [Google Scholar] [CrossRef]
- Cigler, P.; Olejnickova, J.; Hruby, M.; Csefalvay, L.; Peterka, J.; Kuzel, S. Interactions between iron and titanium metabolism in spinach: A chlorophyll fluorescence study in hydropony. J. Plant Physiol. 2010, 167, 1592–1597. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.-J.; Chen, J.-J.; Lin, Z.-Q.; Li, W.-W.; Sheng, G.-P.; Yu, H.-Q. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nat. Commun. 2013, 4, 2249. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, H.; Ilyas, N.; Akhtar, N.; Raja, N.I.; Zainab, T.; Shah, T.; Ahmad, A.; Ahmad, P. Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. Ecotoxicol. Environ. Saf. 2021, 223, 112519. [Google Scholar] [CrossRef]
- Doklega, S.M.; El-Ezz, S.F.A.; Mostafa, N.A.; Dessoky, E.S.; Abdulmajeed, A.M.; Darwish, D.B.E.; Alzuaibr, F.M.; El-Yazied, A.A.; El-Mogy, M.M.; Mahmoud, S.F.; et al. Effect of titanium and vanadium on antioxidants content and productivity of red cabbage. Hortic. 2022, 8, 481. [Google Scholar] [CrossRef]
- Haghighi, M.; Heidarian, S.; Teixeira da Silva, J.A. The effect of titanium amendment in N-withholding nutrient solution on physiological and photosynthesis attributes and micronutrient uptake of tomato. Biol. Trace Elem. Res. 2012, 150, 381–390. [Google Scholar] [CrossRef]
- Prusiński, J.; Kaszkowiak, E. Effect of titanium on yellow lupin yielding (Lupinus luteus L.). Electron. J. Pol. Agric. Univ. 2005, 8, 36–45. Available online: http://www.ejpau.media.pl/volume8/issue2/abs-36.html (accessed on 19 December 2021).
- Hattori, T.; Inanaga, S.; Araki, H.; An, P.; Morita, S.; Luxová, M.; Lux, A. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant. 2005, 123, 459–466. [Google Scholar] [CrossRef]
- El-Kareem, M.G.; Aal, A.A.; Mohamed, A. The synergistic effects of using silicon and selenium on fruiting of Zaghloul date palm (Phoenix dectylifera L.). Int. J. Agric. Biol. Eng 2014, 8, 259–262. Available online: https://api.semanticscholar.org/CorpusID:44056044 (accessed on 19 December 2021).
- Kleiber, T.; Krzesinski, W.; Przygocka-Cyna, K.; Spizewski, T. The response of hydroponically grown lettuce under Mn stress to differentiated application of silica sol. J. Elem. 2015, 20, 609–619. [Google Scholar] [CrossRef]
- Luyckx, M.; Hausman, J.-F.; Lutts, S.; Guerriero, G. Silicon and plants: Current knowledge and technological perspectives. Front. Plant Sci. 2017, 8, 411. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Sun, W.; Zhu, Y.-G.; Christie, P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef]
- Maghsoudi, K.; Emam, Y.; Ashraf, M. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turk. J. Bot. 2015, 39, 625–634. [Google Scholar] [CrossRef]
- Ibrahim, H.I.; Sallam, A.M.; Shaban, K.A. Impact of irrigation rates and potassium silicate fertilizer on seed production and quality of Fahl Egyptian clover and soil properties under saline conditions. Am.-Eurasian J. Agric. Environ. Sci. 2015, 15, 1245–1255. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Abdelsalam, N.R.; Fouda, M.M.; Mackled, M.I.; Al-Jaddadi, M.A.; Ali, H.M.; Siddiqui, M.H.; Kandil, E.E. Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomater. 2020, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Balakhnina, T.; Borkowska, A. Effects of silicon on plant resistance to environmental stresses. Review. Int. Agrophys. 2013, 27, 225–232. [Google Scholar] [CrossRef]
- Guntzer, F.; Keller, C.; Meunier, J.-D. Benefits of plant silicon for crops: A review. Agron. Sustain. Dev. 2012, 32, 201–213. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Ma, J.F.; Bélanger, R.R. Role of silicon in plants. Front. Plant Sci. 2017, 8, 1858. [Google Scholar] [CrossRef]
- Maghsoudi, K.; Emam, Y.; Pessarakli, M. Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J. Plant Nutr. 2016, 39, 1001–1015. [Google Scholar] [CrossRef]
- Saleem, Q.T.S.; Joody, A.T. Effect of silicon, calcium and boron on apple leaf minerals content. Iraqi J. Agric. Sci. 2019, 50, 296–301. [Google Scholar] [CrossRef]
- Wang, B.; Chu, C.; Wei, H.; Zhang, L.; Ahmad, Z.; Wu, S.; Xie, B. Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environ. Pollut. 2020, 267, 115411. [Google Scholar] [CrossRef]
- Świerczyński, S.; Zydlik, Z.; Kleiber, T. The influence of foliar nutrition of apple trees with silicon on growth and yield as well as mineral content in leaves and fruits. Agronomy 2022, 12, 1680. [Google Scholar] [CrossRef]
- Al-Hamadani, Z.; Joody, A. Effect of sewage and silicon fertilization on the growth of peach trees. Plant Arch. 2021, 21, 1395. [Google Scholar] [CrossRef]
- Rahmani, N.; Ahlawat, T.; Kumar, S.; Mohammadi, N. Improving productivity in Mango (Mangifera indica L.) cv. Kesar through foliar sprays of silicon and salicylic acid. Int. J. Chem. Stud. 2017, 5, 1440–1443. [Google Scholar]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andreotti, C. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef]
- Aal, J.; Karetha, K. Effect of foliar application of biostimulants and silicon on fruit set and drop of mango (Mangifera indica L.) cv. Kesar. J. Pharm. Innov. 2022, 11, 591–595. [Google Scholar] [CrossRef]
- Elsheery, N.I.; Helaly, M.N.; El-Hoseiny, H.M.; Alam-Eldein, S.M. Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 2020, 10, 558. [Google Scholar] [CrossRef]
- Gad, M.; Abdel-Mohsen, M.; Zagzog, O. Improving the yield and fruiting characteristics of Ewais mango cultivar by spraying with Nano-chitosan and Nano-potassium silicate. Sci. J. Agric. Sci. 2021, 3, 68–77. [Google Scholar] [CrossRef]
Parameter | Soil Depth (cm) | |
---|---|---|
0–30 | 30–60 | |
Mechanical analysis % | ||
Sand | 93.0 | 92.0 |
Silt | 5.0 | 4.0 |
Clay | 2.0 | 4.0 |
Textural class | Sandy | Sandy |
CaCO3 (%) | 4.2 | 5.4 |
Organic matter (%) | 0.35 | 0.20 |
pH | 7.7 | 7.8 |
EC, dS/m (Soil extraction 1:5) | 0.801 | 0.823 |
Available nutrients (mg/kg) | ||
N | 117.5 | 117.5 |
P | 18.4 | 18.0 |
K | 405 | 190 |
Soluble cations (meq/L) | ||
Ca++ | 2.30 | 2.15 |
Mg++ | 1.70 | 1.30 |
Na+ | 3.78 | 3.54 |
K+ | 0.45 | 0.40 |
Soluble anions (meq/L) | ||
HCO3− | 3.22 | 3.02 |
CL− | 4.00 | 3.5 |
SO4−− | 4.20 | 4.00 |
Treatments | Total Chlorophyll (SPAD) | Leaf Area (cm2) | Shoot Length (cm) | Shoot Thickness (mm) | |||||
---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Control | 0 | 40.706 g | 43.37 e | 71.47 g | 73.47 h | 37.12 f | 41.25 e | 6.22 f | 6.58 f |
Se | 5 mg/L | 41.60 fg | 43.68 e | 74.52 f | 75.92 g | 39.73 | 43.45 de | 6.45 e | 6.85 e |
10 mg/L | 44.05 e | 46.20 d | 80.01 d | 83.47 d | 40.49 e | 44.05 d | 7.07 c | 7.31 d | |
20 mg/L | 53.16 c | 55.02 c | 82.12 c | 87.60 c | 46.57 c | 49.46 b | 8.04 a | 8.37 a | |
Ti | 40 mg/L | 43.39 ef | 43.20 e | 77.07 e | 77.87 f | 39.69 e | 41.76 de | 6.83 d | 6.90 e |
60 mg/L | 55.70 b | 57.49 b | 85.85 b | 90.28 b | 49.11 b | 51.82 a | 8.16 a | 8.53 a | |
80 mg/L | 48.11 d | 45.96 d | 79.65 d | 83.54 d | 43.87 d | 46.66 c | 7.40 b | 7.64 c | |
Si | 50 mg/L | 42.13 fg | 44.80 de | 77.80 e | 80.68 e | 41.24 e | 43.77 d | 6.91 cd | 7.28 d |
100 mg/L | 51.832 c | 54.31 c | 82.10 c | 84.01 d | 44.47 d | 47.37 bc | 7.59 b | 7.98 b | |
150 mg/L | 58.76 a | 61.92 a | 88.22 a | 92.32 a | 52.02 a | 52.82 a | 8.12 a | 8.42 a | |
LSD0.05 | 1.83 | 2.00 | 1.84 | 1.40 | 1.71 | 2.16 | 0.21 | 0.17 |
Treatments | Shoot Number | Fruit Set % | Fruit Drop % | Fruit Yield (kg/Tree) | Fruit Yield (ton/h) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Control | Control | 38.55 h | 38.24 f | 7.87 h | 8.65 f | 82.97 a | 80.90 a | 32.07 d | 35.70 d | 51.35 d | 57.15 d |
Se | 5 mg/L | 40.58 g | 44.29 de | 8.35 g | 8.79 ef | 81.59 b | 79.12 b | 32.88 d | 37.03 cd | 52.64 d | 59.28 cd |
10 mg/L | 45.08 e | 46.08 d | 9.71 de | 10.20 c | 76.87 d | 73.59 d | 34.90 bc | 37.66 c | 55.87 bc | 60.29 c | |
20 mg/L | 49.58 c | 52.88 b | 10.37 c | 10.69 b | 73.31 f | 68.75 f | 36.56 b | 40.85 b | 58.53 b | 65.39 b | |
Ti | 40 mg/L | 42.83 f | 44.48 de | 9.18 f | 9.07 e | 80.50 b | 76.64 c | 32.69 d | 36.79 cd | 52.32 d | 58.89 cd |
60 mg/L | 53.44 b | 55.67 a | 10.66 b | 11.19 a | 70.32 g | 65.75 g | 39.88 a | 43.90 a | 63.84 a | 70.27 a | |
80 mg/L | 44.62 e | 48.47 c | 9.91 d | 10.28 c | 75.59 e | 72.94 d | 34.97 bc | 38.33 c | 55.97 bc | 61.50 c | |
Si | 50 mg/L | 43.62 ef | 43.22 e | 9.52 e | 9.64 d | 78.22 c | 75.52 c | 33.11 cd | 37.71 c | 53.00 cd | 60.37 c |
100 mg/L | 47.08 d | 48.85 c | 10.23 c | 10.52 bc | 74.43 ef | 70.67 e | 36.38 b | 40.19 b | 58.23 b | 64.33 b | |
150 mg/L | 56.04 a | 57.76 a | 10.96 a | 11.42 a | 65.68 h | 62.50 h | 41.66 a | 44.70 a | 66.66 a | 71.52 a | |
LSD0.05 | 1.58 | 2.32 | 0.25 | 0.32 | 1.26 | 1.50 | 1.80 | 1.55 | 2.89 | 2.48 |
Treatments | Fruit Weight (g) | Fruit Size (cm3) | Fruit Length (cm) | Fruit Diameter (cm) | |||||
---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Control | 0 | 449.01 f | 458.63 h | 460.21 f | 477.63 h | 9.85 f | 10.12 f | 8.22 f | 8.26 f |
Se | 5 mg/L | 467.83 e | 477.33 g | 486.03 e | 497.53 g | 10.39 e | 10.44 ef | 8.28 f | 8.47 e |
10 mg/L | 493.80 d | 513.42 e | 514.20 d | 532.42 e | 11.28 d | 11.70 d | 8.70 e | 9.32 d | |
20 mg/L | 539.69 b | 542.09 c | 560.29 b | 562.09 c | 12.38 c | 12.47 c | 9.86 c | 10.37 b | |
Ti | 40 mg/L | 468.42 e | 488.49 f | 488.42 e | 510.87 f | 10.50 e | 10.76 e | 8.44 ef | 8.63 e |
60 mg/L | 566.53 a | 566.10 b | 586.73 a | 584.50 b | 13.26 b | 13.43 b | 10.26 b | 10.96 a | |
80 mg/L | 513.47 c | 516.46 e | 533.47 c | 536.86 e | 12.05 c | 12.05 cd | 9.15 d | 9.46 d | |
Si | 50 mg/L | 476.93 e | 495.53 f | 497.13 e | 514.33 f | 10.78 e | 10.78 e | 8.64 e | 8.66 e |
100 mg/L | 530.22 b | 525.08 d | 550.62 b | 551.68 d | 12.31 c | 12.31 c | 9.60 c | 9.81 c | |
150 mg/L | 571.00 a | 584 a | 589.10 a | 603.00 a | 14.59 a | 15.12 a | 10.82 a | 11.10 a | |
LSD0.05 | 13.23 | 8.57 | 14.62 | 9.116 | 0.47 | 0.43 | 0.28 | 0.20 |
Treatments | Fruit Firmness (kg/cm2) | Pulp Weight (g) | Seed Weight (g) | ||||
---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Control | 0 | 1.21 e | 1.22 e | 363.03 e | 367.22 f | 42.07 f | 43.23 g |
Se | 5 mg/L | 1.30 d | 1.30 d | 379.94 cd | 382.26 e | 42.91 ef | 44.70 fg |
10 mg/L | 1.40 c | 1.47 c | 394.24 c | 406.42 c | 44.55 ef | 49.31 e | |
20 mg/L | 1.55 b | 1.59 b | 428.48 ab | 422.54 b | 53.67 c | 54.94 c | |
Ti | 40 mg/L | 1.26 de | 1.31 d | 377.22 d | 391.25 d | 43.79 ef | 44.86 fg |
60 mg/L | 1.73 a | 1.70 a | 442.96 a | 437.22 a | 60.34 b | 62.26 b | |
80 mg/L | 1.51 b | 1.48 c | 416.13 b | 408.76 c | 45.22 de | 50.54 de | |
Si | 50 mg/L | 1.31 d | 1.38 d | 384.93 cd | 396.47 d | 42.93 ef | 46.44 f |
100 mg/L | 1.55 b | 1.49 c | 428.29 ab | 412.99 c | 47.17 d | 52.25 d | |
150 mg/L | 1.77 a | 1.69 a | 438.04 a | 443.74 a | 65.80 a | 69.32 a | |
LSD0.05 | 0.07 | 0.08 | 13.82 | 8.81 | 2.33 | 2.11 |
Treatments | TSS% | Acidity% | TSS-Acidity | VC (mg/100 mL Juice) | |||||
---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Control | 0 | 12.88 f | 13.65 e | 1.41 a | 1.40 a | 9.13 g | 9.72 f | 33.80 e | 35.18 d |
Se | 5 mg/L | 13.30 ef | 13.60 e | 1.38 b | 1.37 b | 9.67 f | 9.94 f | 34.85 de | 36.10 d |
10 mg/L | 14.51 c | 15.63 c | 1.32 cd | 1.30 c | 10.98 d | 11.99 d | 36.62 c | 37.86 bc | |
20 mg/L | 15.62 b | 16.26 b | 1.29 de | 1.25 e | 12.10 b | 12.97 b | 37.24 c | 38.67 b | |
Ti | 40 mg/L | 13.48 de | 14.19 e | 1.40 ab | 1.34 b | 9.62 f | 10.57 e | 34.54 e | 36.10 d |
60 mg/L | 15.88 b | 16.36 b | 1.27 e | 1.30 cd | 11.64 bc | 12.42 cd | 39.91 b | 41.71 a | |
80 mg/L | 14.73 c | 16.12 bc | 1.32 cd | 1.22 f | 12.07 b | 13.37 b | 36.92 c | 38.758 b | |
Si | 50 mg/L | 13.82 d | 14.84 d | 1.33 c | 1.35 b | 10.39 e | 11.01 e | 36.07 cd | 36.64 cd |
100 mg/L | 14.96 c | 16.36 b | 1.31 cd | 1.27 de | 11.44 c | 12.87 bc | 36.76 c | 39.33 b | |
150 mg/L | 16.42 a | 17.28 a | 1.23 f | 1.19 g | 13.37 a | 14.58 a | 41.54 a | 42.12 a | |
LSD0.05 | 0.44 | 0.58 | 0.03 | 0.03 | 0.44 | 0.52 | 1.32 | 1.36 |
Treatments | Total Sugars % | Reduced Sugars % | Non Reduced Sugars % | Carotene (mg/100 g) | |||||
---|---|---|---|---|---|---|---|---|---|
2022–2023 | 2022–2023 | 2022–2023 | 2022–2023 | ||||||
Control | 0 | 9.32 e | 9.64 h | 5.34 e | 5.25 f | 3.98 d | 4.39 e | 1.26 c | 1.28 e |
Se | 5 mg/L | 9.45 e | 9.66 h | 5.52 de | 5.22 f | 3.93 d | 4.44 e | 1.27 c | 1.294 e |
10 mg/L | 10.37 d | 10.49 e | 5.80 cd | 5.86 de | 4.58 bc | 4.63 de | 1.35 b | 1.37 c | |
20 mg/L | 11.16 c | 12.07 c | 6.32 b | 6.79 b | 4.84 b | 5.28 c | 1.36 b | 1.44 b | |
Ti | 40 mg/L | 9.36 e | 9.92 gh | 5.41 e | 5.54 ef | 3.95 d | 4.37 e | 1.27 c | 1.31 de |
60 mg/L | 12.22 b | 12.77 b | 6.59 b | 7.12 a | 5.63 a | 5.65 b | 1.42 a | 1.44 b | |
80 mg/L | 10.57 d | 10.44 ef | 5.83 c | 5.96 d | 4.74 b | 4.48 e | 1.35 b | 1.43 b | |
Si | 50 mg/L | 9.62 e | 10.17 fg | 5.37 e | 5.65 de | 4.24 cd | 4.52 e | 1.28 c | 1.34 d |
100 mg/L | 11.04 c | 11.39 d | 6.32 b | 6.47 c | 4.72 b | 4.92 d | 1.40 a | 1.45 ab | |
150 mg/L | 13.02 a | 14.06 a | 7.10 a | 7.14 a | 5.92 a | 6.92 a | 1.44 a | 1.48 a | |
LSD0.05 | 0.38 | 0.29 | 0.29 | 0.31 | 0.39 | 0.33 | 0.04 | 0.03 |
Treatments | N% | P% | K% | ||||
---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Control | 0 | 1.29 g | 1.39 g | 0.45 f | 0.50 f | 2.25 f | 2.30 g |
Se | 5 mg/L | 1.33 g | 1.44 f | 0.48 ef | 0.52 ef | 2.27 f | 2.32 g |
10 mg/L | 1.46 ef | 1.49 e | 0.51 d | 0.58 d | 2.41 d | 2.36 f | |
20 mg/L | 1.57 c | 1.61 c | 0.55 c | 0.62 c | 2.38 d | 2.41 e | |
Ti | 40 mg/L | 1.41 f | 1.44 f | 0.48 def | 0.52 ef | 2.33 e | 2.35 f |
60 mg/L | 1.64 b | 1.67 b | 0.62 b | 0.64 b | 2.47 c | 2.49 c | |
80 mg/L | 1.50 de | 1.53 d | 0.54 c | 0.60 cd | 2.45 c | 2.43 de | |
Si | 50 mg/L | 1.426 f | 1.47 ef | 0.51 de | 0.54 e | 2.46 c | 2.46 cd |
100 mg/L | 1.54 cd | 1.57 cd | 0.54 c | 0.61 c | 2.52 b | 2.56 b | |
150 mg/L | 1.75 a | 1.80 a | 0.70 a | 0.71 a | 2.63 a | 2.66 a | |
LSD0.05 | 0.05 | 0.04 | 0.03 | 0.02 | 0.04 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, K.F.; Górnik, K.; Awad, R.M.; Ayoub, A.; Abada, H.S.; Mosa, W.F.A. Influence of Selenium, Titanium, and Silicon Nanoparticles on the Growth, Yield, and Fruit Quality of Mango under Drought Conditions. Horticulturae 2023, 9, 1231. https://doi.org/10.3390/horticulturae9111231
Almutairi KF, Górnik K, Awad RM, Ayoub A, Abada HS, Mosa WFA. Influence of Selenium, Titanium, and Silicon Nanoparticles on the Growth, Yield, and Fruit Quality of Mango under Drought Conditions. Horticulturae. 2023; 9(11):1231. https://doi.org/10.3390/horticulturae9111231
Chicago/Turabian StyleAlmutairi, Khalid F., Krzysztof Górnik, Rehab M. Awad, Ahmed Ayoub, Hesham S. Abada, and Walid F. A. Mosa. 2023. "Influence of Selenium, Titanium, and Silicon Nanoparticles on the Growth, Yield, and Fruit Quality of Mango under Drought Conditions" Horticulturae 9, no. 11: 1231. https://doi.org/10.3390/horticulturae9111231
APA StyleAlmutairi, K. F., Górnik, K., Awad, R. M., Ayoub, A., Abada, H. S., & Mosa, W. F. A. (2023). Influence of Selenium, Titanium, and Silicon Nanoparticles on the Growth, Yield, and Fruit Quality of Mango under Drought Conditions. Horticulturae, 9(11), 1231. https://doi.org/10.3390/horticulturae9111231