Bioactive Compounds, Amino Acids, Fatty Acids, and Prebiotics in the Seed of Mahuad (Lepisanthes rubiginosa (Roxb.) Leenh)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Proximate Analysis
2.4. Quantification of Individual Phenolic Acids and Flavonoids by HPLC
2.5. Quantification of Amino Acids by LC/MS/MS
2.6. Quantification of Sugars and Oligosaccharides by HPLC
2.7. Quantification of Fatty Acids
2.8. FTIR Measurements
3. Results
3.1. Proximate Analysis
3.2. Quantification of Individual Phenolic Acids and Flavonoids in LRL Seed
3.3. Profile and Content of Amino Acids in LRL Seeds
3.4. Sugar and Oligosaccharide Content in LRL Seeds
3.5. Profile and Content of Fatty Acids in LRL Seeds
3.6. Spectrum of LRL Seed by FTIR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mudiana, D.; Ariyanti, E.E. Katilayu (Lepisanthes rubiginosa (Roxb.) Leenh.) Population In Mt. Baung Nature Tourism Park. IOP Conf. Ser. Earth Environ. Sci. 2021, 743, 012023. [Google Scholar] [CrossRef]
- Hasan, M.M.; Hossain, A.; Shamim, A.; Rahman, M.M. Phytochemical and Pharmacological Evaluation of Ethanolic Extract of Lepisanthes rubiginosa L. Leaves. BMC Complement. Altern. Med. 2017, 17, 496. [Google Scholar] [CrossRef]
- Barua, S.; Rana, S.; Billah, M.; Naim, Z.; Raju, G. Pharmacological, Phytochemical and Physicochemical Properties of Methanol Extracts of Erioglossum Rubiginosum Barks. J. Health Sci. 2013, 3, 51–62. [Google Scholar]
- Chuangbunyat, J.; Teerawutgulrag, A.; Pyne, S.G.; Liawruangrath, S.; Liawruangrath, B. A Comparative Study of the Essential Oil from Flowers and Fruits of Lepisanthes rubiginosa (Roxb.) Leenh. Acta Pharm. Sci. 2011, 53, 535–542. [Google Scholar]
- Chumroenphat, T.; Bunyatratchata, A.; Siriamornpun, S. Under-Utilized Wild Fruit Lepisanthes rubiginosa (Roxb.) Leenh: A Discovery of Novel Lycopene and Anthocyanin Source and Bioactive Compound Profile Changes Associated with Drying Conditions. Dry. Technol. 2023, 2023, 1–12. [Google Scholar] [CrossRef]
- Tarmizi, N.M.; Halim, S.A.S.A.; Hasain, Z.; Ramli, E.S.M.; Kamaruzzaman, M.A. Genus Lepisanthes: Unravelling Its Botany, Traditional Uses, Phytochemistry, and Pharmacological Properties. Pharmaceuticals 2022, 15, 1261. [Google Scholar] [CrossRef] [PubMed]
- Looi, S.K.; Zainol, M.K.; Mohd Zin, Z.; Hamzah, Y.; MohdMaidin, N. Antioxidant and Antibacterial Activities in the Fruit Peel, Flesh and Seed of Ceri Terengganu (Lepisanthes Alata Leenh.). Food Res. 2020, 4, 1600–1610. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kubola, J.; Siriamornpun, S.; Meeso, N. Phytochemicals, Vitamin C and Sugar Content of Thai Wild Fruits. Food Chem. 2011, 126, 972–981. [Google Scholar] [CrossRef]
- Saensouk, S.; Senavongse, R.; Papayrata, C.; Chumroenphat, T. Evaluation of Color, Phytochemical Compounds and Antioxidant Activities of Mulberry Fruit (Morus Alba L.) during Ripening. Horticulturae 2022, 8, 1146. [Google Scholar] [CrossRef]
- Barboni, T.; Cannac, M.; Chiaramonti, N. Effect of Cold Storage and Ozone Treatment on Physicochemical Parameters, Soluble Sugars and Organic Acids in Actinidia Deliciosa. Food Chem. 2010, 121, 946–951. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Chumroenphat, T.; Somboonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. Changes in Curcuminoids and Chemical Components of Turmeric (Curcuma Longa L.) under Freeze-Drying and Low-Temperature Drying Methods. Food Chem. 2021, 339, 128121. [Google Scholar] [CrossRef] [PubMed]
- Sabater-Molina, M.; Larqué, E.; Torrella, F.; Zamora, S. Dietary Fructooligosaccharides and Potential Benefits on Health. J. Physiol. Biochem. 2009, 65, 315–328. [Google Scholar] [CrossRef]
- Avigad, G.; Dey, P.M. 4—Carbohydrate Metabolism: Storage Carbohydrates. In Plant Biochemistry; Dey, P.M., Harborne, J.B., Eds.; Academic Press: London, UK, 1997; pp. 143–204. ISBN 978-0-12-214674-9. [Google Scholar]
- He, L.; Zhang, F.; Jian, Z.; Sun, J.; Chen, J.; Liapao, V.; He, Q. Stachyose Modulates Gut Microbiota and Alleviates Dextran Sulfate Sodium-Induced Acute Colitis in Mice. Saudi J. Gastroenterol. 2020, 26, 153–159. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Pickova, J. Importance of Knowledge on Lipid Composition of Foods to Support Development towards Consumption of Higher Levels of N-3 Fatty Acids via Freshwater Fish. Physiol Res 2009, 58, S39–S45. [Google Scholar] [CrossRef]
- Tian, J.; Wang, X.; Zhang, X.; Zhang, C.; Chen, X.; Dong, M.; Rui, X.; Zhang, Q.; Fang, Y.; Li, W. Isolation, Structural Characterization and Neuroprotective Activity of Exopolysaccharide from Paecilomyces Cicada TJJ1213. Int. J. Biol. Macromol. 2021, 183, 1034–1046. [Google Scholar] [CrossRef]
- Wongsa, P.; Phatikulrungsun, P.; Prathumthong, S. FT-IR Characteristics, Phenolic Profiles and Inhibitory Potential against Digestive Enzymes of 25 Herbal Infusions. Sci. Rep. 2022, 12, 6631. [Google Scholar] [CrossRef]
- Bensemmane, N.; Bouzidi, N.; Daghbouche, Y.; Garrigues, S.; De La Guardia, M.; El Hattab, M. Quantification of Phenolic Acids by Partial Least Squares Fourier-transform Infrared (PLS-FTIR) in Extracts of Medicinal Plants. Phytochem. Anal. 2021, 32, 206–221. [Google Scholar] [CrossRef]
- Čopíková, J.; Černá, M.; Novotná, M.; Kaasová, J.; Synytsya, A. Application of FT-IR Spectroscopy in Detection of Food Hydrocolloids in Confectionery Jellies and Food Supplements. Czech J. Food Sci. 2001, 19, 51–56. [Google Scholar] [CrossRef]
- Hong, T.; Yin, J.-Y.; Nie, S.-P.; Xie, M.-Y. Applications of Infrared Spectroscopy in Polysaccharide Structural Analysis: Progress, Challenge and Perspective. Food Chem. X 2021, 12, 100168. [Google Scholar] [CrossRef] [PubMed]
- Raziq, S.; Anwar, F.; Mahmood, Z.; Shahid, S.A.; Nadeem, R. Characterization of Seed Oils from Different Varieties of Watermelon [Citrullus Lanatus (Thunb.)] from Pakistan. Grasas Y Aceites 2012, 63, 365–372. [Google Scholar] [CrossRef]
- Aboagarib, E.A.; Yang, R.; Hua, X. Physicochemical, Nutritional, and Functional Characteristics of Seeds, Peel and Pulp of Grewia Tenax (Forssk) Fiori Fruits. Trop. J. Pharm. Res. 2015, 14, 2247–2254. [Google Scholar] [CrossRef]
- Mutua, J.K.; Imathiu, S.; Owino, W. Evaluation of the Proximate Composition, Antioxidant Potential, and Antimicrobial Activity of Mango Seed Kernel Extracts. Food Sci. Nutr. 2017, 5, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Wrigley, C.W. Our View, as Scientists, of the Grains We Grow and Use. Sci. Technol. Eng. J. STEJ 2020, 6, 1–15. [Google Scholar]
- Bolade, M.K.; Buraimoh, M.S. Textural and Sensory Quality Enhancement of Sorghum Tuwo. Int. J. Food Sci. Tech. 2006, 41, 115–123. [Google Scholar] [CrossRef]
- Koehler, P.; Wieser, H. Chemistry of Cereal Grains. In Handbook on Sourdough Biotechnology; Gobbetti, M., Gänzle, M., Eds.; Springer: New York, NY, USA, 2013; pp. 11–45. ISBN 978-1-4614-5424-3. [Google Scholar]
- Mohd Esa, N.; Abdul Kadir, K.-K.; Amom, Z.; Azlan, A. Improving the Lipid Profile in Hypercholesterolemia-Induced Rabbit by Supplementation of Germinated Brown Rice. J. Agric. Food Chem. 2011, 59, 7985–7991. [Google Scholar] [CrossRef]
- Kaur, J.; Gulati, M.; Singh, S.K.; Kuppusamy, G.; Kapoor, B.; Mishra, V.; Gupta, S.; Arshad, M.F.; Porwal, O.; Jha, N.K.; et al. Discovering Multifaceted Role of Vanillic Acid beyond Flavours: Nutraceutical and Therapeutic Potential. Trends Food Sci. Technol. 2022, 122, 187–200. [Google Scholar] [CrossRef]
- Chang, T.-S. Natural Melanogenesis Inhibitors Acting Through the Down-Regulation of Tyrosinase Activity. Materials 2012, 5, 1661–1685. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of Antioxidant Activity, Anthocyanins, Carotenoids, and Phenolics of Three Native Fresh and Sun-Dried Date (Phoenix Dactylifera L.) Varieties Grown in Oman. J. Agric. Food Chem. 2005, 53, 7592–7599. [Google Scholar] [CrossRef]
- Arpit Saxena, R.H.; Raja Fayad, A.R.S. Ginger Protects the Liver against the Toxic Effects of Xenobiotic Compounds: Preclinical Observations. J. Nutr. Food Sci. 2013, 3, 5. [Google Scholar] [CrossRef]
- Boots, A.W.; Haenen, G.R.M.M.; Bast, A. Health Effects of Quercetin: From Antioxidant to Nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Sokół-Łętowska, A.; Oszmiański, J.; Wojdyło, A. Antioxidant Activity of the Phenolic Compounds of Hawthorn, Pine and Skullcap. Food Chem. 2007, 103, 853–859. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Semwal, D.K.; Semwal, R.B.; Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients 2016, 8, 90. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, P.; Li, X.; McKnight, J.R.; Satterfield, M.C.; et al. Proline and Hydroxyproline Metabolism: Implications for Animal and Human Nutrition. Amino Acids 2011, 40, 1053–1063. [Google Scholar] [CrossRef]
- Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivié, M.; Hu, C.-A.A.; Ren, W.; Yin, Y. The Role of Methionine on Metabolism, Oxidative Stress, and Diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Guo, X.; Zhao, D.; Xu, C.; Sun, H.; Yang, Q.; Wei, Q.; Si, H.; Wang, K.; Zhang, T. Effect of Methionine Supplementation on Serum Metabolism and the Rumen Bacterial Community of Sika Deer (Cervus Nippon). Animals 2022, 12, 1950. [Google Scholar] [CrossRef]
- Galili, G.; Amir, R. Fortifying Plants with the Essential Amino Acids Lysine and Methionine to Improve Nutritional Quality. Plant Biotechnol. J. 2013, 11, 211–222. [Google Scholar] [CrossRef]
- Elwan, H.; Elnesr, S.; Xu, Q.; Xie, C.; Dong, X.; Zou, X. Effects of In Ovo Methionine-Cysteine Injection on Embryonic Development, Antioxidant Status, IGF-I and TLR4 Gene Expression, and Jejunum Histomorphometry in Newly Hatched Broiler Chicks Exposed to Heat Stress during Incubation. Animals 2019, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.E.; van Lingen, H.J.; da Silva-Pires, P.G.; Batonon-Alavo, D.I.; Rouffineau, F.; Kebreab, E. Evaluating Growth Response of Broiler Chickens Fed Diets Supplemented with Synthetic DL-Methionine or DL-Hydroxy Methionine: A Meta-Analysis. Poult. Sci. 2022, 101, 101762. [Google Scholar] [CrossRef] [PubMed]
- Leuchtenberger, W.; Huthmacher, K.; Drauz, K. Biotechnological Production of Amino Acids and Derivatives: Current Status and Prospects. Appl. Microbiol. Biotechnol. 2005, 69, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Engrola, S.; Colen, R.; Conceição, L.E.C.; Dias, J.; Costas, B. Dietary Methionine Supplementation Improves the European Seabass (Dicentrarchus Labrax) Immune Status Following Long-Term Feeding on Fishmeal-Free Diets. Br. J. Nutr. 2020, 124, 890–902. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, J.; Khondkar, W.; Morelli, M.B.; Wang, X.; Santulli, G.; Trimarco, V. Arginine and Endothelial Function. Biomedicines 2020, 8, 277. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, G. Composition of Amino Acids and Related Nitrogenous Nutrients in Feedstuffs for Animal Diets. Amino Acids 2020, 52, 523–542. [Google Scholar] [CrossRef]
- Flickinger, E.A.; Fahey, G.C. Pet Food and Feed Applications of Inulin, Oligofructose and Other Oligosaccharides. Br. J. Nutr. 2002, 87, S297–S300. [Google Scholar] [CrossRef] [PubMed]
- Hayes, K.C. Dietary Fat and Heart Health: In Search of the Ideal Fat. Asia Pac. J. Clin. Nutr. 2002, 11 (Suppl. S7), S394–S400. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (Ed.) Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation: 10–14 November 2008, Geneva; FAO Food and Nutrition Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; ISBN 978-92-5-106733-8. [Google Scholar]
- Bobasa, E.M.; Srivarathan, S.; Phan, A.D.T.; Netzel, M.E.; Cozzolino, D.; Sultanbawa, Y. Influence of Blanching on the Bioactive Compounds of Terminalia Ferdinandiana Exell Fruit during Storage. Food Meas. 2023, 17, 244–252. [Google Scholar] [CrossRef]
- Li, D.; Yao, T.; Siriamornpun, S. Alpha-Linolenic Acid Content of Commonly Available Nuts in Hangzhou. Int. J. Vitam. Nutr. Res. 2006, 76, 18–21. [Google Scholar] [CrossRef]
Parameter | Lepisanthes rubiginosa (Roxb.) Leenh Seed |
---|---|
Moisture (%) | 29.1 ± 0.5 |
Crude Protein (%) | 9.6 ± 0.2 |
Crude Fat (%) | 2.1 ± 0.0 |
Crude Fiber (%) | 15.9 ± 0.2 |
Ash (%) | 1.7 ± 0.1 |
Carbohydrate (%) | 41.6 ± 0.3 |
Parameter | Concentration (µg/g) | Percentage (%) |
---|---|---|
Phenolic acids | ||
gallic acid | 6.6 ± 0.1 | 11.9 |
protocatechuic acid | 0.2 ± 0.0 | 0.4 |
p-hydroxybenzoic acid | 14.3 ± 0.2 | 25.7 |
vanillic acid | 16.9 ± 0.5 | 30.4 |
syringic acid | 5.0 ± 0.1 | 9.0 |
vanillin | 6.8 ± 0.2 | 12.2 |
p-coumaric acid | 0.6 ± 0.0 | 1.1 |
ferulic acid | 2.6 ± 0.1 | 4.7 |
sinapic acid | 1.1 ± 0.1 | 2.0 |
cinnamic acid | 0.8 ± 0.0 | 1.4 |
gentisic acid | 0.7 ± 0.0 | 1.3 |
Total phenolic acids | 55.6 ± 0.9 | 100 |
Flavonoids | ||
rutin | 3.5 ± 0.1 | 3.8 |
quercetin | 57.5 ± 0.3 | 62.0 |
apigenin | 11.1 ± 0.1 | 12.0 |
myricetin | 20.6 ± 0.0 | 22.2 |
Total flavonoids | 92.7 ± 0.5 | 100 |
Amino Acids | Concentration (µg/g) | Percentage (%) |
---|---|---|
Essential AA | ||
arginine | 164.3 ± 11.4 | 13.3 |
histidine | 5.0 ± 0.2 | 0.4 |
isoleucine | 7.3 ± 0.4 | 0.6 |
leucine | 15.2 ± 0.7 | 1.2 |
lysine | 24.6 ± 1.1 | 2.0 |
methionine | 230.7 ± 6.6 | 18.6 |
phenylalanine | 7.1 ± 0.3 | 0.6 |
threonine | 9.8 ± 0.7 | 0.8 |
tryptophan | 8.1 ± 0.3 | 0.7 |
valine | 43.7 ± 1.0 | 3.5 |
Total essential AA | 515.8 ± 22.6 | 41.6 |
Nonessential AA | ||
alanine | 37.9 ± 2.3 | 3.1 |
asparagine | 4.1 ± 0.2 | 0.3 |
aspartic acid | 69.2 ± 2.4 | 5.6 |
cysteine | ND | ND |
glutamine | 19.2 ± 1.0 | 1.6 |
glutamic acid | 72.7 ± 0.9 | 5.9 |
glycine | 0.3 ± 0.0 | 0.0 |
proline | 437.5 ± 5.6 | 35.3 |
serine | 9.5 ± 0.5 | 0.8 |
tyrosine | 72.4 ± 0.8 | 5.8 |
Total nonessential AA | 722.8 ± 13.8 | 58.4 |
Total amino acids | 1238.6 ± 14.5 | 100 |
Individual Sugars | Contents (mg/g) |
---|---|
Stachyose | 4.2 ± 0.1 |
Fructooligosaccharide | 5.3 ± 0.0 |
Sucrose | 93.5 ± 0.2 |
Glucose | 65.0 ± 0.1 |
Fructose | ND |
Mannitol | ND |
Sorbitol | ND |
Fatty Acids | Concentration (g/100g) | % Composition |
---|---|---|
Saturated fatty acids | ||
Palmitic acid (C16:0) | 0.30 | 41.10 |
Stearic acid (C18:0) | 0.03 | 4.11 |
Behenic acid (C22:0) | 0.01 | 1.37 |
Total saturated fatty acids (SFA) | 0.34 | 46.58 |
Unsaturated fatty acids | ||
cis-9-Oleic acid (C18:1n9c) | 0.20 | 27.40 |
cis-11-Eicosenoic acid (C20:1n11) | 0.04 | 5.48 |
Total monounsaturated fatty acids (MUFA) | 0.24 | 32.88 |
cis-9,12-Linoleic acid (C18:2n6) | 0.14 | 19.18 |
cis-11,14-Eicosadienoic acid (C20:2) | 0.01 | 1.37 |
Total polyunsaturated fatty acid (PUFA) | 0.15 | 20.55 |
Total unsaturated fatty acids | 0.39 | 53.42 |
Total fatty acids | 0.73 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunyatratchata, A.; Chumroenphat, T.; Saensouk, S.; Siriamornpun, S. Bioactive Compounds, Amino Acids, Fatty Acids, and Prebiotics in the Seed of Mahuad (Lepisanthes rubiginosa (Roxb.) Leenh). Horticulturae 2023, 9, 1159. https://doi.org/10.3390/horticulturae9101159
Bunyatratchata A, Chumroenphat T, Saensouk S, Siriamornpun S. Bioactive Compounds, Amino Acids, Fatty Acids, and Prebiotics in the Seed of Mahuad (Lepisanthes rubiginosa (Roxb.) Leenh). Horticulturae. 2023; 9(10):1159. https://doi.org/10.3390/horticulturae9101159
Chicago/Turabian StyleBunyatratchata, Apichaya, Theeraphan Chumroenphat, Surapon Saensouk, and Sirithon Siriamornpun. 2023. "Bioactive Compounds, Amino Acids, Fatty Acids, and Prebiotics in the Seed of Mahuad (Lepisanthes rubiginosa (Roxb.) Leenh)" Horticulturae 9, no. 10: 1159. https://doi.org/10.3390/horticulturae9101159
APA StyleBunyatratchata, A., Chumroenphat, T., Saensouk, S., & Siriamornpun, S. (2023). Bioactive Compounds, Amino Acids, Fatty Acids, and Prebiotics in the Seed of Mahuad (Lepisanthes rubiginosa (Roxb.) Leenh). Horticulturae, 9(10), 1159. https://doi.org/10.3390/horticulturae9101159