The Effect of One-Year Seed Spaceflight Storage on Yield, Biochemical and Mineral Characteristics of Mature Leafy Vegetables Belonging to Brassicaceae, Apiaceae and Asteraceae Families
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Protocol and Growing Conditions
2.2. Sample Preparation
2.3. Dry Matter
2.4. Mineral Composition
2.5. Ascorbic Acid
2.6. Total Polyphenols (TP)
2.7. Antioxidant Activity (AOA)
2.8. Proline
2.9. Malonic Dialdehyde
2.10. Photosynthetic Pigments
2.11. Statistical Analysis
3. Results and Discussion
3.1. Yield and Biometrical Characteristics
3.2. Photosynthetic Pigments
3.3. Antioxidant Status
3.4. Mineral Composition
3.4.1. Vanadium
3.4.2. Selenium
3.4.3. Sodium
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchheim, J.I.; Matzel, S.; Rykova, M.; Vassilieva, G.; Ponomarev, S.; Nichiporuk, I.; Hörl, M.; Moser, D.; Biere, K.; Feuerecker, M.; et al. Stress Related Shift Toward Inflammaging in Cosmonauts after Long-Duration Space Flight. Front. Physiol. 2019, 10, 85. [Google Scholar] [CrossRef]
- Visscher, A.M.; Seal, C.E.; Newton, R.J.; Frances, A.L.; Pritchard, H.W. Dry seeds and environmental extremes: Consequences for seed lifespan and germination. Funct. Plant Biol. 2016, 43, 656–668. [Google Scholar] [CrossRef]
- Tepfer, D.; Leach, S. Survival and DNA damage in plant seeds exposed for 558 and 682 days outside the International Space Station. Astrobiology 2017, 17, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Musgrave, M.E. Seeds in space. Seed Sci. Res. 2002, 12, 1–16. [Google Scholar] [CrossRef]
- Zeng, D.; Cui, J.; Yin, Y.; Zhang, M.; Shan, S.; Liu, M.Y. Proteomic analysis in different development stages on SPO generation of rice seeds after space flight. Life Sci. Space Res. 2020, 26, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Djoss, H.; Golubkina, N.; Kondratyeva, I.; Koshevarov, A.; Shkaplerov, A.; Zavarikina, T.; Nechitailo, G.; Caruso, G. Effect of spaceflight on tomato seed quality and biochemical characteristics of mature plants. Horticulturae 2021, 7, 89. [Google Scholar] [CrossRef]
- Shi, J.; Yang, B.; Feng, P.; Li, D.; Zhu, J. Induction of apoptosis by tomato using space mutation breeding in human colon cancer SW480 and HN-29 cells. J. Sci. Food Agr. 2010, 90, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.O.; Haas, F.B.; Khan, S.; Bowden, L.; Ignatz, M.; Enfissi, E.M.A.; Gawthrop, F.; Griffiths, A.; Fraser, P.D.; Rensing, S.A.; et al. Rocket science: The effect of spaceflight on germination physiology, ageing, and transcriptome of Eruca sativa seeds. Life 2020, 10. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Gao, W.-Y.; Gao, Y.; Liu, D.-L.; Huang, L.-Q. Analysis of influences of spaceflight on chemical constituents in licorice by HPLC– ESI-MS/MS. Acta Physiol. Plant. 2011, 33, 2511–2520. [Google Scholar] [CrossRef]
- Dong, Y.-Y.; Gao, W.-Y.; Zhang, J.-Z.; Zuo, B.-M.; Huang, L.-Q. Quantification of four active ingredients and fingerprint analysis of licorice (Glycyrrhiza uralensis fisch.) after spaceflight by HPLC–DAD. Res. Chem. Intermed. 2012, 38, 1719–1731. [Google Scholar] [CrossRef]
- Yuan, C.Q.; Li, Y.F.; Sun, P.; Sun, Y.H.; Zhang, G.J.; Yang, M.S.; Zhang, Y.Y.; Li, Y.; Wang, L. Asswssment of Genetic diversity and variation of Robina pseudoacacia seeds induced by short-term spaceflight based on two molecular marker systems and morphological traits. Gen. Mol. Res. 2012, 11, 4268–4277. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, Y.; Yuan, C.; Yang, Q.; Long, C.; Li, Y.; Yang, M. Assessment of genetic diversity and variation of Acer Mono Max seedlings after spaceflight. Pakistan J. Bot. 2015, 47, 197–202. [Google Scholar]
- Xianfang, W.; Long, Z.; Weixu, D.; Chunhua, L. Study of space mutation breeding in China. Appl. Life Sci. 2004, 18, 241–246. [Google Scholar]
- He, X.; Liu, M.; Lu, J.; Xue, H.; Pan, Y. Space mutation breeding: A brief Introduction of screening New floricultural, vegetable and medicinal varieties from earth-grown plants returned from China’s satellites and spaceships. In Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, 1st ed.; da Silva, J.A.T., Ed.; Global Science Books: Isleworth, UK, 2006; pp. 266–271. [Google Scholar]
- Liu, L.X.; Guo, H.J.; Zhao, L.; Gu, J.; Zhao, S. Advances in crop improvement by space mutagenesis in China. ICSC 2008, 4, 274. [Google Scholar]
- Prasad, B.; Richter, P.; Vadakedath, N.; Haag, F.W.M.; Strauch, S.M.; Mancinelli, R.; Schwarzwälder, A.; Etcheparre, E.; Gaume, N.; Lebert, M. How the space environment influences organisms: An astrobiological perspective and review. Int. J. Astrobiol. 2021, 20, 159–177. [Google Scholar] [CrossRef]
- Dutcher, F.; Hess, E.L.; Halstead, T.W. Progress in plant research in space. Adv. Space Res. 1994, 14, 159–171. [Google Scholar] [CrossRef]
- Ren, W.B.; Zhang, Y.; Deng, B.; Guo, H.; Cheng, L.; Liu, Y. Effect of space flight factors on alfalfa seeds. Afr. J. Biotechbol. 2010, 9, 7273–7279. [Google Scholar] [CrossRef]
- De Micco, V.; Arena, C.; Pignalosa, D.; Durante, M. Effects of Sparsely and Densely Ionizing Radiation on Plants. Radiat. Environ. Biophys. 2011, 50, 1–19. [Google Scholar] [CrossRef]
- Arena, C.; De Micco, V.; De Maio, A. Growth alteration and leaf biochemical responses in Phaseolus Vulgaris exposed to different doses of ionizing radiation. Plant Biol. 2014, 16 (Suppl. S1), 194–202. [Google Scholar] [CrossRef]
- Arena, C.; De Micco, V.; Aronne, G.; Pugliese, M.G.; Virzo, A.; DeMaio, A. Response of Phaseolus vulgaris L. plants to low-LET ionizing radiation: Growth and oxidative stress. Acta Astronaut. 2014, 91, 107–114. [Google Scholar] [CrossRef]
- Deyong, Z.; Jie, C.; Yishu, Y.; Meng, Z.; Shan, S.; Xin, G. Effects of space flight on expression of key proteins in rice leaves. Rice Sci. 2020, 27, 423–433. [Google Scholar] [CrossRef]
- Ferl, R.J.; Koh, J.; Denison, F.; Paul, A.L. Spaceflight induces specific alterations in the proteomes of Arabidopsis. Astrobiology 2015, 15, 32–56. [Google Scholar] [CrossRef]
- Kruse, C.P.S.; Meyers, A.D.; Basu, P.; Hutchinson, S.; Luesse, D.R.; Wyatt, S.E. Spaceflight induces novel regulatory responses in Arabidopsis seedling as recealed by combined proteomic and transcriptomic analysis. BMC Plant Biol. 2020, 20, 237. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Ciu, J.; Yin, Y.; Xiong, Y.; Liu, M.; Guan, S. Metabolomic analysis in different development stages on SP0 generation of rice seeds after space flight. Front. Plant Sci. 2021, 12, 1235. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Li, O.; Liang, Z.; Zhang, X.; Yan, K. Spaceflight breeding could improve the volatile constituents of Andrographis paniculate. Ind. Crops Prod. 2021, 171, 113967. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, Q. Report No: CNIC01139/CSNAS-0111. Space-Induced Mutation for Crop Improvement; CNIC-01139; CSNAS-0111; China Nuclear Information Centre: Beijing, China, 1997; p. 10. ISBN 7-5022-1646-4. [Google Scholar]
- Zeng, D.; Cui, J.; Yin, Y.; Dai, C.; Zhao, H.; Song, C.; Guan, S.; Cheng, D.; Sun, Y.; Lu, W. Combining proteomics and metabolomics to analyze the effects of spaceflight on rice progeny. Front. Plant Sci. 2022, 13, 900143. [Google Scholar] [CrossRef]
- AOAC Crude Protein in Cereal Grains and Oil Seeds. Official Methods of Analysis of Association of Official Analytical Chemists, 17th ed.; Method: Gaithersburg, MD, USA, 2000; pp. 23, 992. [Google Scholar]
- Golubkina, N.A.; Kekina, H.G.; Molchanova, A.V.; Antoshkina, M.S.; Nadezhkin, S.; Soldatenko, A.V. Plants Antioxidants and Methods of Their Determination; Infra-M: Moscow, Russia, 2020; (In Russian). [Google Scholar] [CrossRef]
- Ouertani, R.N.; Abid, G.; Karmous, C.; Chikha, M.B.; Boudaya, O.; Mahmoudi, H.; Mejri, S.; Jansen, K.; Ghorbel, A. Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress. AoB Plants 2021, 13, plab034. [Google Scholar] [CrossRef]
- Heath, R.L.; Parker, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic bio-membranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Jia, C.-Z.; Wang, J.-J.; Chen, D.-L.; Hu, X.-W. Seed Germination and Seed Bank Dynamics of Eruca sativa (Brassicaceae): A Weed on the Northeastern Edge of Tibetan Plateau. Front. Plant Sci. 2022, 13, 820925. [Google Scholar] [CrossRef]
- Baskin, C.; Baskin, J. Seed dormancy in Asteraveae: A global vegetation zone and taxonomic/phylogenetic assessment. Seeds Sci. Res. 2023, 1–35. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Liu, H.; Tao, J.; Zhang, K. Seed Dormancy and Germination Requirements of Torilis scabra (Apiaceae). Agronomy 2023, 13, 1250. [Google Scholar] [CrossRef]
- Arena, C.; De Micco, V.; Macaevac, E.; Quintens, R. Space radiation effects on plant and mammalian cells. Acta Austranaut. 2014, 104, 419–431. [Google Scholar] [CrossRef]
- Fleming, M.B.; Patterson, E.L.; Reeves, P.A.; Richards, C.M.; Gaines, T.A.; Walters, C. Exploring the fate of mRNA in aging seeds: Protection, destruction, or slow decay? J. Exp. Bot. 2018, 69, 4309–4321. [Google Scholar] [CrossRef] [PubMed]
- Fleming, M.B.; Hill, L.M.; Walters, C. The kinetics of ageing in dry-stored seeds: A comparison of viability loss and RNA degradation in unique legacy seed collections. Ann. Bot. 2019, 123, 1133–1146. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids as natural functional pigments. J.Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef]
- Jia, K.; Baz, L.; Al-Babili, S. From carotenoids to strigolactones. J. Exp. Bot. 2017, 69, 2189–2204. [Google Scholar] [CrossRef]
- Hashioto, H.; Uragami, C.; Cogdell, R.J. Carotenoids and photosynthesis. In Carotenoids in Nature; Springer: Cham, Switzerland, 2016; pp. 111–139. [Google Scholar]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Cao, X.; Khan, M.A.R. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biol. 2022, 24, 227–239. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Mishra, A.K.; Mohanta, Y.K.; Al-Harrasi, A. Space breeding: The next generation crops. Front. Plant Sci. 2021, 12, 771985. [Google Scholar] [CrossRef]
- Małecka, A.; Konkolewska, A.; Hanć, A.; Barałkiewicz, D.; Ciszewska, L.; Ratajczak, E.; Staszak, A.M.; Kmita, H.; Jarmuszkiewicz, W. Insight into the phytoremediation capability of Brassica juncea (v. Malopolska): Metal accumulation and antioxidant enzyme activity. Int. J. Mol. Sci. 2019, 20, 4355. [Google Scholar] [CrossRef] [PubMed]
- Golubkina, N.; Zayachkovsky, V.; Sheshnitsan, S.; Skrypnik, L.; Smirnova, T.; Antoshkina, M.; Fedotov, M.; Caruso, C. Prospects of garlic extracts, selenium and silicon application for plants protection against herbivory. Review Agriculture 2022, 12, 64. [Google Scholar] [CrossRef]
- Selvaraj, K.; Ramasabramanian, V.; Makesj Kumar, B. Phytoremediation potential of Brassica juncea in nickel contaminated soil. Paripex. Indian J. Res. 2021, 10, 150–159. [Google Scholar]
- Lim, J.-M.; Salido, A.L.; Butcher, D.J. Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem. J. 2004, 76, 3–9. [Google Scholar] [CrossRef]
- Rathore, S.S.; Shekhawat, K.; Dass, A.; Kandpal, B.K.; Singh, V.K. Phytoremediation mechanism in Indian mustard (Brassica juncea) and its enhancement through agronomic interventions. Proc. Natl. Acad. Sci. USA—India Sect. B Biol. Sci. 2017, 89, 419–427. [Google Scholar] [CrossRef]
- López-Bucio, J.S.; Ravelo-Ortega, G.; López-Bucio, J. Chromium in plant growth and development: Toxicity, tolerance and hormesis. Environ. Pollut. 2022, 312, 120084. [Google Scholar] [CrossRef]
- Sharma, A.; Kapoor, D.; Wang, J.; Shahzad, B.; Kumar, V.; Bali, A.S.; Jasrotia, S.; Zheng, B.; Yuan, H.; Yan, D. Chromium bioaccumulation and its impacts on plants: An overview. Plants 2020, 9, 100. [Google Scholar] [CrossRef]
- Ofoe, R.; Thomas, R.H.; Asiedu, S.K.; Wang-Pruski, G.; Fofana, B.; Abbey, L. Aluminum in plant: Benefits, toxicity and tolerance mechanisms. Front. Plant Sci. 2023, 13, 1085998. [Google Scholar] [CrossRef]
- Kastori, R.R.; Putnik-Delić, M.I.; Maksimović, I.V. Functions of nickel in higher plants—A review. Acta Agr. Serbica 2022, 27, 89–101. [Google Scholar] [CrossRef]
- García-Jiménez, A.; Trejo-Téllez, L.I.; Guillén-Sánchez, D.; Gómez-Merino, F.C. Vanadium stimulates pepper plant growth and flowering, increases concentrations of amino acids, sugars and chlorophylls, and modifies nutrient concentrations. PLoS ONE 2018, 13, e0201908. [Google Scholar] [CrossRef]
- Hanus-Fajerska, E.; Wiszniewska, A.; Kaminska, I. A dual role of vanadium in environmental systems—Beneficial and detrimental effects on terrestrial plants and humans. Plants 2021, 10, 1110. [Google Scholar] [CrossRef] [PubMed]
- Golubkina, N.A.; Kharchenko, V.A.; Caruso, G. Selenium: Prospects of functional food production with high antioxidant activity Reference series in phyto-chemistry. In Plant Antioxidants and Health; Ekiert, H.M., Ramawat, K.G., Arora, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Liu, H.; Xiao, C.; Qiu, T.; Deng, J.; Cheng, H.; Cong, X.; Cheng, S.; Rao, S.; Zhang, Y. Selenium regulates antioxidant, photosynthesis, and cell permeability in plants under various abiotic stresses: A review. Plants 2023, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; García-Caparrós, P.; Parvin, K.; Zulfiqar, F.; Ahmed, N.; Fujita, M. Selenium supplementation and crop plant tolerance to metal/metalloid toxicity. Front. Plant Sci. 2022, 12, 792770. [Google Scholar] [CrossRef] [PubMed]
- Cordones, M.; Al Shiblawi, F.R.; Sentenac, H. Roles and Transport of Sodium and Potassium in Plants. Met Ions Life Sci. 2016, 16, 291–324. [Google Scholar] [CrossRef]
Family | Dormancy Type | Clade | Ref. |
---|---|---|---|
Brassicaceae | Physiological, non-deep physiological | Asterids | [34] |
Asteraceae | Non-deep physiological | Rosits Rosits | [35] |
Apiaceae | Morphological, morpho-physiological | [36] |
Family | Cultivar | Seed Source | Dry Matter (%) | Height (cm) | Plant Weight (g) |
---|---|---|---|---|---|
Asteraceae (Lactuca sativa) | Moskovsky parnikovy | Control | 5.8 a | 18 b | 3.81 a |
Space | 5.5 a | 22 a | 4.43 a | ||
Petrovich | Control | 4.7 a | 23 a | 6.1 a | |
Space | 4.7 a | 23 a | 5.5 a | ||
Synthesis | Control | 4.9 a | 23 b | 3.34 b | |
Space | 4.7 a | 27 a | 4.60 a | ||
Picnic | Control | 5.9 a | 25 a | 3.48 a | |
Space | 5.6 a | 23 a | 3.07 a | ||
Brassicaceae | Brassica juncea Sudarushka | Control | 8.1 b | 28 a | 1.48 b |
Space | 9.1 a | 28 a | 1.82 a | ||
Eruca sativa Rusalochka | Control | 7.6 a | 19 b | 1.03 b | |
Space | 7.7 a | 25 a | 2.41 a | ||
Apiaceae | Anethum graveolens Kulinar | Control | 6.9 b | 30 a | 1.72 a |
Space | 8.0 a | 29 a | 1.36 b | ||
Coriandrum sativum Yubilar | Control | 5.9 a | 25 a | 1.58 a | |
Space | 6.0 a | 22 a | 1.01 b |
Family | Cultivar | Seed Source | Chl a | Chl b | Total Chl | Car | Chl a/Chl b Ratio | Chl/Car Ratio |
---|---|---|---|---|---|---|---|---|
Asteraceae (Lactuca sativa) | Moskovsky parnikovy | Control | 0.51 a | 0.30 b | 0.81 a | 0.11 a | 1.70 | 7.36 |
Space | 0.60 a | 0.38 a | 0.98 a | 0.13 a | 1.58 | 7.54 | ||
Petrovich | Control | 0.51 b | 0.32 a | 0.83 a | 0.09 b | 1.59 | 9.22 | |
Space | 0.62 a | 0.34 a | 0.96 a | 0.13 a | 1.82 | 7.38 | ||
Synthesis | Control | 0.59 a | 0.35 a | 0.94 a | 0.12 a | 1.69 | 7.83 | |
Space | 0.57 a | 0.34 a | 0.91 a | 0.11 a | 1.68 | 8.27 | ||
Picnic | Control | 0.82 a | 0.45 a | 1.27 a | 0.21 a | 1.82 | 5.05 | |
Space | 0.62 b | 0.37 b | 0.99 b | 0.12 b | 1.68 | 8.25 | ||
Brassicaceae | Brassica juncea Sudarushka | Control | 1.08 b | 0.67 b | 1.75 b | 0.18 b | 1.61 | 9.72 |
Space | 1.42 a | 0.88 a | 2.30 a | 0.24 a | 1.61 | 9.58 | ||
Eruca sativa Rusalochka | Control | 0.75 b | 0.54 b | 1.29 b | 0.11 b | 1.39 | 11.73 | |
Space | 1.27 a | 1.99 a | 3.26 a | 0.20 a | 0.64 | 16.30 | ||
Apiaceae | Anethum graveolens Kulinar | Control | 1.07 a | 1.38 a | 2.45 a | 0.035 a | 0.78 | 68.57 |
Space | 1.07 a | 1.22 a | 2.29 a | 0.020 b | 0.88 | 114.5 | ||
Coriandrum sativum Yubilar | Control | 1.00 a | 1.22 a | 2.22 a | 0.019 a | 0.82 | 246.67 | |
Space | 0.91 a | 1.06 a | 1.97 a | 0.017 a | 0.86 | 115.88 |
Family | Cultivar | Seed Source | AA (mg 100 g−1 f.w.) | AOA (mg GAE g−1 d.w.) | TP (mg GAE g−1 d.w.) | Pro (mg g−1 d.w.) | MDA (µM g−1 d.w.) |
---|---|---|---|---|---|---|---|
Asteraceae (Lactuca sativa) | Moskovsky parnikovy | Control | 19.7 a | 29.5 a | 18.8 a | 1.11 a | 0.42 a |
Space | 17.7 a | 29.5 a | 18.8 a | 1.25 a | 0.41 a | ||
Petrovich | Control | 9.8 a | 29 a | 19.2 a | 0.96 a | 0.42 a | |
Space | 11.1 a | 31.0 a | 18.8 a | 0.95 a | 0.40 a | ||
Synthesis | Control | 11.9 a | 28.7 a | 20.7 a | 0.99 a | 0.53 a | |
Space | 13.0 a | 31.1 a | 21.1 a | 1.05 a | 0.48 a | ||
Picnic | Control | 11.2 a | 26.8 a | 17.5 a | 0.85 a | 0.46 a | |
Space | 9.1 a | 27.4 a | 18.2 a | 0.96 a | 0.48 a | ||
Brassicaceae | Brassica juncea Sudarushka | Control | 26.9 a | 32.2 a | 22.1 a | 2.48 a | 0.40 b |
Space | 21.0 b | 34.9 a | 23.4 a | 1.64 b | 0.50 a | ||
Eruca sativa Rusalochka | Control | 46.3 a | 34.6 a | 24.4 a | 2.72 a | 0.42 b | |
Space | 45.6 a | 40.5 a | 22.9 a | 1.99 b | 0.54 a | ||
Apiaceae | Anethum graveolens Kulinar | Control | 18.4 a | 44.3 a | 21.2 a | 1.65 a | 0.40 a |
Space | 16.6 a | 37.3 a | 21.8 a | 1.59 a | 0.37 a | ||
Coriandrum sativum Yubilar | Control | 33.3 a | 51.3 a | 17.1 a | 1.89 a | 0.43 a | |
Space | 27.7 b | 53.7 a | 17.7 a | 1.61 a | 0.45 a |
Brassica juncea | Eruca sativa | |||
---|---|---|---|---|
Control | Space | Control | Space | |
Ca | 11,490 ± 1140 a | 10,435 ± 1040 a | 13,714 ± 1302 a | 16,693 ± 1650 a |
K | 78,751 ± 7571 a | 57,504 ± 5700 b | 78,146 ± 7798 a | 66,768 ± 6599 a |
Mg | 1804 ± 178 a | 1384 ± 131 b | 1866 ± 186 a | 1798 ± 180 a |
Na | 853 ± 85 a | 326 ± 32 b | 580 ± 58 a | 455 ± 45 b |
P | 6435 ± 649 a | 5149 ± 510 b | 4842 ± 481 a | 5294 ± 530 a |
B | 22.6 ± 1.3 a | 22.0 ± 2.1 a | 14.3 ± 1.4 a | 12.9 ± 1.3 a |
Co | 0.046 ± 0.010 a | 0.056 ± 0.005 a | 0.086 ± 0.008 a | 0.097 ± 0.010 a |
Cu | 3.92 ± 0.32 a | 3.50 ± 0.33 a | 2.98 ± 0.30 a | 3.65 ± 0.35 a |
Fe | 60.6 ± 6.0 a | 75.9 ± 7.6 a | 137 ± 13 a | 130 ± 13 a |
I | 0.23 ± 0.02 a | 0.21 ± 0.02 a | 0.50 ± 0.05 a | 0.38 ± 0.03 b |
Li | 0.65 ± 0.06 a | 0.73 ± 0.07 a | 1.42 ± 0.13 a | 1.45 ± 0.13 a |
Mn | 10.0 ± 0.9 b | 17.2 ± 1.7 a | 15.8 ± 1.5 a | 16.8 ± 1.6 a |
Mo | 10.6 ± 0.9 a | 8.73 ± 0.85 a | 13.7 ± 1.3 a | 15.6 ± 1.5 a |
Se | 0.13 ± 0.01 b | 0.25 ± 0.01 a | 0.09 ± 0.01 c | 0.29 ± 0.03 a |
Si | 74.1 ± 7.1 b | 94.6 ± 9.2 a | 186 ± 18.2 a | 106 ± 10 b |
Zn | 39.1 ± 3.8 a | 38.4 ± 3.8 a | 30.8 ± 3.0 a | 29.5 ± 2.9 a |
Al | 13.2 ± 1.3 b | 17.0 ± 1.5 a | 43.7 ± 4.3 a | 22.3 ± 2.2 b |
As | 0.140 ± 0.010 a | 0.055 ± 0.005 b | 0.150 ± 0.01 a | 0.120 ± 0.01 b |
Cd | 0.085 ± 0.010 a | 0.077 ± 0.007 a | 0.170 ± 0.010 a | 0.160 ± 0.01 a |
Cr | 0.19 ± 0.02 b | 0.47 ± 0.04 a | 0.30 ± 0.03 a | 0.22 ± 0.02 b |
Ni | 0.20 ± 0.02 b | 0.32 ± 0.03 a | 0.37 ± 0.03 b | 0.58 ± 0.05 a |
Pb | 0.13 ± 0.01 b | 0.20 ± 0.02 a | 0.35 ± 0.03 a | 0.27 ± 0.02 b |
Sr | 51.4 ± 5.0 a | 38.9 ± 3.6 b | 71.2 ± 7.0 a | 57.0 ± 5.6 b |
V | 0.041 ± 0.001 b | 0.071 ± 0.007 a | 0.13 ± 0.01 a | 0.10 ± 0.01 b |
Ca/Sr | 224 | 268 | 193 | 293 |
K/Na | 92 | 176 | 135 | 147 |
Anethum graveolens L. | Coriandrum sativum L. | |||
---|---|---|---|---|
Control | Space | Control | Space | |
Ca | 12,117 ± 1200 a | 9587 ± 933 b | 8321 ± 813 a | 6199 ± 596 b |
K | 90,870 ± 9000 a | 78,268 ± 7786 a | 96,105 ± 9577 a | 60,309 ± 6000 b |
Mg | 1634 ± 161 a | 1397 ± 135 a | 1572 ± 150 a | 1107 ± 102 b |
Na | 744 ± 74 a | 571 ± 57 b | 570 ± 56 a | 350 ± 33 b |
P | 7369 ± 724 a | 5685 ± 553 b | 9044 ± 900 a | 5913 ± 590 b |
B | 19.7 ± 2.0 a | 17.0 ± 1.7 a | 24.1 ± 2.4 a | 19.5 ± 1.9 b |
Co | 0.072 ± 0.006 a | 0.045 ± 0.004 b | 0.059 ± 0.005 a | 0.039 ± 0.003 b |
Cu | 2.37 ± 0.20 a | 1.61 ± 0.14 b | 4.37 ± 0.44 a | 3.38 ± 0.32 b |
Fe | 170 ± 17 a | 111 ± 10 b | 125 ± 12 a | 83.3 ± 8.1 b |
I | 0.66 ± 0.06 a | 0.34 ± 0.03 b | 0.49 ± 0.04 a | 0.48 ± 0.04 a |
Li | 0.83 ± 0.08 a | 0.68 ± 0.06 b | 0.83 ± 0.08 a | 0.60 ± 0.06 b |
Mn | 22.4 ± 2.1 a | 18.7 ± 1.9 a | 27.9 ± 2.6 a | 20.5 ± 2.0 b |
Mo | 3.94 ± 0.34 a | 2.55 ± 0.22 b | 3.9 ± 0.3 a | 3.06 ± 0.30 b |
Se | 0.076 ± 0.01 b | 0.109 ± 0.02 | 0.072 ± 0.01 b | 0.116 ± 0.02 a |
Si | 40.9 ± 4.0 a | 18.9 ± 1.8 b | 147 ± 14.5 a | 90.7 ± 9.0 b |
Zn | 13.1 ± 1.3 a | 11.2 ± 1.1 a | 27.9 ± 2.8 a | 20.7 ± 2.0 b |
Al | 55.6 ± 5.4 a | 18.9 ± 1.8 b | 34.1 ± 3.4 a | 15.8 ± 1.5 b |
As | 0.13 ± 0.01 a | 0.08 ± 0.01 b | 0.12 ± 0.01 a | 0.11 ± 0.01 a |
Cd | 0.11 ± 0.01 a | 0.10 ± 0.01 a | 0.18 ± 0.02 a | 0.16 ± 0.01 a |
Cr | 0.29 ± 0.02 a | 0.18 ± 0.01 b | 0.28 ± 0.02 a | 0.11 ± 0.01 b |
Ni | 3.07 ± 0.3 a | 2.96 ± 0.3 a | 1.42 ± 0.12 a | 1.04 ± 0.1 b |
Pb | 0.26 ± 0.02 a | 0.21 ± 0.02 b | 0.39 ± 0.03 a | 0.37 ± 0.03 a |
Sr | 40.9 ± 4.0 a | 28.0 ± 2.8 b | 36.9 ± 3.6 a | 31.8 ± 3.1 a |
V | 0.26 ± 0.02 a | 0.12 ± 0.01 b | 0.15 ± 0.01 a | 0.10 ± 0.01 b |
Ca/Sr | 296 | 342 | 226 | 195 |
K/Na | 122 | 137 | 169 | 172 |
Petrovich | Synthesis | M. Parnikovy | Picnic | |||||
---|---|---|---|---|---|---|---|---|
Control | Space | Control | Space | Control | Space | Control | Space | |
Ca | 7222 ± 698 a | 8428 ± 816 a | 5384 ± 522 a | 5917 ± 579 a | 10,725 ± 1000 a | 8090 ± 800 b | 5943 ± 588 a | 5576 ± 550 a |
K | 64,394 ± 6003 a | 73,598 ± 7160 a | 69,683 ± 6943 a | 49,991 ± 5000 b | 60,939 ± 5890 a | 58,027 ± 5723 a | 74,870 ± 7367 a | 81,600 ± 10,012 a |
Mg | 2288 ± 217 a | 2264 ± 208 a | 1698 ± 155 a | 1521 ± 150 a | 2897 ± 281 a | 2009 ± 200 b | 1937 ± 194 a | 1756 ± 175 a |
Na | 608 ± 58 a | 685 ± 622 a | 745 ± 74 a | 526 ± 53 b | 787 ± 78 a | 565 ± 56 b | 639 ± 64 a | 551 ± 55 a |
P | 9327 ± 897 a | 9937 ± 967 a | 8685 ± 845 a | 7919 ± 786 a | 8618 ± 658 a | 7868 ± 680 a | 5160 ± 510 a | 5120 ± 510 a |
B | 15.7 ± 1.4 b | 19.2 ± 1.8 a | 15.2 ± 1.5 a | 13.5 ± 1.3 a | 17.6 ± 1.7 a | 15.8 ± 1.5 a | 16.3 ± 1.6 a | 16.7 ± 1.6 a |
Co | 0.082 ± 0.007 a | 0.096 ± 0.01 a | 0.052 ± 0.005 a | 0.061 ± 0.005 a | 0.1 ± 0.01 a | 0.072 ± 0.005 b | 0.051 ± 0.005 a | 0.054 ± 0.005 a |
Cu | 3.86 ± 0.31 b | 4.73 ± 0.5 a | 3.44 ± 0.31 a | 3.43 ± 0.30 a | 4.21 ± 0.41 a | 3.16 ± 0.32 b | 2.86 ± 0.26 a | 3.32 ± 0.32 a |
Fe | 119 ± 10 b | 171 ± 17 a | 72.8 ± 7.3 b | 90.2 ± 9.0 a | 122 ± 12 a | 143 ± 14 a | 81.0 ± 8.0 a | 91.1 ± 9.0 a |
I | 0.63 ± 0.05 b | 1.21 ± 0.11 a | 0.38 ± 0.03 b | 0.59 ± 0.05 a | 0.52 ± 0.05 a | 0.59 ± 0.06 a | 0.27 ± 0.03 a | 0.31 ± 0.03 a |
Li | 0.58 ± 0.05 a | 0.64 ± 0.06 a | 0.53 ± 0.05 a | 0.47 ± 0.04 a | 0.81 ± 0.08 a | 0.57 ± 0.05 b | 0.67 ± 0.06 a | 0.57 ± 0.05 a |
Mn | 14.9 ± 1.3 a | 17.6 ± 1.6 a | 11.1 ± 1.0 b | 16.4 ± 1.6 a | 18.4 ± 1.77 a | 14.2 ± 1.4 b | 21.4 ± 2.0 a | 19.4 ± 1.9 a |
Mo | 2.09 ± 0.20 a | 2.47 ± 0.23 a | 1.66 ± 0.12 a | 1.74 ± 0.17 a | 3.05 ± 0.30 a | 2.64 ± 0.25 a | 1.65 ± 0.15 a | 1.86 ± 1.7 a |
Se | 0.060 ± 0.006 b | 0.078 ± 0.007 a | 0.054 ± 0.004 b | 0.081 ± 0.008 a | 0.060 ± 0.06 b | 0.090 ± 0.009 a | 0.059 ± 0.006 b | 0.128 ± 0.012 a |
Si | 162 ± 14 a | 155 ± 15 a | 109 ± 10 a | 93.6 ± 9.0 a | 111 ± 10 a | 106 ± 10.0 a | 117 ± 11 a | 111 ± 10 a |
Zn | 26.2 ± 2.4 a | 32.4 ± 3.1 a | 25.4 ± 1.4 a | 23.8 ± 2.3 a | 35.9 ± 3.5 a | 27.2 ± 2.7 b | 28.2 ± 2.8 a | 25.8 ± 2.5 a |
Al | 61.7 ± 6.0 b | 125 ± 12.0 a | 41.2 ± 4.0 b | 58.8 ± 5.5 a | 76.9 ± 7.6 a | 71.7 ± 7.0 a | 65.2 ± 6.5 a | 58.4 ± 5.5 a |
As | 0.12 ± 0.01 b | 0.15 ± 0.01 a | 0.11 ± 0.01 a | 0.079 ± 0.008 b | 0.097 ± 0.01 a | 0.12 ± 0.01 a | 0.086 ± 0.008 b | 0.13 ± 0.01 a |
Cd | 0.14 ± 0.01 a | 0.15 ± 0.01 a | 0.11 ± 0.01 a | 0.10 ± 0.01 a | 0.2 ± 0.02 a | 0.14 ± 0.01 b | 0.098 ± 0.01 a | 0.098 ± 0.001 a |
Cr | 0.36 ± 0.03 b | 0.51 ± 0.05 a | 0.23 ± 0.02 b | 0.35 ± 0.03 a | 0.32 ± 0.03 a | 0.34 ± 0.03 a | 0.18 ± 0.02 b | 0.24 ± 0.02 a |
Ni | 0.52 ± 0.05 a | 0.46 ± 0.04 a | 0.27 ± 0.02 b | 0.42 ± 0.04 a | 0.49 ± 0.04 b | 0.71 ± 0.07 a | 0.23 ± 0.02 a | 0.27 ± 0.02 a |
Pb | 0.51 ± 0.05 a | 0.59 ± 0.05 a | 0.31 ± 0.03 a | 0.38 ± 0.04 a | 0.59 ± 0.05 a | 0.44 ± 0.04 b | 0.29 ± 0.02 a | 0.34 ± 0.03 a |
Sr | 29.8 ± 2.6 b | 43.5 ± 4.1 a | 28.5 ± 2.7 a | 30.5 ± 3.0 a | 52.7 ± 5.2 a | 39.4 ± 3.9 b | 24.60 ± 2.40 a | 24.9 ± 2.4 a |
V | 0.21 ± 0.02 b | 0.39 ± 0.03 a | 0.14 ± 0.01 b | 0.2 ± 0.02 a | 0.20 ± 0.02 b | 0.26 ± 0.02 a | 0.12 ± 0.01 b | 0.24 ± 0.02 a |
K/Na | 106 | 107 | 93.5 | 95.0 | 77.4 | 102.7 | 117.2 | 184.4 |
Ca/Sr | 242.3 | 193.7 | 188.9 | 325.1 | 203.5 | 205.3 | 241.6 | 223.9 |
Brassicaceae | Apiaceae | Asteraceae | ||||||
---|---|---|---|---|---|---|---|---|
Mustard | Rocket | Dill | Coriander | M. Parnikovy | Petrovich | Synthesis | Picnic | |
Ca | − | − | − | |||||
K | − | − | − | |||||
Mg | − | − | − | |||||
Na | − | − | − | − | − | − | ||
P | − | − | − | |||||
B | − | + | ||||||
Co | − | − | − | |||||
Cu | − | − | − | + | ||||
Fe | − | − | + | + | ||||
I | − | − | + | + | ||||
Li | − | − | − | |||||
Mn | + | − | − | + | ||||
Mo | − | − | ||||||
Se | + | + | + | + | + | + | + | + |
Si | + | − | − | − | ||||
Zn | − | − | ||||||
Al | + | − | − | − | + | + | ||
As | − | − | − | + | − | + | ||
Cd | − | |||||||
Cr | + | − | − | − | + | + | + | |
Ni | + | + | − | + | + | |||
Pb | + | − | − | − | ||||
Sr | − | − | − | − | + | |||
V | + | − | − | − | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharchenko, V.; Golubkina, N.; Skrypnik, L.; Murariu, O.C.; Vecchietti, L.; Caruso, G. The Effect of One-Year Seed Spaceflight Storage on Yield, Biochemical and Mineral Characteristics of Mature Leafy Vegetables Belonging to Brassicaceae, Apiaceae and Asteraceae Families. Horticulturae 2023, 9, 1073. https://doi.org/10.3390/horticulturae9101073
Kharchenko V, Golubkina N, Skrypnik L, Murariu OC, Vecchietti L, Caruso G. The Effect of One-Year Seed Spaceflight Storage on Yield, Biochemical and Mineral Characteristics of Mature Leafy Vegetables Belonging to Brassicaceae, Apiaceae and Asteraceae Families. Horticulturae. 2023; 9(10):1073. https://doi.org/10.3390/horticulturae9101073
Chicago/Turabian StyleKharchenko, Viktor, Nadezhda Golubkina, Liubov Skrypnik, Otilia Cristina Murariu, Lorenzo Vecchietti, and Gianluca Caruso. 2023. "The Effect of One-Year Seed Spaceflight Storage on Yield, Biochemical and Mineral Characteristics of Mature Leafy Vegetables Belonging to Brassicaceae, Apiaceae and Asteraceae Families" Horticulturae 9, no. 10: 1073. https://doi.org/10.3390/horticulturae9101073
APA StyleKharchenko, V., Golubkina, N., Skrypnik, L., Murariu, O. C., Vecchietti, L., & Caruso, G. (2023). The Effect of One-Year Seed Spaceflight Storage on Yield, Biochemical and Mineral Characteristics of Mature Leafy Vegetables Belonging to Brassicaceae, Apiaceae and Asteraceae Families. Horticulturae, 9(10), 1073. https://doi.org/10.3390/horticulturae9101073