Radicle Emergence as Seed Vigour Test Estimates Seedling Quality of Hybrid Cucumber (Cucumis sativus L.) Cultivars in Low Temperature and Salt Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Changes in RE Counts
3.2. Seedling Emergence at Low Temperature and Salt Stresses
3.3. Correlation Values in between RE and SEEDLING Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matthews, S.; Beltrami, E.; El-Khadem, R.; Khajeh-Hosseini, M.; Nasehzadeh, M.; Urso, G. Evidence that time for repair during early germination leads to vigour differences in maize. Seed Sci. Technol. 2011, 39, 501–509. [Google Scholar] [CrossRef]
- Mavi, K.; Powell, A.A.; Matthews, S. Rate of radicle emergence and leakage of electrolytes provide quick predictions of percentage normal seedlings in standard germination tests of radish (Raphanus sativus). Seed Sci. Technol. 2016, 44, 393–409. [Google Scholar] [CrossRef]
- Demir, I.; Ermis, S.; Mavi, K.; Matthews, S. Mean germination time of pepper seed lots (Capsicum annuum) predicts size and uniformity of seedlings in germination tests and transplant modules. Seed Sci. Technol. 2008, 36, 21–30. [Google Scholar] [CrossRef]
- Ozden, E.; Memis, N.; Gokdas, Z.; Catıkkas, E.; Demir, I. Seed vigour evaluation of rocket (Eruca sativa Mill) seed lots. J. Inst. Sci. Technol. 2020, 10, 1486–1493. [Google Scholar] [CrossRef]
- Ozden, E.; Ermis, S.; Demir, I. Evaluation of seed vigour in White coat French bean (Phaseolus vulgaris L.) seed lots under waterlogged or field capacity conditions. J. Inst. Sci. Technol. 2019, 9, 1860–1865. [Google Scholar] [CrossRef]
- Shinohara, T.; Ducournau, S.; Matthews, S.; Wagner, M.H.; Powell, A.A. Early counts of radicle emergence, counted manually and by image analysis, can reveal differences in the production of normal seedlings and the vigour of seed lots of cauliflower. Seed Sci. Technol. 2021, 49, 219–235. [Google Scholar] [CrossRef]
- Powell, A.A.; Matthews, S. Seed ageing/repair hypothesis leads to new testing methods. Seed Technol. 2012, 34, 15–25. [Google Scholar]
- Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef] [Green Version]
- Perry, D.A. Report of the vigour test committee, 1974–1977. Seed Sci. Technol. 1978, 6, 159–181. [Google Scholar]
- ISTA. International Rules for Seed Testing, 2015 ed.; International Seed Testing Association: Bassersdorf, Switzerland, 2015. [Google Scholar]
- Bates, M.D.; Robinson, R.W. Cucumbers, Melons and Watermelons. Evolution of Crop Plants, 2nd ed.; Smartt, J., Simmonds, N.W., Eds.; Longman Scientific & Technical: Essex, UK, 1995; pp. 89–97. [Google Scholar]
- Mavi, K.; Demir, I.; Matthews, S. Mean germination time estimates the relative emergence of seed lots of three cucurbit crops under stress conditions. Seed Sci. Technol. 2010, 3, 14–25. [Google Scholar] [CrossRef]
- Foolad, M.; Lin, G.Y. Genetic potential for salt tolerance during germination in Lycopersicon species. HortScience 1997, 32, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Sivritepe, H.O.; Sivritepe, N.; Eris, A.; Turhan, E. The effects of NaCl pre-treatments on salt tolerance of melons grown under long-term salinity. Sci. Hortic. 2005, 106, 568–581. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Debaeke, P.; Steinberg, C.; You, M.P.; Barbetti, M.J.; Aubertot, J.N. Abiotic and biotic factors affecting crop seed germination and seedling emergence: A conceptual framework. Plant Soil 2018, 432, 1–28. [Google Scholar] [CrossRef]
- ISTA. International Rules for Seed Testing, 2021 ed.; International Seed Testing Association: Bassersdorf, Switzerland, 2021. [Google Scholar]
- Lv, Y.Y.; Mo, Q.; Powell, A.A.; Wang, Y.R. DNA replication during the seed germination, deterioration, and its relation to vigour in alfalfa and white clover. Crop Sci. 2018, 57, 1393–1401. [Google Scholar] [CrossRef]
- Demir, I.; Erturk, N.; Gokdas, Z. Seed vigour evaluation in petunia seed lots to predict seedling emergence and longevity. Seed Sci. Technol. 2020, 48, 391–400. [Google Scholar] [CrossRef]
- Ilbi, H.; Powell, A.A.; Alan, O. Single radicle emergence counts for predicting vigour of marigold (Tagetes spp.) seed lots. Seed Sci. Technol. 2020, 48, 381–389. [Google Scholar] [CrossRef]
- Guy, P.A.; Black, M. Germination related proteins in wheat revealed by differences in seed vigour. Seed Sci. Res. 1998, 8, 99–111. [Google Scholar] [CrossRef]
- Matthews, S.; Khajeh Hosseini, M. Length of the lag period of germination and metabolic repair explain vigour differences in seed lots of maize (Zea mays). Seed Sci. Technol. 2007, 35, 200–212. [Google Scholar] [CrossRef]
- Demir, I.; Celikkol, T.; Sarıkamıs, G.; Eksi, C. Vigor tests to estimate seedling emergence potential and longevity in viola seed lots. HortScience 2011, 46, 402–405. [Google Scholar] [CrossRef] [Green Version]
- Guloksuz, T.; Demir, I. Vigour tests in Geranium, Salvia, Gazania, and Impatiens seed lots to estimate seedling emergence potential in modules. Propag. Ornam. Plants 2012, 12, 133–138. [Google Scholar]
- Ermis, S.; Karslıoglu, M.; Ozden, E.; Demir, I. Use of a single radicle emergence count as a vigour test in prediction of seedling emergence potential of leek seed lots. Seed Sci. Technol. 2015, 43, 308–312. [Google Scholar] [CrossRef]
- Lv, Y.Y.; Wang, Y.R.; Powell, A.A. Frequent individual counts of radicle emergence and mean just germination time predict seed vigour of Avena sativa and Elymus nutans. Seed Sci. Technol. 2016, 44, 189–198. [Google Scholar] [CrossRef]
- Tao, Q.; Sun, J.; Zhang, Y.; Sun, X.; Li, Z.; Zhong, S.; Sun, J. Single count of radicle emergence and mean germination time estimate seed vigour of Chinese milk vetch (Astragalus sinicus). Seed Sci. Technol. 2022, 50, 47–59. [Google Scholar] [CrossRef]
- Ozden, E.; Ozdamar, C.; Demir, I. Radicle emergence test estimates predictions of percentage normal seedlings in standard germination tests of aubergine (Solanum melongena L.) seed lots. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Powell, A.A. The potential for new approaches to seed testing: The role of the seed science advisory group. Seed Test. Int. 2020, 159, 18–22. [Google Scholar]
- Powell, A.A. Invited Review: Seed vigour in the 21st century. Seed Sci. Technol. 2022, 50, 45–73. [Google Scholar] [CrossRef]
- Waterworth, W.M.; Footitt, S.; Bray, C.M.; Finch-Savage, W.E.; West, C.E. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds. Proc. Natl. Acad. Sci. USA 2016, 113, 9647–9652. [Google Scholar] [CrossRef] [Green Version]
- Serpil, M.; Ermis, S.; Powell, A.A.; Demir, I. Radicle emergence (RE) test identifies differences in normal germination percentages (NG) of watermelon, lettuce and carrot seed lots. Seed Sci. Technol. 2022, 50, 257–267. [Google Scholar] [CrossRef]
- Nerson, H. Seed production and germinability of cucurbit crops. Seed Sci. Biotechnol. 2007, 1, 1–10. [Google Scholar]
- Demilly, D.; Ducournau, S.; Wagner, M.H.; Dürr, D. Digital imaging of seed germination. In Plant Image Analysis: Fundamentals and Applications; Gupta, S.D., Ibaraki, Y., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 147–162. [Google Scholar] [CrossRef]
- Wagner, M.H.; Ducournau, S.; Luciani, A.; Léchappé, J. From knowledge-based research towards accurate and rapid testing of seed quality in winter rape. Seed Sci. Res. 2012, 22, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S.; Wagner, M.H.; Kerr, L.; McLaren, G.; Powell, A.A. Automated determination of germination time courses by image capture and early counts of radicle emergence lead to a new vigor test for winter oilseed rape (Brassica napus). Seed Sci. Technol. 2012, 40, 413–424. [Google Scholar] [CrossRef]
CULTIVARS | No | NG (%) | Production Year |
---|---|---|---|
NUN 32357 CUS | 1 | 98 a | 2021 |
NUN 32355 CUS | 2 | 95 b | 2020 |
NUN 32359 CUS | 3 | 95 b | 2021 |
NUN 32427 CUS | 4 | 98 a | 2020 |
SC 180368 | 5 | 100 a | 2020 |
SENYAL | 6 | 95 b | 2021 |
NOBEL | 7 | 100 a | 2021 |
SAMBA | 8 | 100 a | 2020 |
PRINCESTAR | 9 | 98 a | 2020 |
CAPTAINSTAR | 10 | 98 a | 2021 |
DIMSTAR | 11 | 100 a | 2020 |
JULYSTAR | 12 | 98 a | 2021 |
Lots | Low Temperature Stress (15 °C) | |||
---|---|---|---|---|
SE (%) | SSW (mg) | SRW (mg) | SH (cm) | |
1 | 95 bcd | 709 cd | 110 ab | 6.9 c |
2 | 91 d | 639 e | 106 ab | 6.9 c |
3 | 96 abc | 590 e | 112 ab | 6.9 c |
4 | 100 a | 881 a | 143 a | 8.8 a |
5 | 98 ab | 704 cd | 130 ab | 7.3 c |
6 | 98 ab | 815 b | 132 ab | 7.2 c |
7 | 100 a | 844 ab | 138 ab | 8.3 ab |
8 | 98 ab | 735 c | 137 ab | 8.0 b |
9 | 95 bcd | 614 e | 102 b | 6.8 c |
10 | 93 cd | 625 e | 129 ab | 7.2 c |
11 | 93 cd | 636 e | 120 ab | 7.1 c |
12 | 100 a | 649 de | 119 ab | 7.0 c |
Range | 91–100 | 614–844 | 102–143 | 6.8–8.8 |
Lots | Salt Stress (100 mM) | |||
---|---|---|---|---|
SE (%) | SSW (mg) | SRW (mg) | SH (cm) | |
1 | 92 ab | 719 cde | 110 ab | 6.8 def |
2 | 90 b | 685 cde | 119 ab | 6.6 ef |
3 | 90 b | 627 de | 118 ab | 7.1 bcde |
4 | 98 a | 904 a | 154 a | 7.8 a |
5 | 97 ab | 737 bcde | 133 ab | 7.2 abcde |
6 | 95 ab | 788 abc | 135 ab | 7.5 abcd |
7 | 97 ab | 860 ab | 150 a | 7.6 abc |
8 | 97 ab | 756 bc | 141 ab | 7.7 ab |
9 | 93 ab | 598 e | 101 b | 6.5 f |
10 | 93 ab | 725 cde | 130 ab | 7.0 cdef |
11 | 93 ab | 632 de | 125 ab | 7.3 abcd |
12 | 95 ab | 684 cde | 123 ab | 7.2 abcde |
Range | 90–98 | 598–904 | 101–154 | 6.5–7.8 |
Lots | Low Temperature Stress (15 °C)+ Salt Stress (100 mM) | |||
---|---|---|---|---|
SE (%) | SSW (mg) | SRW (mg) | SH (cm) | |
1 | 87 ab | 491 def | 101 cd | 5.8 d |
2 | 83 abc | 491 def | 104 cd | 6.0 cd |
3 | 83 abc | 464 f | 104 cd | 6.2 cd |
4 | 92 a | 608 a | 140 a | 6.8 a |
5 | 78 bc | 548 bc | 119 bc | 6.9 a |
6 | 88 a | 511 dcef | 119 bc | 6.8 ab |
7 | 90 a | 584 ab | 133 ab | 6.9 a |
8 | 90 a | 535 dc | 133 ab | 6.5 abc |
9 | 76 c | 468 f | 97 d | 6.0 d |
10 | 86 ab | 492 def | 112 cd | 6.3 bcd |
11 | 86 ab | 519 cde | 109 cd | 6.2 cd |
12 | 92 a | 474 ef | 116 bc | 5.9 d |
Range | 76–92 | 464–608 | 97–133 | 5.8–6.9 |
Hours | Low Temperature Stress (15 °C) | |||
---|---|---|---|---|
SE | SSW | SRW | SH | |
20 | 0.8205 ** | 0.8442 *** | 0.8794 *** | 0.8944 *** |
22 | 0.7596 ** | 0.8906 *** | 0.9184 *** | 0.8651 *** |
24 | 0.7723 ** | 0.8245 *** | 0.9267 *** | 0.8187 ** |
26 | 0.6894 * | 0.7889 ** | 0.9067 *** | 0.67 ** |
28 | 0.7979 ** | 0.6368 * | 0.8653 *** | 0.6839 * |
NG | 0.1954 ns | 0.2222 ns | 0.582 * | 0.4257 ns |
Salt stress (100 mM) | ||||
20 | 0.5225 | 0.8733 *** | 0.8934 *** | 0.8340 *** |
22 | 0.4631 ns | 0.8887 *** | 0.8978 *** | 0.8970 *** |
24 | 0.7879 ** | 0.8056 ** | 0.9085 *** | 0.9095 *** |
26 | 0.3373 ns | 0.7977 ** | 0.9178 *** | 0.8633 *** |
28 | 0.4363 ns | 0.6644 * | 0.8697 *** | 0.8317 *** |
NG | 0.4909 ns | 0.2002 ns | 0.3645 ns | 0.3627 ns |
Low temperature stress (15 °C) + Salt stress (100 mM) | ||||
20 | 0.8823 *** | 0.7832 ** | 0.8926 *** | 0.7609 ** |
22 | 0.8860 *** | 0.8116 ** | 0.8928 *** | 0.7934 ** |
24 | 0.9177 *** | 0.8283 *** | 0.8652 *** | 0.8657 *** |
26 | 0.9324 *** | 0.7955 ** | 0.8609 *** | 0.9138 *** |
28 | 0.7668 ** | 0.7291 ** | 0.8670 *** | 0.7653 ** |
NG | 0.2135 ns | 0.512 ns | 0.4363 ns | 0.3005 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir, I.; Kuzucu, C.O.; Ermis, S.; Öktem, G. Radicle Emergence as Seed Vigour Test Estimates Seedling Quality of Hybrid Cucumber (Cucumis sativus L.) Cultivars in Low Temperature and Salt Stress Conditions. Horticulturae 2023, 9, 3. https://doi.org/10.3390/horticulturae9010003
Demir I, Kuzucu CO, Ermis S, Öktem G. Radicle Emergence as Seed Vigour Test Estimates Seedling Quality of Hybrid Cucumber (Cucumis sativus L.) Cultivars in Low Temperature and Salt Stress Conditions. Horticulturae. 2023; 9(1):3. https://doi.org/10.3390/horticulturae9010003
Chicago/Turabian StyleDemir, Ibrahim, Canan Oztokat Kuzucu, Sıtkı Ermis, and Güleda Öktem. 2023. "Radicle Emergence as Seed Vigour Test Estimates Seedling Quality of Hybrid Cucumber (Cucumis sativus L.) Cultivars in Low Temperature and Salt Stress Conditions" Horticulturae 9, no. 1: 3. https://doi.org/10.3390/horticulturae9010003
APA StyleDemir, I., Kuzucu, C. O., Ermis, S., & Öktem, G. (2023). Radicle Emergence as Seed Vigour Test Estimates Seedling Quality of Hybrid Cucumber (Cucumis sativus L.) Cultivars in Low Temperature and Salt Stress Conditions. Horticulturae, 9(1), 3. https://doi.org/10.3390/horticulturae9010003