Improvements for the Micropropagation of Hybrid Hazelnut (C. americana × C. avellana)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rutter, P.; Wiegrefe, S.; Rutter-Daywater, B. Growing Hybrid Hazelnuts: The New Resilient Crop for A Changing Climate; Chelsea Green Publishing: Windsor, VT, USA, 2015; p. 260. ISBN 1603585346. [Google Scholar]
- Braun, L.; Wyse, D. Optimizing IBA concentration and stem and segment size for rooting of hybrid hazelnuts from hardwood stem cuttings. J. Environ. Hortic. 2019, 37, 1–8. [Google Scholar] [CrossRef]
- Holzmueller, E.; Jose, S. Biomass production for biofuels using agroforestry: Potential for the North Central Region of the United States. Agrofor. Syst. 2012, 85, 305–314. [Google Scholar] [CrossRef]
- Dinnes, D.; Karlen, D.; Jaynes, D.; Kaspar, T.; Hatfield, J.; Colvin, T.; Cambardella, C. Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron. J. 2002, 94, 153–171. [Google Scholar] [CrossRef]
- Kantarci, M.; Ayfer, M. Propagation of some important Turkish hazelnut varieties by cuttings. Acta Hortic. 1994, 351, 353–360. [Google Scholar] [CrossRef]
- Ercisli, S.; Read, P.E. Propagation of hazelnut by softwood and semi-hardwood cuttings under Nebraska conditions. Acta Hortic. 2001, 556, 275–280. [Google Scholar] [CrossRef]
- Pincelli-Souza, R.P.; Tillmann, M.; Esler, M.; Alves, C.C.D.; Cohen, J.D. Hybrid hazelnut: Micropropagation, rooting and acclimatization. Acta Hortic. 2018, 1191, 113–120. [Google Scholar] [CrossRef]
- Hackett, W.P. Donor Plant Maturation and Adventitious Root Formation. In Adventitious Root Formation in Cuttings; Advances in Plant Sciences Series; Davis, T.M., Haissig, B.E., Sankhla, N., Eds.; Dioscorides Press: Portland, OR, USA, 1988; Volume 2, pp. 11–28. [Google Scholar]
- Reuveni, M. Sex and regeneration. Biology 2021, 10, 937. [Google Scholar] [CrossRef]
- De Vier, C.L.; Geneve, R.L. Flowering influences adventitious root formation in chrysanthemum cuttings. Sci. Hortic. 1997, 70, 309–318. [Google Scholar] [CrossRef]
- Pijut, P.M.; Woeste, K.E.; Michler, C.H. Promotion of adventitious root formation of difficult-to-root hardwood tree species. Hortic. Rev. 2011, 38, 213–251. [Google Scholar] [CrossRef]
- Osório, M.L.; Gonçalves, S.; Osório, J.; Romano, A. Effects of CO2 concentration on acclimatization and physiological responses of two cultivars of carob tree. Biol. Plant 2005, 49, 161–167. [Google Scholar] [CrossRef]
- Custódio, L.; Martins-Loução, M.A.; Romano, A. Influence of sugars on in vitro rooting and acclimatization of carob tree. Biol. Plant 2004, 48, 469–472. [Google Scholar] [CrossRef]
- Klikno, J.; Kutschera, U. Regulation of root development in Arabidopsis thaliana by phytohormone-secreting epiphytic methylobacteria. Protoplasma 2017, 254, 1867–1877. [Google Scholar] [CrossRef] [PubMed]
- Guri, A.Z.; Patel, K.N. Compositions and Methods to Prevent Microbial Contamination of Plant Tissue Culture Media. U.S. Patent 5750402A, 12 May 1998. [Google Scholar]
- Kreiser, M.; Giblin, C.; Murphy, R.; Fiesel, P.; Braun, L.; Johnson, G.; Wyse, D.; Cohen, J.D. Conversion of indole-3-butyric acid to indole-3-acetic acid in shoot tissue of hazelnut (Corylus) and elm (Ulmus). J. Plant Growth Regul. 2016, 35, 710–721. [Google Scholar] [CrossRef]
- Monteuuis, O.; Bon, M.C. Influence of auxins and darkness on in vitro rooting of micropropagated shoots from mature and juvenile Acacia mangium. Plant Cell Tissue Organ Cult. 2000, 63, 173–177. [Google Scholar] [CrossRef]
- Klopotek, Y.; Haensch, K.-T.; Hause, B.; Hajirezaei, M.-R.; Druege, U. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light. J. Plant Physiol. 2010, 167, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Paton, F.; Schwabe, W.W. Storage of cuttings of Pelargonium x hortorum Bailey. J. Hortic Sci. 1987, 62, 79–87. [Google Scholar] [CrossRef]
- Druege, U.; Zerche, S.; Kadner, R. Nitrogen- and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light. Ann. Bot. 2004, 94, 831–842. [Google Scholar] [CrossRef]
- Silva-Navas, J.; Moreno-Risueno, M.A.; Manzano, C.; Pallero-Baena, M.; Navarro-Neila, S.; Téllez-Robledo, B.; Garcia-Mina, J.M.; Baigorri, R.; Gallego, F.J.; del Pozo, J.C. D-Root: A system for cultivating plants with the roots in darkness or under different light conditions. Plant J. 2015, 84, 244–255. [Google Scholar] [CrossRef]
- Fuernkranz, H.A.; Nowak, C.A.; Maynard, C.A. Light effects on in vitro adventitious root formation in axillary shoots of mature Prunus serotina. Physiol. Plant 1990, 80, 337–341. [Google Scholar] [CrossRef]
- Baraldi, R.; Rossi, F.; Lercari, B. In vitro shoot development of Prunus GF 655-2: Interaction between light and benzyladenine. Physiol. Plant 1988, 74, 410–443. [Google Scholar] [CrossRef]
- Steffens, B.; Rasmussen, A. The physiology of adventitious roots. Plant Physiol. 2016, 170, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Druege, U.; Franken, P.; Hajirezaei, M.R. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front. Plant Sci. 2016, 7, 381. [Google Scholar] [CrossRef] [PubMed]
- Alallaq, S.; Ranjan, A.; Brunoni, F.; Novák, O.; Lakehal, A.; Bellini, C. Red light controls adventitious root regeneration by modulating hormone homeostasis in Picea abies seedlings. Front. Plant Sci. 2020, 11, 586140. [Google Scholar] [CrossRef] [PubMed]
- Sorin, C.; Bussell, J.D.; Camus, I.; Ljung, K.; Kowalczyk, M.; Geiss, G.; McKhann, H.; Garcion, C.; Vaucheret, H.; Sandberg, G.; et al. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 2005, 17, 1343–1359. [Google Scholar] [CrossRef] [PubMed]
- Trinh, H.K.; Verstraeten, I.; Geelen, D. In Vitro Assay for Induction of Adventitious Rooting on Intact Arabidopsis Hypocotyls. In Root Development. Methods in Molecular Biology; Ristova, D., Barbez, E., Eds.; Humana Press: New York, NY, USA, 2018; Volume 1761, pp. 95–102. [Google Scholar] [CrossRef]
- Tillmann, M.A.; Tang, Q.; Gardner, G.; Cohen, J.D. Complexity of the auxin biosynthetic network in Arabidopsis hypocotyls is revealed by multiple stable-labeled precursors. Phytochemistry 2022, 200, 113219. [Google Scholar] [CrossRef]
- Strader, L.; Wheeler, D.; Christensen, S.; Berens, J.; Cohen, J.; Rampey, R.; Bartel, B. Multiple facets of Arabidopsis seedling development require indole-3-butyrc acid-derived auxin. Plant Cell 2011, 23, 984–999. [Google Scholar] [CrossRef]
- Baraldi, R.; Bertazza, G.; Bregoli, A.; Fasolo, F.; Rotondi, A.; Predieri, S.; Serafini-Fracassini, D.; Slovin, J.; Cohen, J. Auxins and polyamines in relation to differential in vitro root induction on micro cutting soft pear cultivars. J. Plant Growth Regul. 1995, 14, 49–59. [Google Scholar] [CrossRef]
Treatment | Sample Size | Explants Showing Microbial Growth | Percent without Contamination |
---|---|---|---|
Control | 50 | 35 | 30% |
28 | 25 | 11% | |
25 | 19 | 24% | |
Control mean ± SE | 23.1% ± 0.82 | ||
Protocol 1 | 30 | 0 | 100% |
28 | 0 | 100% | |
25 | 0 | 100% | |
P1 mean ± SE | 100% ± 0 | ||
Protocol 2 | 41 | 0 | 100% |
20 | 0 | 100% | |
57 | 0 | 100% | |
P2 mean ± SE | 100% ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
P. Pincelli-Souza, R.; Sousa Moreira, L.; D. Cohen, J. Improvements for the Micropropagation of Hybrid Hazelnut (C. americana × C. avellana). Horticulturae 2022, 8, 849. https://doi.org/10.3390/horticulturae8090849
P. Pincelli-Souza R, Sousa Moreira L, D. Cohen J. Improvements for the Micropropagation of Hybrid Hazelnut (C. americana × C. avellana). Horticulturae. 2022; 8(9):849. https://doi.org/10.3390/horticulturae8090849
Chicago/Turabian StyleP. Pincelli-Souza, Renata, Laise Sousa Moreira, and Jerry D. Cohen. 2022. "Improvements for the Micropropagation of Hybrid Hazelnut (C. americana × C. avellana)" Horticulturae 8, no. 9: 849. https://doi.org/10.3390/horticulturae8090849
APA StyleP. Pincelli-Souza, R., Sousa Moreira, L., & D. Cohen, J. (2022). Improvements for the Micropropagation of Hybrid Hazelnut (C. americana × C. avellana). Horticulturae, 8(9), 849. https://doi.org/10.3390/horticulturae8090849