Effects of Pruning Mulch on Nutrient Concentration of Avocado (Persea americana Mill.) Fruit under Subtropical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Location
2.2. Sampling Design
2.3. Sample Preparation and Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez-Contreras, M.; Lara-Chávez, M.B.N.; Guillén-Andrade, H.; Chávez-Bárcenas, A.T. Agroecología de la franja aguacatera en Michoacán, México. Interciencia 2010, 35, 647–653. [Google Scholar]
- Barbosa-Martín, E.; Chel-Guerrero, L.; González-Mondragón, E.; Betancur-Ancona, D. Chemical and technological properties of avocado (Persea americana Mill.) seed fibrous residues. Food Bioprod. Process. 2016, 100, 457–463. [Google Scholar] [CrossRef]
- Barea-Álvarez, M.; Delgado-Andrade, C.; Haro, A.; Olalla, M.; Seiquer, I.; Rufián-Henares, J.A. Subtropical fruits grown in Spain and elsewhere: A comparison of mineral profiles. J. Food Compost. Anal. 2016, 48, 34–40. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAOSTAT). Available online: http://faostat3.fao.org (accessed on 16 May 2020).
- Silber, A.; Naor, A.; Cohen, H.; Bar-Noy, Y.; Yechieli, N.; Levi, M.; Noy, M.; Peres, M.; Dauri, D.; Narkis, K.; et al. Response of ‘Hass’ avocado fertilization: Matching the periodic demand for nutrients. Sci. Hortic. 2018, 241, 231–240. [Google Scholar] [CrossRef]
- Woolf, A.B.; Ferguson, I.B. Postharvest responses to high fruit temperatures in the field. Postharvest Biol. Technol. 2000, 21, 7–20. [Google Scholar] [CrossRef]
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA). Red de Información Agroclimática de Andalucía. Available online: https://www.juntadeandalucia.es/agriculturaypesca/ifapa/web (accessed on 3 July 2018).
- Silber, A.; Israeli, Y.; Levi, M.; Keinan, A.; Shapira, O.; Chudi, G.; Golan, A.; Noy, M.; Levkovitch, I.; Assouline, S. Response of ‘Hass’ avocado trees to irrigation management and root constraint. Agric. Water Manag. 2012, 104, 95–103. [Google Scholar] [CrossRef]
- Garner, L.C.; Lovatt, C.J. The relationship between flower and fruit abscission and alternate bearing of ‘Hass’ avocado. J. Am. Soc. Hortic. Sci. 2008, 133, 3–10. [Google Scholar] [CrossRef]
- Saavedra, J.; Córdova, A.; Navarro, R.; Díaz-Calderón, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J.; Gálvez, L. Industrial avocado waste: Functional compounds preservation by convective drying process. J. Food Eng. 2017, 198, 81–90. [Google Scholar] [CrossRef]
- García-Carmona, M.; Márquez-San Emeterio, L.; Reyes-Martín, M.P.; Ortiz-Bernad, I.; Sierra, M.; Fernández-Ondoño, E. Changes in nutrient contents in peel, pulp, and seed of cherimoya (Annona cherimola Mill.) in relation to organic mulching on the Andalusian tropical coast (Spain). Sci. Hortic. 2020, 263, 109120. [Google Scholar] [CrossRef]
- Paniagua, S.; Reyes, S.; Lima, F.; Pilipenko, N.; Calvo, L.F. Combustion of avocado crop residues: Effect of crop variety and nature of nutrients. Fuel 2021, 291, 119660. [Google Scholar] [CrossRef]
- Del Castillo-Llamosas, A.; Pablo, G.; Pérez-Pérez, A.; Yáñez, R.; Garrote, G.; Gullón, B. Recent advances to recover value-added compounds from avocado by-products following a biorefinery approach. Curr. Opin. Green Sustain. Chem. 2021, 28, 100433. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Domínguez-Avila, J.A.; Yahia, E.M.; Belmonte-Herrera, B.H.; Wall-Medrano, A.; Montalvo-González, E.; González-Aguilar, G.A. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res. Int. 2020, 138, 109774. [Google Scholar] [CrossRef] [PubMed]
- Dabas, D.; Shegog, R.M.; Ziegler, G.R.; Lambert, J.D. Avocado (Persea americana) seed as a source of bioactive phytochemicals. Curr. Pharm. Des. 2013, 19, 6133–6140. [Google Scholar] [CrossRef] [PubMed]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Páramos, P.R.; Granjo, J.F.; Corazza, M.L.; Matos, H.A. Extraction of high value products from avocado waste biomass. J. Supercrit. Fluids 2020, 165, 104988. [Google Scholar] [CrossRef]
- Palma, C.; Lloret, L.; Puen, A.; Tobar, M.; Contreras, E. Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal. Chin. J. Chem. Eng. 2016, 24, 521–528. [Google Scholar] [CrossRef]
- Jiménez, P.; García, P.; Quitral, V.; Vásquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; García-Díaz, D.F.; Robert, P.; Soto-Covasich, J. Pulp, leaf, peel and seed of avocado fruit: A review of bioactive compounds and healthy benefits. Food Rev. Int. 2021, 37, 619–655. [Google Scholar] [CrossRef]
- Reyes-Martín, M.P.; Martínez-Cartas, M.L.; Ortiz-Bernad, I.; San-Emeterio, L.M.; Fernández-Ondoño, E. Mineralization of bagged pruning waste in agrosystem on the subtropical coast of Andalusia (Spain). J. Agric. Sci. 2020, 158, 634–645. [Google Scholar] [CrossRef]
- San-Emeterio, L.M.; Fernández-Ondoño, E.; Hoppe, T. Application of mulching in subtropical orchards in Granada, Spain. In Recarbonizing Global Soils: A Technical Manual of Best Management Practices, Volume 4. Cropland, Grassland, Integrated Systems and Farming Approaches—Case-Studies; FAO, ITPS, Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- González-Fernández, J.J.; Galea, Z.; Álvarez, J.M.; Hormaza, J.I.; López, R. Evaluation of composition and performance of composts derived from guacamole production residues. J. Environ. Manag. 2015, 147, 132–139. [Google Scholar] [CrossRef]
- Pandey, R.R.; Sharma, G.; Tripathi, S.K.; Singh, A.K. Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. For. Ecol. Manag. 2007, 240, 96–104. [Google Scholar] [CrossRef]
- Castellanos-Barliza, J.; & León Peláez, J.D. Descomposición de hojarasca y liberación de nutrientes en plantaciones de Acacia mangium (Mimosaceae) establecidas en suelos degradados de Colombia. Rev. Biol. Trop. 2011, 59, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.; Cruz, L.; Rocha, S. Mass, nutrient pool, and mineralization of litter and fine roots in a tropical mountain cloud forest. Sci. Total Environ. 2017, 575, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Bayala, J.; Mando, A.; Teklehaimanot, Z.; Ouedraogo, S.J. Nutrient release from decomposing leaf mulches of karité (Vitellaria paradoxa) and néré (Parkia biglobosa) under semi-arid conditions in Burkina Faso, West Africa. Soil Biol. Biochem. 2005, 37, 533–539. [Google Scholar] [CrossRef]
- Pleguezuelo, C.R.; Zuazo, V.D.; Fernández, J.M.; Peinado, F.M.; Tarifa, D.F. Litter decomposition and nitrogen release in a sloping Mediterranean subtropical agroecosystem on the coast of Granada (SE, Spain): Effects of floristic and topographic alteration on the slope. Agric. Ecosyst. Environ. 2009, 134, 79–88. [Google Scholar] [CrossRef]
- Gallardo, A.; Covelo, F.; Morillas, L.; Delgado, M. Ciclos de nutrientes y procesos edáficos en los ecosistemas terrestres: Especificidades del caso mediterráneo y sus implicaciones para las relaciones suelo-planta. Ecosistemas 2009, 18, 4–19. [Google Scholar]
- Sofo, A.; Nuzzo, V.; Palese, A.M.; Xiloyannis, C.; Celano, G.; Zukowskyj, P.; Dichio, B. Net CO2 storage in Mediterranean olive and peach orchards. Sci. Hortic. 2005, 107, 17–24. [Google Scholar] [CrossRef]
- Nieto, O.M.; Castro, J.; Fernández, E.; Smith, P. Simulation of soil organic carbon stocks in a Mediterranean olive grove under different soil-management systems using the RothC model. Soil Use Manag. 2010, 26, 118–125. [Google Scholar] [CrossRef]
- IUSS Working Group; WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; 192p. [Google Scholar]
- De Andalucía, J.; Consejería de Agricultura y Pesca. Observatorio de Precios y Mercados Campaña 2016/2017. Available online: https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web/estacion/18/11 (accessed on 15 April 2019).
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Olsen, S.; Cole, C.; Watanabe, F.; Dean, L. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Circular N° 939; United States Department of Agriculture: Washington, DC, USA, 1954; 19p. [Google Scholar]
- Rstudio Team. Rstudio: Integrated Development for R; Rstudio, Inc.: Boston, MA, USA, 2017; Available online: http://www.rstudio.com/ (accessed on 23 February 2017).
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-1. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 26 May 2018).
- Lê, S.; Josse, J.; Rennes, A.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Hakala, M.; Lapveteläinen, A.; Huopalahti, R.; Kallio, H.; Tahvonen, R. Effects of varieties and cultivation conditions on the composition of strawberries. J. Food Compost. Anal. 2003, 16, 67–80. [Google Scholar] [CrossRef]
- Wall, M.M. Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. J. Food Compost. Anal. 2006, 19, 434–445. [Google Scholar] [CrossRef]
- Vicente, A.R.; Manganaris, G.A.; Sozzi, G.O.; Crisosto, C.H. Nutritional quality of fruits and vegetables. In Postharvest Handling: A Systems Approach, 2nd ed.; Florkowski, W.J., Shewfelt, R.L., Prussia, S.E., Banks, N., Brueckner, B., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 57–106. [Google Scholar]
- Hussein, Z.; Amos Fawole, O.A.; Opara, U.L. Preharvest factors influencing bruise damage of fresh fruits—A review. Sci. Hortic. 2018, 229, 45–58. [Google Scholar] [CrossRef]
- Holzapfel, E.; Alves de Souza, J.; Jara, J.; Carvallo Guerra, H. Responses of avocado production to variation in irrigation levels. Irrig. Sci. 2017, 35, 205–215. [Google Scholar] [CrossRef]
- Cowan, A.K.; Wolstenholme, B.N. Avocados. In Encyclopedia of Food Science and Nutrition, 2nd ed.; Caballero, B., Trugo, L., Finglas, P., Eds.; Academic Press Imprint: Amsterdam, The Netherlands; San Diego, CA, USA, 2003; pp. 348–353. [Google Scholar]
- Yakushiji, H.; Nonami, H.; Fukuyama, T.; Ono, S.; Takagi, N.; Hashimoto, Y. Sugar accumulation enhanced by osmoregulation in satsuma mandarin fruit. J. Am. Soc. Hortic. Sci. 1996, 121, 466–472. [Google Scholar] [CrossRef]
- Tamayo, V.A.; Bernal, E.J.A.; Díaz, D.C.A. Composition and removal of nutrients by the harvested fruit of avocado cv. Hass in Antioquia. Rev. Fac. Nac. Agron. Medellín 2018, 71, 8511–8516. [Google Scholar] [CrossRef]
- USDA (U.S. Department of Agriculture). Avocado, Almond, Pistachio and Walnut Composition; USDA National Nutrient Database for Standard Reference Release 24; Nutrient Data Laboratory, Department of Agriculture: Washington, DC, USA, 2011.
- Leterme, P.; Buldgen, A.; Estrada, F.; Lodoño, A.M. Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chem. 2006, 95, 644–652. [Google Scholar] [CrossRef]
- Reyes-Martín, M.P.; Ortiz-Bernad, I.; Lallena, A.M.; San-Emeterio, L.M.; Martínez-Cartas, M.L.; Fernández-Ondoño, E. Reuse of pruning waste from subtropical fruit trees and urban gardens as a source of nutrients: Changes in the physical, chemical, and biological properties of the soil. Appl. Sci. 2022, 12, 193. [Google Scholar] [CrossRef]
- Ni, X.; Song, W.; Zhang, H.; Yang, X.; Wang, L. Effects of mulching on soil properties and growth of tea olive (Osmanthus fragrans). PLoS ONE 2016, 11, e0158228. [Google Scholar] [CrossRef]
- Pavlů, L.; Kodešova, R.; Fér, M.; Nikodem, A.; Němec, F.; Prokeš, R. The impact of various mulch types on soil properties controlling water regimen of the Haplic Fluvisol. Soil Tillage Res. 2021, 205, 104748. [Google Scholar] [CrossRef]
Peel | Pulp | Stone | Two-Way ANOVA (p-Values) | ||||
---|---|---|---|---|---|---|---|
Year | Part | Treatment | Part:Treat. | ||||
2013 | |||||||
Fe | 5.92 Cc ± 0.67 | 5.24 Bb ± 0.57 | 3.68 Ba ± 0.35 | <0.001 *** | n.s. | n.s. | |
Cu | 0.56 Aa ± 0.06 | 0.97 Bb ± 0.11 | 0.54 Aa ± 0.07 | <0.001 *** | n.s. | n.s. | |
Mn | 0.86 Bc ± 0.10 | 0.70 Ba ± 0.10 | 0.79 Cb ± 0.10 | <0.001 *** | n.s. | n.s. | |
Zn | 0.95 Ba ± 0.11 | 1.40 Bc ± 0.23 | 1.03 Cb ± 0.11 | <0.001 *** | 0.048 * | n.s. | |
P | 236 Cb ± 62 | 269 Bc ± 62 | 204 Ba ± 60 | <0.001 *** | n.s. | n.s. | |
K | 4136 Cc ± 398 | 3318 Cb ± 412 | 1957 Ca ± 258 | <0.001 *** | n.s. | n.s. | |
Na | 157 Ca ± 21 | 198 Cb ± 21 | 162 Ca ± 16 | <0.001 *** | n.s. | n.s. | |
Ca | 197 Cb ± 23 | 185 Cb ± 20 | 180 Ca ± 24 | <0.001 *** | n.s. | n.s. | |
Mg | 200 Bb ± 18 | 235 Cc ± 27 | 187 Ca ± 20 | <0.001 *** | n.s. | n.s. | |
C | 5.07 Bb ± 0.20 | 6.58 Bc ± 0.35 | 4.58 Ca ± 0.16 | <0.001 *** | n.s. | n.s. | |
N | 0.11 Bc ± 0.01 | 0.09 Cb ± 0.02 | 0.07 Ca ± 0.01 | <0.001 *** | 0.026 * | n.s. | |
2016 | |||||||
Fe | 3.60 Ab ± 1.55 | 2.78 Aa ± 1.92 | 4.06 Bb ± 1.55 | <0.001 *** | n.s. | n.s. | |
Cu | 0.78 Ca ± 0.23 | 1.40 Cb ± 0.45 | 0.83 Ca ± 0.26 | <0.001 *** | 0.014 * | n.s. | |
Mn | 0.6 Aa ± 0.17 | 0.5 Aa ± 0.21 | 0.60 Ba ± 0.29 | n.s. | n.s. | n.s. | |
Zn | 1.23 Cb ± 0.53 | 1.43 Bc ± 0.48 | 0.76 Ba ± 0.29 | <0.001 *** | n.s. | n.s. | |
P | 179 Bb ± 47 | 240 Ac ± 40 | 151 Aa ± 32 | <0.001 *** | n.s. | n.s. | |
K | 1610 Bb ± 364 | 1667 Bb ± 313 | 905 Ba ± 201 | <0.001 *** | n.s. | n.s. | |
Na | 58.92 Bab ± 43.24 | 72.08 Bb ± 51.75 | 47.52 Ba ± 44.66 | 0.005 ** | n.s. | n.s. | |
Ca | 106 Ba ± 29 | 126 Bb ± 32 | 105 Ba ± 40 | <0.001 *** | n.s. | n.s. | |
Mg | 93.25 Ab ± 14.59 | 102 Bc ± 12 | 82.45 Ba ± 18.35 | <0.001 *** | n.s. | n.s. | |
C | 5.25 Cb ± 0.11 | 6.42 Ac ± 0.14 | 4.40 Ba ± 0.16 | <0.001 *** | n.s. | n.s. | |
N | 0.07 Ab ± 0.01 | 0.07 Bb ± 0.01 | 0.04 Ba ± 0.01 | <0.001 *** | n.s. | n.s. | |
2017 | |||||||
Fe | 4.42 Bb ± 2.34 | 6.18 Cc ± 3.42 | 2.67 Aa ± 0.88 | <0.001 *** | 0.046 * | 0.013 * | |
Cu | 0.63 Ba ± 0.21 | 0.77 Ab ± 0.24 | 0.71 Bb ± 0.19 | <0.001 *** | 0.047 * | n.s. | |
Mn | 0.81 Bc ± 0.26 | 0.66 aBb ± 0.28 | 0.47 Aa ± 0.19 | <0.001 *** | 0.013 * | n.s. | |
Zn | 0.78 Ab ± 0.26 | 0.87 Ab ± 0.40 | 0.49 Aa ± 0.11 | <0.001 *** | n.s. | n.s. | |
P | 135 Aa ± 22 | 252 Bab ± 42 | 141 Aa ± 16 | <0.001 *** | n.s. | n.s. | |
K | 1327 Ab ± 301 | 1399 Ab ± 472 | 710 Aa ± 117 | <0.001 *** | n.s. | n.s. | |
Na | 15.35 Aa ± 11.97 | 51.78 Ab ± 26.98 | 20.75 Aa ± 7.18 | <0.001 *** | n.s. | n.s. | |
Ca | 64.01 Ab ± 27.29 | 97.67 Ac ± 22.78 | 38.81 Aa ± 15.50 | <0.001 *** | 0.040 * | n.s. | |
Mg | 93.76 Ab ± 17.66 | 67.57 Aa ± 14.40 | 67.47 Aa ± 15.75 | <0.001 *** | n.s. | n.s. | |
C | 4.90 Ab ± 0.08 | 6.67 Bc ± 0.26 | 4.25 Aa ± 0.11 | <0.001 *** | n.s. | n.s. | |
N | 0.06 Ac ± 0.01 | 0.06 Ab ± 0.01 | 0.03 Aa ± 0.01 | <0.001 *** | n.s. | n.s. |
Fe | Cu | Mn | Zn | P | K | Na | Ca | Mg | ||
---|---|---|---|---|---|---|---|---|---|---|
Our results (Almuñécar, Spain) | mg kg−1 %(DW) | 61.80 mg kg−1 | 7.70 mg kg−1 | 6.60 mg kg−1 | 8.70 mg kg−1 | 0.25% | 1.40% | 0.52% | 0.098% | 0.068% |
mg 100 g−1 (DW) | 6.18 | 0.77 | 0.66 | 0.87 | 252 | 1399 | 51.78 | 97.67 | 67.57 | |
Granada/Málaga, Spain [3] | mg 100 g−1(FW) | n.d. | n.d. | n.d. | n.d. | 14 | 296 | 3.70 | 6.80 | n.d. |
United States [43] | mg 100 g−1(FW) | 0.61 | 0.17 | 0.15 | 0.68 | 54 | 507 | 8 | 13 | 29 |
Florida, United States [37] | mg 100 g−1(FW) | 0.17 | 0.31 | 0.10 | 0.40 | 40 | 371 | 2 | 10 | 24 |
Antioquía, Colombia [42] | mg kg−1 %(DW) | 89.90 mg kg−1 | 6.60 mg kg−1 | 16.30 mg kg−1 | 22.50 mg kg−1 | 0.29% | 1.21% | n.d. | 0.048% | 0.12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre-Arcos, A.; García-Carmona, M.; Reyes-Martín, M.P.; San-Emeterio, L.M.; Fernández-Ondoño, E.; Ortiz-Bernad, I. Effects of Pruning Mulch on Nutrient Concentration of Avocado (Persea americana Mill.) Fruit under Subtropical Conditions. Horticulturae 2022, 8, 848. https://doi.org/10.3390/horticulturae8090848
Aguirre-Arcos A, García-Carmona M, Reyes-Martín MP, San-Emeterio LM, Fernández-Ondoño E, Ortiz-Bernad I. Effects of Pruning Mulch on Nutrient Concentration of Avocado (Persea americana Mill.) Fruit under Subtropical Conditions. Horticulturae. 2022; 8(9):848. https://doi.org/10.3390/horticulturae8090848
Chicago/Turabian StyleAguirre-Arcos, Antonio, Minerva García-Carmona, Marino Pedro Reyes-Martín, Layla M. San-Emeterio, Emilia Fernández-Ondoño, and Irene Ortiz-Bernad. 2022. "Effects of Pruning Mulch on Nutrient Concentration of Avocado (Persea americana Mill.) Fruit under Subtropical Conditions" Horticulturae 8, no. 9: 848. https://doi.org/10.3390/horticulturae8090848
APA StyleAguirre-Arcos, A., García-Carmona, M., Reyes-Martín, M. P., San-Emeterio, L. M., Fernández-Ondoño, E., & Ortiz-Bernad, I. (2022). Effects of Pruning Mulch on Nutrient Concentration of Avocado (Persea americana Mill.) Fruit under Subtropical Conditions. Horticulturae, 8(9), 848. https://doi.org/10.3390/horticulturae8090848