Research Trends on Greenhouse Engineering Using a Science Mapping Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Bibliometric Analysis and Clustering
3. Results and Discussion
3.1. Greenhouse Engineering Publication Trends
3.1.1. Annual Evolution of Published Papers
3.1.2. Journals of Publication
3.1.3. Subject Area
3.1.4. Most Relevant Countries
3.1.5. Most Relevant Research Institutions
3.1.6. Co-Operative Network of Authors
3.2. Principal Topics and Trends of Greenhouse Engineering Research in the World
3.2.1. Climate Modification and Energy Resources
Energy Sources
3.2.2. Climate Monitoring and Control
3.2.3. Smart Technology and Automation
3.2.4. Structural and Functional Design
3.2.5. Covering Materials and Plant Growth
Covering Materials
Microclimate and Plant Growth
3.3. Research Trends
Year | Authors | Countries a | Title | Journal | TC | Avg. C |
---|---|---|---|---|---|---|
2013 | Esen M., Yuksel T. [80] | Turkey | Experimental evaluation of using various renewable energy sources for heating a greenhouse | Energy and Buildings | 564 | 62.7 |
2015 | Srbinovska M., Gavrovski C., Dimcev V., Krkoleva A., Borozan V. [211] | North Macedonia | Environmental parameters monitoring in precision agriculture using wireless sensor networks | Journal of Cleaner Production | 289 | 41.3 |
2007 | Norton T., Sun D.-W., Grant J., Fallon R., Dodd V. [212] | Ireland | Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review | Bioresource Technology | 264 | 17.6 |
2015 | Singh D., Basu C., Meinhardt-Wollweber M., Roth B. [213] | Germany, Switzerland | LEDs for energy efficient greenhouse lighting | Renewable and Sustainable Energy Reviews | 204 | 29.1 |
2004 | Bartzanas T., Boulard T., Kittas C. [159] | France, Greece | Effect of vent arrangement on windward ventilation of a tunnel greenhouse | Biosystems Engineering | 203 | 11.3 |
2013 | Kozai T. [214] | Japan | Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory | Proceedings of the Japan Academy Series B: Physical and Biological Sciences | 191 | 21.2 |
1991 | Jones J.W., Dayan E., Allen L.H., Van Keulen H., Challa H. [215] | United States | Dynamic tomato growth and yield model (TOMGRO) | Transactions of the American Society of Agricultural Engineers | 189 | 6.1 |
2008 | Sethi V.P., Sharma S.K. [67] | India | Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications | Solar Energy | 185 | 13.2 |
2014 | Nelson J.A., Bugbee B. [216] | United States | Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures | PLoS ONE | 175 | 21.9 |
1995 | Boulard T., Baille A. [217] | France | Modelling of Air Exchange Rate in a Greenhouse Equipped with Continuous Roof Vents | Journal of Agricultural Engineering Research | 171 | 6.3 |
2002 | Boulard T., Wang S. [218] | France, United States | Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel | Computers and Electronics in Agriculture | 169 | 8.5 |
2010 | Zhao J.C., Zhang J.F., Feng Y., Guo J.X. [219] | China | The study and application of the IOT technology in agriculture | Proc. 3rd IEEE Int. Conference on Computer Science and Information Technology | 162 | 13.5 |
2016 | Hassanien R.H.E., Li M., Dong Lin W. [220] | China, Egypt | Advanced applications of solar energy in agricultural greenhouses | Renewable and Sustainable Energy Reviews | 157 | 26.2 |
2019 | Zamora-Izquierdo M.A., Santa J., Martínez J.A., Martínez V., Skarmeta A.F. [221] | Spain | Smart farming IoT platform based on edge and cloud computing | Biosystems Engineering | 148 | 49.3 |
2012 | Stoessel F., Juraske R., Pfister S., Hellweg S. [222] | Switzerland | Life cycle inventory and carbon and water foodprint of fruits and vegetables: Application to a swiss retailer | Environmental Science and Technology | 148 | 14.8 |
1997 | Mistriotis A., Bot G.P.A., Picuno P., Scarascia-Mugnozza G. [158] | Italy, Netherlands | Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics | Agricultural and Forest Meteorology | 147 | 5.9 |
2017 | Ebrahimi M.A., Khoshtaghaza M.H., Minaei S., Jamshidi B. [223] | Iran | Vision-based pest detection based on SVM classification method | Computers and Electronics in Agriculture | 141 | 28.2 |
2015 | Emmott C.J.M., Röhr J.A., Campoy-Quiles M., Kirchartz T., Urbina A., Ekins-Daukes N.J., Nelson J. [224] | Germany, Spain, United Kingdom | Organic photovoltaic greenhouses: A unique application for semi-transparent PV? | Energy and Environmental Science | 140 | 20.0 |
2000 | Papadakis G., Briassoulis D., Scarascia Mugnozza G., Vox G., Feuilloley P., Stoffers J.A. [62] | France, Italy, Greece, Netherlands | Radiometric and thermal properties of, and testing methods for, greenhouse covering materials | Journal of Agricultural and Engineering Research | 139 | 6.3 |
2010 | Bournet P.E., Boulard T. [157] | France | Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies | Computers and Electronics in Agriculture | 137 | 11.4 |
2016 | Cuce E., Harjunowibowo D., Cuce P.M. [66] | Indonesia, Turkey, United Kingdom | Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review | Renewable and Sustainable Energy Reviews | 134 | 22.3 |
2014 | Cossu M., Murgia L., Ledda L., Deligios P.A., Sirigu A., Chessa F., Pazzona A. [195] | Italy | Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity | Applied Energy | 132 | 16.5 |
Future Developments of Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.H.; Malter, A.J. Protected Agriculture: A Global Review; World Bank Technical Paper 253; World Bank Publications: Washington, DC, USA, 1995. [Google Scholar]
- Hickman, G. International Greenhouse Vegetable Production—Statistics (2019 Edition); Cuesta Roble Greenhouse Vegetable Consulting: Mariposa, CA, USA, 2019. [Google Scholar]
- Takeshima, H.; Joshi, P.K. Protected Agriculture, Precision Agriculture, and Vertical Farming: Brief Reviews of Issues in the Literature Focusing on the Developing Region in Asia; IFPRI Discussion Paper 1814; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Castilla, N. Greenhouse Technology and Management, 2nd ed.; CABI Publishing: Oxfordshire, UK, 2013. [Google Scholar]
- Ma, X.; Liu, S.; Li, Y.; Gao, Q. Effectiveness of Gaseous CO2 Fertilizer Application in China’s Greenhouses between 1982 and 2010. J. CO2 Util. 2015, 11, 63–66. [Google Scholar] [CrossRef]
- Lamont, W.J. Overview of the Use of High Tunnels Worldwide. Horttechnology 2009, 19, 25–29. [Google Scholar] [CrossRef]
- Baille, A. Trends in Greenhouse Technology for Improved Climate Control in Mild Winter Climates. Acta Hortic. 2001, 559, 161–168. [Google Scholar] [CrossRef]
- Giacomelli, G.A.; Sase, S.; Cramer, R.; Hoogeboom, J.; MacKenzie, A.; Parbst, K.; Scarascia-Mugnozza, G.; Selina, P.; Sharp, D.A.; Voogt, J.O.; et al. Greenhouse Production Systems for People. Acta Hortic. 2012, 927, 23–38. [Google Scholar] [CrossRef]
- Castilla, N.; Montero, J.I. Environmental Control and Crop Production in Mediterranean Greenhouses. Acta Hortic. 2008, 797, 25–36. [Google Scholar] [CrossRef]
- Castilla, N.; Hernández, J.; Abou-Hadid, A.F. Strategic Crop and Greenhouse Management in Mild Winter Climate Areas. Acta Hortic. 2004, 633, 183–196. [Google Scholar] [CrossRef]
- Stanghellini, C.; Kempkes, F.L.K.; Knies, P. Enhancing Environmental Quality in Agricultural Systems. Acta Hortic. 2003, 609, 277–283. [Google Scholar] [CrossRef]
- De Pascale, S.; Maggio, A. Sustainable Protected Cultivation at a Mediterranean Climate. Perspectives and Challenges. Acta Hortic. 2005, 691, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Rojano, F.; Flores-Velázquez, J.; Villarreal-Guerrero, F.; Rojano, A. Dynamics of Climatic Conditions in a Greenhouse: Two Locations in Mexico. Acta Hortic. 2014, 1037, 955–962. [Google Scholar] [CrossRef]
- Rocha, G.A.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. [Google Scholar] [CrossRef]
- Villagran, E.; Bojacá, C.; Akrami, M. Contribution to the Sustainability of Agricultural Production in Greenhouses Built on Slope Soils: A Numerical Study of the Microclimatic Behavior of a Typical Colombian Structure. Sustainability 2021, 13, 4748. [Google Scholar] [CrossRef]
- Villagrán, E.; Flores-Velazquez, J.; Akrami, M.; Bojacá, C. Influence of the Height in a Colombian Multi-Tunnel Greenhouse on Natural Ventilation and Thermal Behavior: Modeling Approach. Sustainability 2021, 13, 13631. [Google Scholar] [CrossRef]
- Romero-Gómez, P.; Choi, C.Y.; Lopez-Cruz, I.L. Enhancement of the Greenhouse Air Ventilation Rate under Climate Conditions of Central México. Agrociencia 2010, 44, 1–15. [Google Scholar]
- Golzar, F.; Heeren, N.; Hellweg, S.; Roshandel, R. A Comparative Study on the Environmental Impact of Greenhouses: A Probabilistic Approach. Sci. Total Environ. 2019, 675, 560–569. [Google Scholar] [CrossRef]
- Castro, A.J.; López-Rodríguez, M.D.; Giagnocavo, C.; Gimenez, M.; Céspedes, L.; La Calle, A.; Gallardo, M.; Pumares, P.; Cabello, J.; Rodríguez, E.; et al. Six Collective Challenges for Sustainability of Almería Greenhouse Horticulture. Int. J. Environ. Res. Public Health 2019, 16, 4097. [Google Scholar] [CrossRef]
- Picuno, P.; Tortora, A.; Capobianco, R.L. Analysis of Plasticulture Landscapes in Southern Italy through Remote Sensing and Solid Modelling Techniques. Landsc. Urban Plan. 2011, 100, 45–56. [Google Scholar] [CrossRef]
- Rogge, E.; Nevens, F.; Gulinck, H. Reducing the Visual Impact of “greenhouse Parks” in Rural Landscapes. Landsc. Urban Plan. 2008, 87, 76–83. [Google Scholar] [CrossRef]
- Tomaselli, G.; Russo, P.; Riguccio, L.; Quattrone, M.; D’Emilio, A. Assessment of Landscape Regeneration of a Natura 2000 Site Hosting Greenhouse Farming by Using a Dashboard of Indicators. A Case in Sicily through the Territorial Implementation of a “Pilot Project” at Farm Level. Land Use Policy 2020, 92, 104444. [Google Scholar] [CrossRef]
- Zhou, D.; Meinke, H.; Wilson, M.; Marcelis, L.F.M.; Heuvelink, E. Towards Delivering on the Sustainable Development Goals in Greenhouse Production Systems. Resour. Conserv. Recycl. 2021, 169, 105379. [Google Scholar] [CrossRef]
- Torrellas, M.; Antón, A.; Montero, J.I. An Environmental Impact Calculator for Greenhouse Production Systems. J. Environ. Manag. 2013, 118, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Blanco, I.; Loisi, R.V.; Sica, C.; Schettini, E.; Vox, G. Agricultural Plastic Waste Mapping Using GIS. A Case Study in Italy. Resour. Conserv. Recycl. 2018, 137, 229–242. [Google Scholar] [CrossRef]
- Hanan, J.J. (Ed.) Greenhouses: Advanced Technology for Protected Horticulture; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Critten, D.L.; Bailey, B.J. A Review of Greenhouse Engineering Developments during the 1990s. Agric. For. Meteorol. 2002, 112, 1–22. [Google Scholar] [CrossRef]
- Montero, J.I.; Van Henten, E.J.; Son, J.E.; Castilla, N. Greenhouse Engineering: New Technologies and Approaches. Acta Hortic. 2011, 893, 51–64. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z. Advances in Greenhouse Automation and Controlled Environment Agriculture: A Transition to Plant Factories and Urban Agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Syed, A.M.; Hachem, C. Review of Design Trends in Lighting, Environmental Controls, Carbon Dioxide Supplementation, Passive Design, and Renewable Energy Systems for Agricultural Greenhouses. J. Biosyst. Eng. 2019, 44, 28–36. [Google Scholar] [CrossRef]
- Achour, Y.; Ouammi, A.; Zejli, D. Technological Progresses in Modern Sustainable Greenhouses Cultivation as the Path towards Precision Agriculture. Renew. Sustain. Energy Rev. 2021, 147, 111251. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Noyons, E. Bibliometric Mapping of Science in a Science Policy Context. Scientometrics 2001, 50, 83–98. [Google Scholar] [CrossRef]
- Noyons, E.C.M.; Moed, H.F.; Luwel, M. Combining Mapping and Citation Analysis for Evaluative Bibliometric Purposes: A Bibliometric Study. J. Am. Soc. Inf. Sci. 1999, 50, 115–131. [Google Scholar] [CrossRef]
- Verbeek, A.; Debackere, K.; Luwel, M.; Zimmermann, E. Measuring Progress and Evolution in Science and Technology—I: The Multiple Uses of Bibliometric Indicators. Int. J. Manag. Rev. 2002, 4, 179–211. [Google Scholar] [CrossRef]
- Gauthier, É. Bibliometric Analysis of Scientific and Technological Research: A User’s Guide to the Methodology; Science and Technology Redesign Project Statistics; Observatoire des Sciences et des Technologies: Ottawa, ON, Canada, 1998. [Google Scholar]
- Garfield, E.; Pudovkin, A.I.; Istomin, V.S. Why Do We Need Algorithmic Historiography? J. Am. Soc. Inf. Sci. Technol. 2003, 54, 400–412. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study among Tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Hong, S. Global Biodiversity Research during 1900–2009: A Bibliometric Analysis. Biodivers. Conserv. 2011, 20, 807–826. [Google Scholar] [CrossRef]
- Nardi, P.; Di Matteo, G.; Palahi, M.; Scarascia Mugnozza, G. Structure and Evolution of Mediterranean Forest Research: A Science Mapping Approach. PLoS ONE 2016, 11, e0155016. [Google Scholar] [CrossRef]
- Costa, C.; Schurr, U.; Loreto, F.; Menesatti, P.; Carpentier, S. Plant Phenotyping Research Trends, a Science Mapping Approach. Front. Plant Sci. 2019, 9, 1933. [Google Scholar] [CrossRef] [Green Version]
- Pallottino, F.; Biocca, M.; Nardi, P.; Figorilli, S.; Menesatti, P.; Costa, C. Science Mapping Approach to Analyze the Research Evolution on Precision Agriculture: World, EU and Italian Situation. Precis. Agric. 2018, 19, 1011–1026. [Google Scholar] [CrossRef]
- Raparelli, E.; Bajocco, S. A Bibliometric Analysis on the Use of Unmanned Aerial Vehicles in Agricultural and Forestry Studies. Int. J. Remote Sens. 2019, 40, 9070–9083. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, Z.; Wu, D. Analysis of Hot Topics in Soil Remediation Research Based on VOSviewer. IOP Conf. Ser. Earth Environ. Sci. 2019, 300, 032098. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; López-Felices, B.; Román-Sánchez, I.M. An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture. Int. J. Environ. Res. Public Health 2020, 17, 664. [Google Scholar] [CrossRef] [PubMed]
- Cecchini, C.; Menesatti, P.; Antonucci, F.; Costa, C. Trends in Research on Durum Wheat and Pasta, a Bibliometric Mapping Approach. Cereal Chem. 2020, 97, 581–588. [Google Scholar] [CrossRef]
- Xin, Z.; Keyu, Z.; Lin, P. Analysis of Domestic and Foreign Research Status of Agricultural Pollution Control Based on VOSviewer. In Proceedings of the 2020 International Conference on Energy Big Data and Low-Carbon Development Management (EBLDM 2020), Nanjin, China, 18–20 December 2020; Volume 214, p. 03026. [Google Scholar] [CrossRef]
- Jiménez-Lao, R.; Aguilar, F.J.; Nemmaoui, A.; Aguilar, M.A. Remote Sensing of Agricultural Greenhouses and Plastic-Mulched Farmland: An Analysis of Worldwide Research. Remote Sens. 2020, 12, 2649. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The Journal Coverage of Web of Science, Scopus and Dimensions: A Comparative Analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- González-Pereira, B.; Guerrero-Bote, V.P.; Moya-Anegón, F. A New Approach to the Metric of Journals Scientific Prestige: The SJR Indicator. J. Informetr. 2010, 4, 379–391. [Google Scholar] [CrossRef]
- How Are CiteScore Metrics Used in Scopus? Available online: https://service.elsevier.com/app/answers/detail/a_id/14880/supporthub/scopus/ (accessed on 31 August 2021).
- Van Eck, N.J.; Waltman, L. VOSviewer Manual. Available online: https://www.vosviewer.com (accessed on 21 April 2021).
- Ahamed, M.S.; Guo, H.; Tanino, K. Energy Saving Techniques for Reducing the Heating Cost of Conventional Greenhouses. Biosyst. Eng. 2019, 178, 9–33. [Google Scholar] [CrossRef]
- Rorabaugh, P.; Jensen, M.; Giacomelli, G. Introduction to Controlled Environment Agriculture and Hydroponics; Controlled Environment Agriculture Center, University of Arizona: Tucson, AZ, USA, 2002; pp. 1–130. [Google Scholar]
- Bot, G.; van de Braak, N.; Challa, H.; Hemming, S.; Rieswijk, T.H.; van Straten, G.; Verlodt, I. The Solar Greenhouse: State of the Art in Energy Saving and Sustainable Energy Supply. Acta Hortic. 2005, 691, 501–508. [Google Scholar] [CrossRef]
- Mobtaker, H.G.; Ajabshirchi, Y.; Ranjbar, S.F.; Matloobi, M. Solar Energy Conservation in Greenhouse: Thermal Analysis and Experimental Validation. Renew. Energy 2016, 96, 509–519. [Google Scholar] [CrossRef]
- Papadopoulos, A.P.; Hao, X. Effects of Greenhouse Covers on Seedless Cucumber Growth, Productivity, and Energy Use. Sci. Hortic. 1997, 68, 113–123. [Google Scholar] [CrossRef]
- Papadakis, G.; Briassoulis, D.; Scarascia Mugnozza, G.; Vox, G.; Feuilloley, P.; Stoffers, J.A. Radiometric and Thermal Properties of, and Testing Methods for, Greenhouse Covering Materials. J. Agric. Eng. Res. 2000, 77, 7–38. [Google Scholar] [CrossRef]
- Andersson, N.E. Properties of Thermal Screens Used for Energy Saving in Greenhouses. In Proceedings of the International Conference on Agricultural Engineering-AgEng 2010: Towards Environmental Technologies, Clermont-Ferrand, France, 6–8 September 2010; Cemagref: Aubiere, France, 2010; pp. 1–6. [Google Scholar]
- Sethi, V.P.; Sumathy, K.; Lee, C.; Pal, D.S. Thermal Modeling Aspects of Solar Greenhouse Microclimate Control: A Review on Heating Technologies. Sol. Energy 2013, 96, 56–82. [Google Scholar] [CrossRef]
- Blanco, I.; Scarascia Mugnozza, G.; Schettini, E.; Puglisi, G.; Campiotti, C.A.; Vox, G. Design of a Solar Cooling System for Greenhouse Conditioning in a Mediterranean Area. Acta Hortic. 2017, 1170, 485–491. [Google Scholar] [CrossRef]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and Sustainable Energy Saving Strategies for Greenhouse Systems: A Comprehensive Review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Sethi, V.P.; Sharma, S.K. Survey and Evaluation of Heating Technologies for Worldwide Agricultural Greenhouse Applications. Sol. Energy 2008, 82, 832–859. [Google Scholar] [CrossRef]
- Gorjian, S.; Calise, F.; Kant, K.; Ahamed, M.S.; Copertaro, B.; Najafi, G.; Zhang, X.; Aghaei, M.; Shamshiri, R.R. A Review on Opportunities for Implementation of Solar Energy Technologies in Agricultural Greenhouses. J. Clean. Prod. 2021, 285, 124807. [Google Scholar] [CrossRef]
- Van Beveren, P.J.M.; Bontsema, J.; van’t Ooster, A.; van Straten, G.; van Henten, E.J. Optimal Utilization of Energy Equipment in a Semi-Closed Greenhouse. Comput. Electron. Agric. 2020, 179, 105800. [Google Scholar] [CrossRef]
- Boulard, T.; Raeppel, C.; Brun, R.; Lecompte, F.; Hayer, F.; Carmassi, G.; Gaillard, G. Environmental Impact of Greenhouse Tomato Production in France. Agron. Sustain. Dev. 2011, 31, 757. [Google Scholar] [CrossRef]
- Cellura, M.; Longo, S.; Mistretta, M. Life Cycle Assessment (LCA) of Protected Crops: An Italian Case Study. J. Clean. Prod. 2012, 28, 56–62. [Google Scholar] [CrossRef]
- Heuts, R.F.; Van Loon, J.; Schrevens, E. Life Cycle Assessment of Different Heating Systems for Glasshouse Tomato Production in Flanders, Belgium. Acta Hortic. 2012, 957, 107–114. [Google Scholar] [CrossRef]
- Hollingsworth, J.A.; Ravishankar, E.; O’Connor, B.; Johnson, J.X.; DeCarolis, J.F. Environmental and Economic Impacts of Solar-powered Integrated Greenhouses. J. Ind. Ecol. 2020, 24, 234–247. [Google Scholar] [CrossRef]
- Russo, G.; Anifantis, A.S.; Verdiani, G.; Scarascia Mugnozza, G. Environmental Analysis of Geothermal Heat Pump and LPG Greenhouse Heating Systems. Biosyst. Eng. 2014, 127, 11–23. [Google Scholar] [CrossRef]
- Zhang, H.; Burr, J.; Zhao, F. A Comparative Life Cycle Assessment (LCA) of Lighting Technologies for Greenhouse Crop Production. J. Clean. Prod. 2017, 140, 705–713. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Muñoz, P.; Antón, A.; Rieradevall, J. Assessment of Tomato Mediterranean Production in Open-Field and Standard Multi-Tunnel Greenhouse, with Compost or Mineral Fertilizers, from an Agricultural and Environmental Standpoint. J. Clean. Prod. 2011, 19, 985–997. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. An Environmental and Economic Life Cycle Assessment of Rooftop Greenhouse (RTG) Implementation in Barcelona, Spain. Assessing New Forms of Urban Agriculture from the Greenhouse Structure to the Final Product Level. Int. J. Life Cycle Assess. 2015, 20, 350–366. [Google Scholar] [CrossRef]
- Sanjuan-Delmás, D.; Llorach-Massana, P.; Nadal, A.; Ercilla-Montserrat, M.; Muñoz, P.; Montero, J.I.; Josa, A.; Gabarrell, X.; Rieradevall, J. Environmental Assessment of an Integrated Rooftop Greenhouse for Food Production in Cities. J. Clean. Prod. 2018, 177, 326–337. [Google Scholar] [CrossRef]
- Aschilean, I.; Rasoi, G.; Raboaca, M.S.; Filote, C.; Culcer, M. Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture. Energies 2018, 11, 1201. [Google Scholar] [CrossRef] [Green Version]
- Esen, M.; Yuksel, T. Experimental Evaluation of Using Various Renewable Energy Sources for Heating a Greenhouse. Energy Build. 2013, 65, 340–351. [Google Scholar] [CrossRef]
- García, J.L.; De La Plaza, S.; Navas, L.M.; Benavente, R.M.; Luna, L. Evaluation of the Feasibility of Alternative Energy Sources for Greenhouse Heating. J. Agric. Eng. Res. 1998, 69, 107–114. [Google Scholar] [CrossRef]
- Yano, A.; Kadowaki, M.; Furue, A.; Tamaki, N.; Tanaka, T.; Hiraki, E.; Kato, Y.; Ishizu, F.; Noda, S. Shading and Electrical Features of a Photovoltaic Array Mounted inside the Roof of an East-West Oriented Greenhouse. Biosyst. Eng. 2010, 106, 367–377. [Google Scholar] [CrossRef]
- Castellano, S. Photovoltaic Greenhouses: Evaluation of Shading Effect and Its Influence on Agricultural Performances. J. Agric. Eng. 2014, 45, 168–175. [Google Scholar] [CrossRef]
- Marucci, A.; Cappuccini, A. Dynamic Photovoltaic Greenhouse: Energy Efficiency in Clear Sky Conditions. Appl. Energy 2016, 170, 362–376. [Google Scholar] [CrossRef]
- Gao, Y.; Dong, J.; Isabella, O.; Santbergen, R.; Tan, H.; Zeman, M.; Zhang, G. Modeling and Analyses of Energy Performances of Photovoltaic Greenhouses with Sun-Tracking Functionality. Appl. Energy 2019, 233–234, 424–442. [Google Scholar] [CrossRef]
- Roslan, N.; Ya’acob, M.E.; Jamaludin, D.; Hashimoto, Y.; Othman, M.H.; Iskandar, A.N.; Ariffin, M.R.; Ibrahim, M.H.; Mailan, J.; Jamaluddin, A.H.; et al. Dye-Sensitized Solar Cell (DSSC): Effects on Light Quality, Microclimate, and Growth of Orthosiphon Stamineus in Tropical Climatic Condition. Agronomy 2021, 11, 631. [Google Scholar] [CrossRef]
- Buttaro, D.; Renna, M.; Gerardi, C.; Blando, F.; Santamaria, P.; Serio, F. Soilless Production of Wild Rocket as Affected by Greenhouse Coverage with Photovoltaic Modules. Acta Sci. Pol. Hortorum Cultus 2016, 15, 129–142. [Google Scholar]
- Sonneveld, P.J.; Swinkels, G.L.A.M.; van Tuijl, B.A.J.; Janssen, H.J.J.; Campen, J.; Bot, G.P.A. Performance of a Concentrated Photovoltaic Energy System with Static Linear Fresnel Lenses. Sol. Energy 2011, 85, 432–442. [Google Scholar] [CrossRef]
- Hepbasli, A. A Comparative Investigation of Various Greenhouse Heating Options Using Exergy Analysis Method. Appl. Energy 2011, 88, 4411–4423. [Google Scholar] [CrossRef]
- Chau, J.; Sowlati, T.; Sokhansanj, S.; Preto, F.; Melin, S.; Bi, X. Techno-Economic Analysis of Wood Biomass Boilers for the Greenhouse Industry. Appl. Energy 2009, 86, 364–371. [Google Scholar] [CrossRef]
- Chau, J.; Sowlati, T.; Sokhansanj, S.; Preto, F.; Melin, S.; Bi, X. Economic Sensitivity of Wood Biomass Utilization for Greenhouse Heating Application. Appl. Energy 2009, 86, 616–621. [Google Scholar] [CrossRef]
- Roy, Y.; Lefsrud, M.; Orsat, V.; Filion, F.; Bouchard, J.; Nguyen, Q.; Dion, L.-M.; Glover, A.; Madadian, E.; Lee, C.P. Biomass Combustion for Greenhouse Carbon Dioxide Enrichment. Biomass Bioenergy 2014, 66, 186–196. [Google Scholar] [CrossRef]
- Bibbiani, C.; Fantozzi, F.; Gargari, C.; Campiotti, C.A.; Schettini, E.; Vox, G. Wood Biomass as Sustainable Energy for Greenhouses Heating in Italy. Agric. Agric. Sci. Procedia 2016, 8, 637–645. [Google Scholar] [CrossRef]
- Başak, M.Z.; Sevilgen, S.H. A Techno-Economic Model for Heating of a Greenhouse Site Using Waste Heat. Arab. J. Sci. Eng. 2016, 41, 1895–1905. [Google Scholar] [CrossRef]
- Chinese, D.; Meneghetti, A.; Nardin, G. Waste-to-Energy Based Greenhouse Heating: Exploring Viability Conditions through Optimisation Models. Renew. Energy 2005, 30, 1573–1586. [Google Scholar] [CrossRef]
- Pietzsch, M.; Meyer, J. Use of Reject Heat from Biogas Power Plants for Greenhouse Heating. Acta Hortic. 2008, 801 Pt. 1, 719–724. [Google Scholar] [CrossRef]
- Yildiz, A.; Ozgener, O.; Ozgener, L. Energetic Performance Analysis of a Solar Photovoltaic Cell (PV) Assisted Closed Loop Earth-to-Air Heat Exchanger for Solar Greenhouse Cooling: An Experimental Study for Low Energy Architecture in Aegean Region. Renew. Energy 2012, 44, 281–287. [Google Scholar] [CrossRef]
- Agrebi, S.; Chargui, R.; Tashtoush, B.; Guizani, A. Comparative Performance Analysis of a Solar Assisted Heat Pump for Greenhouse Heating in Tunisia. Int. J. Refrig. 2021, 131, 547–558. [Google Scholar] [CrossRef]
- Lim, T.; Baik, Y.-K.; Kim, D.D. Heating Performance Analysis of an Air-to-Water Heat Pump Using Underground Air for Greenhouse Farming. Energies 2020, 13, 3863. [Google Scholar] [CrossRef]
- Yildirim, N.; Bilir, L. Evaluation of a Hybrid System for a Nearly Zero Energy Greenhouse. Energy Convers. Manag. 2017, 148, 1278–1290. [Google Scholar] [CrossRef]
- Pascuzzi, S.; Anifantis, A.S.; Blanco, I.; Scarascia Mugnozza, G. Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating a Case Study. Sustainability 2016, 8, 629. [Google Scholar] [CrossRef]
- Bakker, J.C.; Bot, G.P.A.; Challa, H.; Van de Braak, N.J. Greenhouse Climate Control: An Integrated Approach; Wageningen Press: Wageningen, The Netherlands, 1995. [Google Scholar]
- Rodríguez, F.; Berenguel, M.; Guzmán, J.L.; Ramírez-Arias, A. Climate and Irrigation Control. In Modeling and Control of Greenhouse Crop Growth. Advances in Industrial Control; Springer: Cham, Switzerland, 2015; pp. 99–196. [Google Scholar] [CrossRef]
- Duarte-Galvan, C.; Torres-Pacheco, I.; Guevara-Gonzalez, R.G.; Romero-Troncoso, R.J.; Contreras-Medina, L.M.; Rios-Alcaraz, M.A.; Millan-Almaraz, J.R. Review. Advantages and Disadvantages of Control Theories Applied in Greenhouse Climate Control Systems. Span. J. Agric. Res. 2012, 10, 926–938. [Google Scholar] [CrossRef]
- Vanthoor, B.H.E.; Stanghellini, C.; Van Henten, E.J.; De Visser, P.H.B. A Methodology for Model-Based Greenhouse Design: Part 1, a Greenhouse Climate Model for a Broad Range of Designs and Climates. Biosyst. Eng. 2011, 110, 363–377. [Google Scholar] [CrossRef]
- Vanthoor, B.H.E.; Gázquez, J.C.; Magán, J.J.; Ruijs, M.N.A.; Baeza, E.; Stanghellini, C.; van Henten, E.J.; de Visser, P.H.B. A Methodology for Model-Based Greenhouse Design: Part 4, Economic Evaluation of Different Greenhouse Designs: A Spanish Case. Biosyst. Eng. 2012, 111, 336–349. [Google Scholar] [CrossRef]
- Setiawan, A.; Albright, L.D.; Phelan, R.M. Application of Pseudo-Derivative-Feedback Algorithm in Greenhouse Air Temperature Control. Comput. Electron. Agric. 2000, 26, 283–302. [Google Scholar] [CrossRef]
- Arvanitis, K.G.; Paraskevopoulos, P.N.; Vernardos, A.A. Multirate Adaptive Temperature Control of Greenhouses. Comput. Electron. Agric. 2000, 26, 303–320. [Google Scholar] [CrossRef]
- Castañeda-Miranda, R.; Ventura-Ramos, E.; del Rocío Peniche-Vera, R.; Herrera-Ruiz, G. Fuzzy Greenhouse Climate Control System Based on a Field Programmable Gate Array. Biosyst. Eng. 2006, 94, 165–177. [Google Scholar] [CrossRef]
- Reyes-Rosas, A.; Molina-Aiz, F.D.; Valera, D.L.; López, A.; Khamkure, S. Development of a Single Energy Balance Model for Prediction of Temperatures inside a Naturally Ventilated Greenhouse with Polypropylene Soil Mulch. Comput. Electron. Agric. 2017, 142, 9–28. [Google Scholar] [CrossRef]
- Van Straten, G.; Challa, H.; Buwalda, F. Towards User Accepted Optimal Control of Greenhouse Climate. Comput. Electron. Agric. 2000, 26, 221–238. [Google Scholar] [CrossRef]
- Ben Ali, R.; Aridhi, E.; Mami, A. Dynamic Model of an Agricultural Greenhouse Using Matlab-Simulink Environment. In Proceedings of the 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, STA 2015, Monastir, Tunisia, 21–23 December 2015; IEEE: New York, NY, USA, 2016; pp. 346–350. [Google Scholar] [CrossRef]
- Ioslovich, I.; Gutman, P.-O.; Linker, R. Hamilton-Jacobi-Bellman Formalism for Optimal Climate Control of Greenhouse Crop. Automatica 2009, 45, 1227–1231. [Google Scholar] [CrossRef]
- Van Beveren, P.J.M.; Bontsema, J.; van Straten, G.; van Henten, E.J. Optimal Control of Greenhouse Climate Using Minimal Energy and Grower Defined Bounds. Appl. Energy 2015, 159, 509–519. [Google Scholar] [CrossRef]
- Dong, Q.; Yang, W.; Yang, L.; Chen, Y.; Du, S.; Feng, L.; Shi, Q.; Xu, Y. Crop Model-Based Greenhouse Optimal Control System: Survey and Perspectives. In Computer and Computing Technologies in Agriculture VI, Proceedings of the 6th IFIP WG 5.14 International Conference, CCTA 2012, Zhangjiajie, China, 19–21 October 2012; Li, D., Chen, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 392, pp. 216–224. [Google Scholar] [CrossRef]
- Körner, O.; Van Straten, G. Decision Support for Dynamic Greenhouse Climate Control Strategies. Comput. Electron. Agric. 2008, 60, 18–30. [Google Scholar] [CrossRef]
- Rodríguez, F.; Guzmán, J.L.; Berenguel, M.; Arahal, M.R. Adaptive Hierarchical Control of Greenhouse Crop Production. Int. J. Adapt. Control Signal Process. 2008, 22, 180–197. [Google Scholar] [CrossRef]
- Van ’t Ooster, A.; Bontsema, J.; Van Henten, E.J.; Hemming, S. GWorkS—A Discrete Event Simulation Model on Crop Handling Processes in a Mobile Rose Cultivation System. Biosyst. Eng. 2012, 112, 108–120. [Google Scholar] [CrossRef]
- Ramírez-Arias, A.; Rodríguez, F.; Guzmán, J.L.; Berenguel, M. Multiobjective Hierarchical Control Architecture for Greenhouse Crop Growth. Automatica 2012, 48, 490–498. [Google Scholar] [CrossRef]
- López-Cruz, I.L.; Fitz-Rodríguez, E.; Torres-Monsivais, J.C.; Trejo-Zúñiga, E.C.; Ruíz-García, A.; Ramírez-Arias, A. Control Strategies of Greenhouse Climate for Vegetables Production. In Biosystems Engineering: Biofactories for Food Production in the Century XXI; Guevara-Gonzalez, R., Torres-Pacheco, I., Eds.; Springer: Cham, Switzerland, 2014; pp. 401–421. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless Sensor Networks for Agriculture: The State-of-the-Art in Practice and Future Challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Guzmán, C.H.; Carrera, J.L.; Durán, H.A.; Berumen, J.; Ortiz, A.A.; Guirette, O.A.; Arroyo, A.; Brizuela, J.A.; Gómez, F.; Blanco, A.; et al. Implementation of Virtual Sensors for Monitoring Temperature in Greenhouses Using CFD and Control. Sensors 2019, 19, 60. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Bojic, I.; van Henten, E.; Balasundram, S.K.; Dworak, V.; Sultan, M.; Weltzien, C. Model-Based Evaluation of Greenhouse Microclimate Using IoT-Sensor Data Fusion for Energy Efficient Crop Production. J. Clean. Prod. 2020, 263, 121303. [Google Scholar] [CrossRef]
- Kodali, R.K.; Jain, V.; Karagwal, S. IoT Based Smart Greenhouse. In Proceedings of the 2016 IEEE Region 10 Humanitarian Technology Conference, R10-HTC 2016, Agra, India, 21–23 December 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, D.; Cao, X.; Huang, C.; Ji, L. Intelligent Agriculture Greenhouse Environment Monitoring System Based on IOT Technology. In Proceedings of the International Conference on Intelligent Transportation, Big Data and Smart City, ICITBS 2015, Halong Bay, Vietnam, 19–20 December 2015; IEEE: New York, NY, USA, 2016; pp. 487–490. [Google Scholar] [CrossRef]
- Raj, J.S.; Ananthi, J.V. Automation Using IoT in Greenhouse Environment. J. Inf. Technol. Digit. World 2019, 1, 38–47. [Google Scholar] [CrossRef]
- Xiaoyan, Z.; Xiangyang, Z.; Chen, D.; Zhaohui, C.; Shangming, S.; Zhaohui, Z. The Design and Implementation of the Greenhouse Monitoring System Based on GSM and RF Technologies. In Proceedings of the International Conference on Computational Problem-solving (ICCP), Jiuzhai, China, 26–28 October 2013; IEEE: New York, NY, USA, 2013; pp. 32–35. [Google Scholar] [CrossRef]
- Pallavi, K.; Mallapur, J.D.; Bendigeri, K.Y. Remote Sensing and Controlling of Greenhouse Agriculture Parameters Based on IoT. In Proceedings of the 2017 International Conference on Big Data, IoT and Data Science, BID 2017, Pune, India, 20–22 December 2017; IEEE: New York, NY, USA, 2018; pp. 44–48. [Google Scholar] [CrossRef]
- Munoz, M.; Guzman, J.L.; Sanchez-Molina, J.A.; Rodríguez, F.; Torres, M.; Berenguel, M. A New IoT-Based Platform for Greenhouse Crop Production. IEEE Internet Things J. 2022, 9, 6325–6334. [Google Scholar] [CrossRef]
- Liao, M.-S.; Chen, S.-F.; Chou, C.-Y.; Chen, H.-Y.; Yeh, S.-H.; Chang, Y.-C.; Jiang, J.-A. On Precisely Relating the Growth of Phalaenopsis Leaves to Greenhouse Environmental Factors by Using an IoT-Based Monitoring System. Comput. Electron. Agric. 2017, 136, 125–139. [Google Scholar] [CrossRef]
- Akkaş, M.A.; Sokullu, R. An IoT-Based Greenhouse Monitoring System with Micaz Motes. Procedia Comput. Sci. 2017, 113, 603–608. [Google Scholar] [CrossRef]
- Sun, J.; Abdulghani, A.M.; Imran, M.A.; Abbasi, Q.H. IoT Enabled Smart Fertilization and Irrigation Aid for Agricultural Purposes. In Proceedings of the 2020 International Conference on Computing, Networks and Internet of Things (CNIOT2020), Sanya China, 24–26 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 71–75. [Google Scholar] [CrossRef]
- Dharmasena, T.; de Silva, R.; Abhayasingha, N.; Abeygunawardhana, P. Autonomous Cloud Robotic System for Smart Agriculture. In Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 3–5 July 2019; IEEE: New York, NY, USA, 2019; pp. 388–393. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments. Precis. Agric. 2021, 22, 2053–2091. [Google Scholar] [CrossRef]
- Pothuganti, K.; Sridevi, B.; Seshabattar, P. IoT and Deep Learning Based Smart Greenhouse Disease Prediction. In Proceedings of the 6th International Conference on Recent Trends on Electronics, Information, Communication and Technology, RTEICT 2021, Bangalore, India, 27–28 August 2021; IEEE: New York, NY, USA, 2021; pp. 793–799. [Google Scholar] [CrossRef]
- Kumar, V.; Arora, H.; Sisodia, J. ResNet-Based Approach for Detection and Classification of Plant Leaf Diseases. In Proceedings of the 2020 International Conference on Electronics and Sustainable Communication Systems, ICESC 2020, Coimbatore, India, 2–4 July 2020; IEEE: New York, NY, USA, 2020; pp. 495–502. [Google Scholar] [CrossRef]
- Kitpo, N.; Kugai, Y.; Inoue, M.; Yokemura, T.; Satomura, S. Internet of Things for Greenhouse Monitoring System Using Deep Learning and Bot Notification Services. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Su, T.-L.; Zuo, M. Cropdeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.J.; Chandra, P. Effect of Greenhouse Design Parameters on Conservation of Energy for Greenhouse Environmental Control. Energy 2002, 27, 777–794. [Google Scholar] [CrossRef]
- Chou, S.K.; Chua, K.J.; Ho, J.C.; Ooi, C.L. On the Study of an Energy-Efficient Greenhouse for Heating, Cooling and Dehumidification Applications. Appl. Energy 2004, 77, 355–373. [Google Scholar] [CrossRef]
- Waaijenberg, D. Design, Construction and Maintenance of Greenhouse Structures. Acta Hortic. 2006, 710, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Von Elsner, B.; Briassoulis, D.; Waaijenberg, D.; Mistriotis, A.; von Zabeltitz, C.; Gratraud, J.; Russo, G.; Suay-Cortes, R. Review of Structural and Functional Characteristics of Greenhouses in European Union Countries, Part II: Typical Designs. J. Agric. Eng. Res. 2000, 75, 111–126. [Google Scholar] [CrossRef]
- Çakır, U.; Şahin, E. Using Solar Greenhouses in Cold Climates and Evaluating Optimum Type According to Sizing, Position and Location: A Case Study. Comput. Electron. Agric. 2015, 117, 245–257. [Google Scholar] [CrossRef]
- Singh, R.D.; Tiwari, G.N. Energy Conservation in the Greenhouse System: A Steady State Analysis. Energy 2010, 35, 2367–2373. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Guo, H.; Tanino, K. Energy-Efficient Design of Greenhouse for Canadian Prairies Using a Heating Simulation Model. Int. J. Energy Res. 2018, 42, 2263–2272. [Google Scholar] [CrossRef]
- Bakker, J.C. Model Application for Energy Efficient Greenhouses in The Netherlands: Greenhouse Design, Operational Control and Decision Support Systems. Acta Hortic. 2006, 718, 191–202. [Google Scholar] [CrossRef]
- Villarreal-Guerrero, F.; Kacira, M.; Fitz-Rodríguez, E.; Linker, R.; Kubota, C.; Giacomelli, G.A.; Arbel, A. Simulated Performance of a Greenhouse Cooling Control Strategy with Natural Ventilation and Fog Cooling. Biosyst. Eng. 2012, 111, 217–228. [Google Scholar] [CrossRef]
- Kittas, C.; Bartzanas, T.; Jaffrin, A. Temperature Gradients in a Partially Shaded Large Greenhouse Equipped with Evaporative Cooling Pads. Biosyst. Eng. 2003, 85, 87–94. [Google Scholar] [CrossRef]
- Kwon, K.-S.; Kim, D.-W.; Kim, R.-W.; Ha, T.; Lee, I.-B. Evaluation of Wind Pressure Coefficients of Single-Span Greenhouses Built on Reclaimed Coastal Land Using a Large-Sized Wind Tunnel. Biosyst. Eng. 2016, 141, 58–81. [Google Scholar] [CrossRef]
- Mistriotis, A.; Briassoulis, D. Numerical Estimation of the Internal and External Aerodynamic Coefficients of a Tunnel Greenhouse Structure with Openings. Comput. Electron. Agric. 2002, 34, 191–205. [Google Scholar] [CrossRef]
- Richardson, G.M.; Westgate, G.R. Full-Scale Measurements of the Wind Loads on Film Plastic Clad Greenhouses: A Comparison of Measured and Calculated Strains on the Supporting Hoops of a Tunnel Greenhouse. J. Agric. Eng. Res. 1986, 33, 101–110. [Google Scholar] [CrossRef]
- Robertson, A.P.; Roux, P.; Gratraud, J.; Scarascia, G.; Castellano, S.; Dufresne de Virel, M.; Palier, P. Wind Pressures on Permeably and Impermeably-Clad Structures. J. Wind Eng. Ind. Aerodyn. 2002, 90, 461–474. [Google Scholar] [CrossRef]
- Wang, C.; Nan, B.; Wang, T.; Bai, Y.; Li, Y. Wind Pressure Acting on Greenhouses: A Review. Int. J. Agric. Biol. Eng. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Kim, R.-W.; Lee, I.-B.; Yeo, U.-H.; Lee, S.-Y. Estimating the Wind Pressure Coefficient for Single-Span Greenhouses Using an Large Eddy Simulation Turbulence Model. Biosyst. Eng. 2019, 188, 114–135. [Google Scholar] [CrossRef]
- Vieira Neto, J.G.; Soriano, J. Computational Modelling Applied to Predict the Pressure Coefficients in Deformed Single Arch-Shape Greenhouses. Biosyst. Eng. 2020, 200, 231–245. [Google Scholar] [CrossRef]
- Majdoubi, H.; Boulard, T.; Fatnassi, H.; Bouirden, L. Airflow and Microclimate Patterns in a One-Hectare Canary Type Greenhouse: An Experimental and CFD Assisted Study. Agric. For. Meteorol. 2009, 149, 1050–1062. [Google Scholar] [CrossRef]
- Bournet, P.-E.; Boulard, T. Effect of Ventilator Configuration on the Distributed Climate of Greenhouses: A Review of Experimental and CFD Studies. Comput. Electron. Agric. 2010, 74, 195–217. [Google Scholar] [CrossRef]
- Mistriotis, A.; Bot, G.P.A.; Picuno, P.; Scarascia-Mugnozza, G. Analysis of the Efficiency of Greenhouse Ventilation Using Computational Fluid Dynamics. Agric. For. Meteorol. 1997, 85, 217–228. [Google Scholar] [CrossRef]
- Bartzanas, T.; Boulard, T.; Kittas, C. Effect of Vent Arrangement on Windward Ventilation of a Tunnel Greenhouse. Biosyst. Eng. 2004, 88, 479–490. [Google Scholar] [CrossRef]
- Baeza, E.J.; Pérez-Parra, J.J.; Montero, J.I.; Bailey, B.J.; López, J.C.; Gázquez, J.C. Analysis of the Role of Sidewall Vents on Buoyancy-Driven Natural Ventilation in Parral-Type Greenhouses with and without Insect Screens Using Computational Fluid Dynamics. Biosyst. Eng. 2009, 104, 86–96. [Google Scholar] [CrossRef]
- Santolini, E.; Pulvirenti, B.; Torreggiani, D.; Tassinari, P. Novel Methodologies for the Characterization of Airflow Properties of Shading Screens by Means of Wind-Tunnel Experiments and CFD Numerical Modeling. Comput. Electron. Agric. 2019, 163, 104800. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Bojacá, C.R. Effects of Surrounding Objects on the Thermal Performance of Passively Ventilated Greenhouses. J. Agric. Eng. 2019, 50, 20–27. [Google Scholar] [CrossRef]
- Teitel, M.; Ziskind, G.; Liran, O.; Dubovsky, V.; Letan, R. Effect of Wind Direction on Greenhouse Ventilation Rate, Airflow Patterns and Temperature Distributions. Biosyst. Eng. 2008, 101, 351–369. [Google Scholar] [CrossRef]
- Fuina, S.; Marano, G.C.; Scarascia-Mugnozza, G. Polycarbonate Laminates Thermo-Mechanical Behaviour under Different Operating Temperatures. Polym. Test. 2019, 76, 344–349. [Google Scholar] [CrossRef]
- Al-Mahdouri, A.; Baneshi, M.; Gonome, H.; Okajima, J.; Maruyama, S. Evaluation of Optical Properties and Thermal Performances of Different Greenhouse Covering Materials. Sol. Energy 2013, 96, 21–32. [Google Scholar] [CrossRef]
- Hemming, S.; Mohammadkhani, V.; Dueck, T. Diffuse Greenhouse Covering Materials—Material Technology, Measurements and Evaluation of Optical Properties. Acta Hortic. 2008, 797, 469–476. [Google Scholar] [CrossRef]
- De Salvador, F.R.; Scarascia Mugnozza, G.; Vox, G.; Schettini, E.; Mastrorilli, M.; Bou Jaoudé, M. Innovative Photoselective and Photoluminescent Plastic Films for Protected Cultivation. Acta Hortic. 2008, 801, 115–122. [Google Scholar] [CrossRef]
- Cabrera, F.J.; Baille, A.; López, J.C.; González-Real, M.M.; Pérez-Parra, J. Effects of Cover Diffusive Properties on the Components of Greenhouse Solar Radiation. Biosyst. Eng. 2009, 103, 344–356. [Google Scholar] [CrossRef]
- Pollet, I.V.; Pieters, J.G. PAR Transmittances of Dry and Condensate Covered Glass and Plastic Greenhouse Cladding. Agric. For. Meteorol. 2002, 110, 285–298. [Google Scholar] [CrossRef]
- Pollet, I.V.; Pieters, J.G.; Deltour, J.; Verschoore, R. Diffusion of Radiation Transmitted through Dry and Condensate Covered Transmitting Materials. Sol. Energy Mater. Sol. Cells 2005, 86, 177–196. [Google Scholar] [CrossRef]
- Stanghellini, C.; Bruins, M.; Mohammadkhani, V.; Swinkels, G.J.; Sonneveld, P.J. Effect of Condensation on Light Transmission and Energy Budget of Seven Greenhouse Cover Materials. Acta Hortic. 2012, 952, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Teitel, M.; Vitoshkin, H.; Geoola, F.; Karlsson, S.; Stahl, N. Greenhouse and Screenhouse Cover Materials: Literature Review and Industry Perspective. Acta Hortic. 2018, 1227, 31–44. [Google Scholar] [CrossRef]
- Djakhdane, K.; Dehbi, A.; Mourad, A.-H.I.; Zaoui, A.; Picuno, P. The Effect of Sand Wind, Temperature and Exposure Time on Tri-Layer Polyethylene Film Used as Greenhouse Roof. Plast. Rubber Compos. 2016, 45, 6. [Google Scholar] [CrossRef]
- Briassoulis, D.; Aristopoulou, A.; Bonora, M.; Verlodt, I. Degradation Characterisation of Agricultural Low-Density Polyethylene Films. Biosyst. Eng. 2004, 88, 131–143. [Google Scholar] [CrossRef]
- Schettini, E.; Vox, G.; Stefani, L. Interaction between Agrochemical Contaminants and Uv Stabilizers for Greenhouse Eva Plastic Films. Appl. Eng. Agric. 2014, 30, 229–239. [Google Scholar] [CrossRef]
- Mashonjowa, E.; Ronsse, F.; Mhizha, T.; Milford, J.R.; Lemeur, R.; Pieters, J.G. The Effects of Whitening and Dust Accumulation on the Microclimate and Canopy Behaviour of Rose Plants (Rosa hybrida) in a Greenhouse in Zimbabwe. Sol. Energy 2010, 84, 10–23. [Google Scholar] [CrossRef]
- Graefe, J.; Sandmann, M. Shortwave Radiation Transfer through a Plant Canopy Covered by Single and Double Layers of Plastic. Agric. For. Meteorol. 2015, 201, 196–208. [Google Scholar] [CrossRef]
- Hu, J.; Yu, X. Adaptive Greenhouse with Thermochromic Material: Performance Evaluation in Cold Regions. J. Energy Eng. 2020, 146, 4020032. [Google Scholar] [CrossRef]
- Baeza, E.J.; van Breugel, A.J.B.; Hemming, S.; Stanghellini, C. Smart Greenhouse Covers: A Look into the Future. Acta Hortic. 2020, 1268, 213–224. [Google Scholar] [CrossRef]
- Timmermans, G.H.; Hemming, S.; Baeza, E.; van Thoor, E.A.J.; Schenning, A.P.H.J.; Debije, M.G. Advanced Optical Materials for Sunlight Control in Greenhouses. Adv. Opt. Mater. 2020, 8, 2000738. [Google Scholar] [CrossRef]
- Stefani, L.; Zanon, M.; Modesti, M.; Ugel, E.; Vox, G.; Schettini, E. Reduction of the Environmental Impact of Plastic Films for Greenhouse Covering by Using Fluoropolymeric Materials. Acta Hortic. 2008, 801, 131–137. [Google Scholar] [CrossRef]
- Picuno, P.; Sica, C.; Laviano, R.; Dimitrijević, A.; Scarascia-Mugnozza, G. Experimental Tests and Technical Characteristics of Regenerated Films from Agricultural Plastics. Polym. Degrad. Stab. 2012, 97, 1654–1661. [Google Scholar] [CrossRef]
- Harel, D.; Fadida, H.; Slepoy, A.; Gantz, S.; Shilo, K. The Effect of Mean Daily Temperature and Relative Humidity on Pollen, Fruit Set and Yield of Tomato Grown in Commercial Protected Cultivation. Agronomy 2014, 4, 167–177. [Google Scholar] [CrossRef]
- Lu, N.; Nukaya, T.; Kamimura, T.; Zhang, D.; Kurimoto, I.; Takagaki, M.; Maruo, T.; Kozai, T.; Yamori, W. Control of Vapor Pressure Deficit (VPD) in Greenhouse Enhanced Tomato Growth and Productivity during the Winter Season. Sci. Hortic. 2015, 197, 17–23. [Google Scholar] [CrossRef]
- Olle, M.; Viršile, A. The Effects of Light-Emitting Diode Lighting on Greenhouse Plant Growth and Quality. Agric. Food Sci. 2013, 22, 223–234. [Google Scholar] [CrossRef]
- Chen, R.; Kang, S.; Hao, X.; Li, F.; Du, T.; Qiu, R.; Chen, J. Variations in Tomato Yield and Quality in Relation to Soil Properties and Evapotranspiration under Greenhouse Condition. Sci. Hortic. 2015, 197, 318–328. [Google Scholar] [CrossRef]
- Montero, J.I. Evaporative Cooling in Greenhouses: Effect on Microclimate, Water Use Efficiency and Plant Respons. Acta Hortic. 2006, 719, 373–383. [Google Scholar] [CrossRef]
- Gázquez, J.C.; López, J.C.; Baeza, E.; Pérez-Parra, J.J.; Fernández, M.D.; Baille, A.; González-Real, M. Effects of Vapour Pressure Deficit and Radiation on the Transpiration Rate of a Greenhouse Sweet Pepper Crop. Acta Hortic. 2008, 797, 259–265. [Google Scholar] [CrossRef]
- Dannehl, D.; Josuttis, M.; Ulrichs, C.; Schmidt, U. The Potential of a Confined Closed Greenhouse in Terms of Sustainable Production, Crop Growth, Yield and Valuable Plant Compounds of Tomatoes. J. Appl. Bot. Food Qual. 2014, 87, 210–219. [Google Scholar] [CrossRef]
- Demrati, H.; Boulard, T.; Fatnassi, H.; Bekkaoui, A.; Majdoubi, H.; Elattir, H.; Bouirden, L. Microclimate and Transpiration of a Greenhouse Banana Crop. Biosyst. Eng. 2007, 98, 66–78. [Google Scholar] [CrossRef]
- Heuvelink, E.; Bakker, M.; Marcelis, L.F.M.; Raaphorst, M. Climate and Yield in a Closed Greenhouse. Acta Hortic. 2008, 801, 1083–1092. [Google Scholar] [CrossRef] [Green Version]
- Qian, T.; Dieleman, J.A.; Elings, A.; Marcelis, L.F.M. Leaf Photosynthetic and Morphological Responses to Elevated CO2 Concentration and Altered Fruit Number in the Semi-Closed Greenhouse. Sci. Hortic. 2012, 145, 1–9. [Google Scholar] [CrossRef]
- Katsoulas, N.; Kittas, C. Impact of Greenhouse Microclimate on Plant Growth and Development with Special Reference to the Solanaceae. Eur. J. Plant Sci. Biotechnol. 2008, 2, 31–44. [Google Scholar]
- Shamshiri, R.R.; Jones, J.W.; Thorp, K.R.; Ahmad, D.; Man, H.C.; Taheri, S. Review of Optimum Temperature, Humidity, and Vapour Pressure Deficit for Microclimate Evaluation and Control in Greenhouse Cultivation of Tomato: A Review. Int. Agrophys. 2018, 32, 287–302. [Google Scholar] [CrossRef]
- Cossu, M.; Murgia, L.; Ledda, L.; Deligios, P.A.; Sirigu, A.; Chessa, F.; Pazzona, A. Solar Radiation Distribution inside a Greenhouse with South-Oriented Photovoltaic Roofs and Effects on Crop Productivity. Appl. Energy 2014, 133, 89–100. [Google Scholar] [CrossRef]
- Ntinas, G.K.; Kadoglidou, K.; Tsivelika, N.; Krommydas, K.; Kalivas, A.; Ralli, P.; Irakli, M. Performance and Hydroponic Tomato Crop Quality Characteristics in a Novel Greenhouse Using Dye-Sensitized Solar Cell Technology for Covering Material. Horticulturae 2019, 5, 42. [Google Scholar] [CrossRef]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and Radiation Use Efficiency of Lettuces Grown in the Partial Shade of Photovoltaic Panels. Eur. J. Agron. 2013, 44, 54–66. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Li, M. Influences of Greenhouse-Integrated Semi-Transparent Photovoltaics on Microclimate and Lettuce Growth. Int. J. Agric. Biol. Eng. 2017, 10, 11–22. [Google Scholar] [CrossRef]
- Davis, P.A.; Burns, C. Photobiology in Protected Horticulture. Food Energy Secur. 2016, 5, 223–238. [Google Scholar] [CrossRef]
- Weaver, G.M.; van Iersel, M.W.; Mohammadpour Velni, J. A Photochemistry-Based Method for Optimising Greenhouse Supplemental Light Intensity. Biosyst. Eng. 2019, 182, 123–137. [Google Scholar] [CrossRef]
- Katzin, D.; Marcelis, L.F.M.; van Mourik, S. Energy Savings in Greenhouses by Transition from High-Pressure Sodium to LED Lighting. Appl. Energy 2021, 281, 116019. [Google Scholar] [CrossRef]
- Niangoran, N.U.; Canale, L.; Tian, F.; Haba, T.C.; Zissis, G. Optimal Spectrum Modeling Calculation with Light Emitting Diodes Set Based on Relative Quantum Efficiency. Acta Hortic. 2019, 1242, 815–822. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Durante, M.; Caretto, S.; Milano, F.; D’imperio, M.; Serio, F.; Santamaria, P. Supplementary Light Differently Influences Physico-Chemical Parameters and Antioxidant Compounds of Tomato Fruits Hybrids. Antioxidants 2021, 10, 687. [Google Scholar] [CrossRef]
- Díaz, B.M.; Biurrún, R.; Moreno, A.; Nebreda, M.; Fereres, A. Impact of Ultraviolet-Blocking Plastic Films on Insect Vectors of Virus Diseases Infecting Crisp Lettuce. HortScience 2006, 41, 711–716. [Google Scholar] [CrossRef]
- Kumar, P.; Poehling, H.-M. UV-Blocking Plastic Films and Nets Influence Vectors and Virus Transmission on Greenhouse Tomatoes in the Humid Tropics. Environ. Entomol. 2006, 35, 1069–1082. [Google Scholar] [CrossRef]
- Papaioannou, C.; Katsoulas, N.; Maletsika, P.; Siomos, A.; Kittas, C. Effects of a UV-Absorbing Greenhouse Covering Film on Tomato Yield and Quality. Span. J. Agric. Res. 2012, 10, 959–966. [Google Scholar] [CrossRef]
- Pawlowski, A.; Sánchez-Molina, J.A.; Guzmán, J.L.; Rodríguez, F.; Dormido, S. Evaluation of Event-Based Irrigation System Control Scheme for Tomato Crops in Greenhouses. Agric. Water Manag. 2017, 183, 16–25. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Irrigation of Greenhouse Crops. Horticulturae 2019, 5, 7. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Carmassi, G.; Campiotti, C.A.; Pardossi, A. Strategies to Decrease Water Drainage and Nitrate Emission from Soilless Cultures of Greenhouse Tomato. Agric. Water Manag. 2010, 97, 971–980. [Google Scholar] [CrossRef]
- Elvanidi, A.; Katsoulas, N.; Kittas, C. Automation for Water and Nitrogen Deficit Stress Detection in Soilless Tomato Crops Based on Spectral Indices. Horticulturae 2018, 4, 47. [Google Scholar] [CrossRef]
- Srbinovska, M.; Gavrovski, C.; Dimcev, V.; Krkoleva, A.; Borozan, V. Environmental Parameters Monitoring in Precision Agriculture Using Wireless Sensor Networks. J. Clean. Prod. 2015, 88, 297–307. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.-W.; Grant, J.; Fallon, R.; Dodd, V. Applications of Computational Fluid Dynamics (CFD) in the Modelling and Design of Ventilation Systems in the Agricultural Industry: A Review. Bioresour. Technol. 2007, 98, 2386–2414. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for Energy Efficient Greenhouse Lighting. Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef]
- Kozai, T. Resource Use Efficiency of Closed Plant Production System with Artificial Light: Concept, Estimation and Application to Plant Factory. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2013, 89, 447–461. [Google Scholar] [CrossRef]
- Jones, J.W.; Dayan, E.; Allen, L.H.; Van Keulen, H.; Challa, H. Dynamic Tomato Growth and Yield Model (TOMGRO). Trans. Am. Soc. Agric. Eng. 1991, 34, 663–672. [Google Scholar] [CrossRef]
- Nelson, J.A.; Bugbee, B. Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures. PLoS ONE 2014, 9, e99010. [Google Scholar] [CrossRef] [PubMed]
- Boulard, T.; Baille, A. Modelling of Air Exchange Rate in a Greenhouse Equipped with Continuous Roof Vents. J. Agric. Eng. Res. 1995, 61, 37–47. [Google Scholar] [CrossRef]
- Boulard, T.; Wang, S. Experimental and Numerical Studies on the Heterogeneity of Crop Transpiration in a Plastic Tunnel. Comput. Electron. Agric. 2002, 34, 173–190. [Google Scholar] [CrossRef]
- Zhao, J.-C.; Zhang, J.-F.; Feng, Y.; Guo, J.-X. The Study and Application of the IOT Technology in Agriculture. In Proceedings of the 2010 3rd IEEE International Conference on Computer Science and Information Technology, ICCSIT 2010, Chengdu, China, 9–11 July 2010; IEEE: New York, NY, USA, 2010; Volume 2, pp. 462–465. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Li, M.; Dong Lin, W. Advanced Applications of Solar Energy in Agricultural Greenhouses. Renew. Sustain. Energy Rev. 2016, 54, 989–1001. [Google Scholar] [CrossRef]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart Farming IoT Platform Based on Edge and Cloud Computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar] [CrossRef]
- Stoessel, F.; Juraske, R.; Pfister, S.; Hellweg, S. Life Cycle Inventory and Carbon and Water Foodprint of Fruits and Vegetables: Application to a Swiss Retailer. Environ. Sci. Technol. 2012, 46, 3253–3262. [Google Scholar] [CrossRef]
- Ebrahimi, M.A.; Khoshtaghaza, M.H.; Minaei, S.; Jamshidi, B. Vision-Based Pest Detection Based on SVM Classification Method. Comput. Electron. Agric. 2017, 137, 52–58. [Google Scholar] [CrossRef]
- Emmott, C.J.M.; Röhr, J.A.; Campoy-Quiles, M.; Kirchartz, T.; Urbina, A.; Ekins-Daukes, N.J.; Nelson, J. Organic Photovoltaic Greenhouses: A Unique Application for Semi-Transparent PV? Energy Environ. Sci. 2015, 8, 1317–1328. [Google Scholar] [CrossRef]
- Dion, L.-M.; Lefsrud, M.; Orsat, V. Review of CO2 Recovery Methods from the Exhaust Gas of Biomass Heating Systems for Safe Enrichment in Greenhouses. Biomass Bioenergy 2011, 35, 3422–3432. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Prinzenberg, A.E.; Kaiser, E.; Heuvelink, E. Led and Hps Supplementary Light Differentially Affect Gas Exchange in Tomato Leaves. Plants 2021, 10, 810. [Google Scholar] [CrossRef]
Journal a | Publisher | N. b | CS c | SJR d | HP e |
---|---|---|---|---|---|
Acta Horticulturae | Inter. Soc. Hort. Science (ISHS) | 812 | 0.5 | 0.181 | 12 |
Biosystems Engineering | Elsevier | 86 | 7.2 | 0.894 | 93 |
Computers and Electronics in Agriculture | Elsevier | 53 | 8.6 | 1.208 | 99 |
Solar Energy | Elsevier | 39 | 8.9 | 1.337 | 87 |
Journal of Agricultural Meteorology | Society of Agricultural Meteorology of Japan | 37 | 2.6 | 0.472 | 65 |
Agricultural and Forest Meteorology | Elsevier | 36 | 8.9 | 1.837 | 97 |
Energies | MDPI | 34 | 4.7 | 0.598 | 85 |
Transactions of the American Society of Agricultural Engineers | American Society of Agricultural Engineers | 34 | na | na | na |
Advanced Materials Research | Trans Tech Publications Ltd. | 32 | na | na | na |
Applied Mechanics and Materials | Scitec Publications Ltd. | 31 | na | na | na |
Journal of Agricultural and Engineering Research | Scitec Publications Ltd. | 31 | na | na | na |
Journal of Physics: Conference Series | IOP Publishing Ltd. | 30 | 0.7 | 0.210 | 18 |
Renewable Energy | Elsevier | 28 | 10.8 | 1.825 | 88 |
Scientia Horticulturae | Elsevier | 28 | 5 | 0.906 | 93 |
Paper-American Society of Agricultural Engineers | American Society of Agricultural Engineers | 26 | na | na | na |
Journal of Agricultural Engineering Research | Elsevier | 24 | na | na | na |
Applied Engineering in Agriculture | American Society of Agricultural Engineers | 22 | 1.9 | 0.276 | 57 |
IOP Conference Series Earth and Environmental Science | IOP Publishing | 22 | 0.5 | 0.179 | 17 |
Renewable and Sustainable Energy Reviews | Elsevier | 22 | 30.5 | 3.522 | 97 |
Energy and Buildings | Elsevier | 21 | 10.9 | 1.737 | 97 |
International Journal of Agricultural and Biological Engineering | IJABE | 21 | 3.8 | 0.570 | 83 |
Sensors (Switzerland) | MDPI | 21 | 5.8 | 0.636 | 90 |
Applied Energy | Elsevier | 20 | 17.6 | 3.035 | 99 |
Energy | Elsevier | 18 | 11.5 | 1.961 | 98 |
Energy Conversion and Management | Elsevier | 18 | 15.9 | 2.743 | 97 |
Hortscience | American Society for Horticultural Science | 18 | 2.1 | 0.518 | 63 |
Journal of Agricultural Engineering | PagePress | 18 | 2.8 | 0.300 | 61 |
Sustainability (Switzerland) | MDPI | 18 | 3.9 | 0.612 | 84 |
IFAC-PapersOnLine | IFAC Secretariat | 17 | 2.1 | 0.308 | 43 |
Transactions of the ASABE | ASABE | 17 | 2.6 | 0.396 | 67 |
Institution | Country | N. of Documents | Total Number of Citations | Average Number of Citations * | Documents h-Index | ||
---|---|---|---|---|---|---|---|
Total | Journal | Book Chapter- Conference Paper | |||||
Wageningen University and Research | The Netherlands | 183 | 70 | 113 | 3463 | 18.9 | 33 |
University of Almería | Spain | 95 | 42 | 53 | 1400 | 14.7 | 21 |
University of Thessaly | Greece | 90 | 53 | 37 | 1641 | 18.2 | 18 |
INRAE Provence-Alpes-Côte d´Azur Research Centre | France | 84 | 36 | 48 | 2778 | 33.1 | 28 |
Agricultural Research Organization – Volcani Center | Israel | 78 | 39 | 38 | 1421 | 18.2 | 21 |
University of Bari Aldo Moro | Italy | 62 | 37 | 25 | 1463 | 23.6 | 22 |
China Agricultural University | China | 54 | 23 | 31 | 455 | 8.4 | 10 |
Agricultural University of Athens | Greece | 50 | 31 | 19 | 1421 | 28.4 | 20 |
Israel Ministry of Agriculture and Rural Development | Israel | 47 | 25 | 22 | 764 | 16.3 | 16 |
Institute of Agriculture and Food Research and Technology (IRTA) | Spain | 46 | 24 | 32 | 1127 | 24.5 | 19 |
The University of Arizona | USA | 45 | 21 | 24 | 722 | 16.0 | 26 |
Cajamar Las Palmerillas Research Station | Spain | 40 | 14 | 26 | 669 | 16.7 | 15 |
Seoul National University | South Korea | 40 | 30 | 10 | 382 | 9.6 | 10 |
Leibniz University Hannover | Germany | 36 | 23 | 13 | 902 | 25.1 | 15 |
Ghent University | Belgium | 32 | 21 | 11 | 345 | 10.8 | 12 |
Tongji University | China | 32 | 19 | 13 | 444 | 13.9 | 12 |
The Ohio State University | USA | 31 | 15 | 16 | 548 | 17.7 | 11 |
Agriculture and Agri-food Canada | Canada | 30 | 16 | 14 | 381 | 12.7 | 9 |
Ministry of Agriculture of the People’s Republic of China | China | 30 | 22 | 8 | 296 | 9.9 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco, I.; Luvisi, A.; De Bellis, L.; Schettini, E.; Vox, G.; Scarascia Mugnozza, G. Research Trends on Greenhouse Engineering Using a Science Mapping Approach. Horticulturae 2022, 8, 833. https://doi.org/10.3390/horticulturae8090833
Blanco I, Luvisi A, De Bellis L, Schettini E, Vox G, Scarascia Mugnozza G. Research Trends on Greenhouse Engineering Using a Science Mapping Approach. Horticulturae. 2022; 8(9):833. https://doi.org/10.3390/horticulturae8090833
Chicago/Turabian StyleBlanco, Ileana, Andrea Luvisi, Luigi De Bellis, Evelia Schettini, Giuliano Vox, and Giacomo Scarascia Mugnozza. 2022. "Research Trends on Greenhouse Engineering Using a Science Mapping Approach" Horticulturae 8, no. 9: 833. https://doi.org/10.3390/horticulturae8090833
APA StyleBlanco, I., Luvisi, A., De Bellis, L., Schettini, E., Vox, G., & Scarascia Mugnozza, G. (2022). Research Trends on Greenhouse Engineering Using a Science Mapping Approach. Horticulturae, 8(9), 833. https://doi.org/10.3390/horticulturae8090833