Chemical Composition of Combretum erythrophyllum Leaf and Stem Bark Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phytochemistry
2.1.1. Plant Collection
2.1.2. Extraction
2.1.3. Phytochemical Analysis
Fixed Oils and Fats
Saponins
Phenols
Carbohydrates
Glycosides
Sterols
Alkaloids
Flavonoids
Mucilage and Gums
2.1.4. Thin-Layer Chromatography (TLC)
2.1.5. Gas Chromatography–Mass Spectrometry (GC–MS)
2.1.6. Energy-Dispersive X-ray (EDX)
2.2. Fluorescence Microscopy
3. Results and Discussion
3.1. Phytochemical Analysis
3.2. Thin Layer Chromatography (TLC)
3.3. Energy-Dispersive X-ray (EDX)
3.4. Gas Chromatography–Mass Spectrometry (GC–MS)
3.5. Fluorescence Microscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kayser, O. Ethnobotany and medicinal plant biotechnology: From tradition to modern aspects of drug development. Planta Med. 2018, 84, 834–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gökbulut, A. High Performance Thin Layer Chromatography (HPTLC) for the Investigation of Medicinal Plants. Curr. Anal. Chem. 2021, 17, 1252–1259. [Google Scholar] [CrossRef]
- Kaur, G.; Kataria, H.; Mishra, R. Medicinal Plants as Novel Promising Therapeutics for Neuroprotection and Neuroregeneration. In New Age Herbals; Springer: Singapore, 2018; pp. 437–453. [Google Scholar]
- Bantho, S.; Naidoo, Y.; Dewir, Y.H. The secretory scales of Combretum erythrophyllum (Combretaceae): Micromorphology, ultrastructure and histochemistry. South Afr. J. Bot. 2020, 131, 104–117. [Google Scholar] [CrossRef]
- Van Wyk, B.E. A broad review of commercially important Southern African medicinal plants. J. Ethnopharmacol. 2008, 119, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Braun, B.; Pitt, R. Homeopathy as a means of conserving endangered medicinal plant species: A homeopathic proving of an important herbal medicine in Southern Africa. Homeopathy 2018, 107, 55–78. [Google Scholar] [CrossRef]
- Scheffers, B.R.; Joppa, L.N.; Pimm, S.L.; Laurance, W.F. What we know and don’t now about Earth’s missing biodiversity. Trends Ecol. Evol. 2012, 27, 501–510. [Google Scholar] [CrossRef]
- Willis, K.J. State of the World’s Plants 2017; Report; Royal Botanic Gardens: Sydney, Australia, 2017; pp. 2–96. [Google Scholar]
- Kumar, V.S.; Navaratnam, V. Neem (Azadirachta indica): Pre-history to contemporary medicinal uses to humankind. Asian Pac. J. Trop. Biomed. 2013, 3, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Rupani, R.; Chavez, A. Medicinal plants with traditional use: Ethnobotany in the Indian subcontinent. Clin. Dermatol. 2018, 36, 306–309. [Google Scholar] [CrossRef]
- Castillo-Pérez, L.J.; Alonso-Castro, A.J.; Fortanelli-Martínez, J.; Carranza-Álvarez, C. Biotechnological approaches for conservation of medicinal plants. In Phytomedicine; Academic Press: Cambridge, MA, USA, 2021; pp. 35–58. [Google Scholar]
- Kemper, K.J.; Vohra, S.; Walls, R. American Academy of Pediatrics: The use of complementary and alternative medicine in pediatrics. Pediatrics 2008, 122, 1374–1386. [Google Scholar] [CrossRef] [Green Version]
- Winkleman, J.W. Aromatherapy, botanicals, and essential oils in acne. Clin. Dermatol. 2018, 36, 290–305. [Google Scholar] [CrossRef]
- Verm, S.; Sin, S.P. Current and future status of herbal medicines. Vet. World 2008, 1, 347–350. [Google Scholar] [CrossRef]
- Wink, M.; Schimmer, O. Modes of action of defensive secondary metabolites. Annu. Plant Rev. 2018, 2, 18–137. [Google Scholar]
- Rao, S.R.; Ravishankar, G.A. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol. Adv. 2002, 2, 101–153. [Google Scholar]
- Wink, M. Introduction: Biochemistry, role and biotechnology of secondary metabolites. Annu. Plant Rev. 2018, 3, 1–17. [Google Scholar]
- Gupta, N.; Gudipati, T. Prasad GBKS Plant secondary metabolites of pharmacological significance in reference to diabetes mellitus: An update. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3409–3448. [Google Scholar] [CrossRef]
- Fahn, A. Secretory tissues in vascular plants. New Phytol. 1988, 108, 229–257. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, K.P.; Svoboda, T.G. Secretory Structures of Aromatic and Medicinal Plants; Knighton, Microscopix Publications: Wales, UK, 2000. [Google Scholar]
- Wittstock, U.; Gershenzon, J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 2002, 5, 300–307. [Google Scholar] [CrossRef]
- Lee, Y.H.; Wang, C.M.; Liu, P.Y.; Cheng, C.C.; Wu, Z.Y.; Tseng, S.Y.; Tung, K.C. Volatile Oils of Nepeta tenuifolia (Jing Jie) as an Alternative Medicine against Multidrug-Resistant Pathogenic Microbes. Can. J. Infect. Dis. Med. Microbiol. 2018, 1, 8347403. [Google Scholar] [CrossRef] [Green Version]
- Mtunzi, F.M.; Ejidike, I.P.; Ledwaba, I.; Ahmed, A.; Pakade, V.E.; Klink, M.J.; Modise, S.J. Solvent-solvent fractionations of Combretum erythrophyllum (Burch.) leaf extract: Studies of their antibacterial, antifungal, antioxidant and cytotoxicity potentials. Asian Pac. J. Trop. Med. 2017, 10, 670–679. [Google Scholar] [CrossRef]
- Mawoza, T.; Ndove, T. Combretum erythrophyllum (burch.) Sond. (Combretaceae): A review of its ethnomedicinal uses, phytochemistry and pharmacology. Glob. J. Biol. Agric. Health Sci. 2015, 4, 105–109. [Google Scholar]
- Alfei, S.; Caviglia, D.; Penco, S.; Zuccari, G.; Gosetti, F. 4-Hydroxybenzoic Acid as an Antiviral Product from Alkaline Autoxidation of Catechinic Acid: A Fact to Be Reviewed. Plants 2022, 11, 1822. [Google Scholar] [CrossRef] [PubMed]
- Eloff, J.N.; Katerere, D.R.; McGaw, L.J. The biological activity and chemistry of the Southern African Combretaceae. J. Ethnopharmacol. 2008, 119, 686–699. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.; Sales, P.; Filho, M.; Jesus, N.; Falcão, H.; Barbosa-Filho, J.; Cabral, A.; Souto, A.; Tavares, J.; Batista, L. Bioactivities of the genus Combretum (Combretaceae): A review. Molecules 2012, 17, 9142–9206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fyhrquist, P.; Mwasumbi, L.; Hæggström, C.A.; Vuorela, H.; Hiltunen, R.; Vuorela, P. Ethnobotanical and antimicrobial investigation on some species of Terminalia and Combretum (Combretaceae) growing in Tanzania. J. Ethnopharmacol. 2002, 79, 169–177. [Google Scholar] [CrossRef]
- Thorat, B. Chemical extraction and biomedical importance of secondary organic metabolites from plants—A review. J. Biomed. Ther. Sci. 2018, 5, 9–42. [Google Scholar]
- Raks, V.; Al-Suod, H.; Buszewski, B. Isolation, separation, and pre-concentration of biologically active compounds from plant matrices by extraction techniques. Chromatographia 2018, 2, 198–202. [Google Scholar]
- Jaradat, N.; Hussen, F.; Anas, A.A. Preliminary phytochemical screening, quantitative estimation of total flavonoids, total phenols and antioxidant activity of Ephedra alata Decne. J. Mater. Environ. Sci. 2015, 6, 1771–1778. [Google Scholar]
- Meyers, C.L.F. Thin-layer chromatography. Curr. Protoc. Nucleic Acid Chem. 2000, 3, A.3D.1–A.3D.8. [Google Scholar] [CrossRef] [Green Version]
- Sermakkani, M.; Thangapandian, V. GC-MS analysis of Cassia italica leaf methanol extracts. Asian J. Pharm. Clin. Res. 2012, 5, 90–94. [Google Scholar]
- Adeyinka, C.G.; Moodley, B. Kinetic and thermodynamic studies on partitioning of polychlorinated biphenyls (PCBs) between aqueous solution and modelled individual soil particle grain sizes. J. Environ. Sci. 2018, 76, 100–110. [Google Scholar] [CrossRef]
- Parbuntari, H.; Prestica, Y.; Gunawan, R.; Nurman, M.N.; Adella, F. Preliminary Phytochemical Screening (Qualitative Analysis) of Cacao Leaves (Theobroma cacao L.). EKSAKTA 2018, 19, 40–45. [Google Scholar] [CrossRef]
- Bribi, N. Pharmacological activity of alkaloids: A review. Asian J. Bot. 2018, 1, 1–6. [Google Scholar]
- Shang, X.F.; Morris-Natschke, S.L.; Yang, G.Z.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Zhang, J.Y.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids, Part II. Med. Res. Rev. 2018, 38, 1614–1660. [Google Scholar] [CrossRef]
- Roberts, M.F. Alkaloids: Biochemistry, Ecology, and Medicinal Applications; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Onocha, P.A.; Audu, E.O.; Ekundayo, O.; Dosumu, O.O. Phytochemical and antimicrobial properties of extracts of Combretum racemosum. Acta Hortic. 2005, 675, 97–101. [Google Scholar] [CrossRef]
- Ibrahim, S.; Bello, A.S.; Sunusi, U.; Lere, M.Y.; Umar, F.S.; Egbong, U.D.; Nasiru, H.; Muhammad, A. Phytochemical screening and anti-microbial activities of the leaf, stem bark and root extracts of Combretum sokodense. Bayero. J. Pure Appl. Sci. 2017, 10, 11–15. [Google Scholar]
- Roberts, M.F.; Strack, D. Biochemistry and physiology of alkaloids and betalains. Annu. Plant Rev. 2018, 2, 16–76. [Google Scholar]
- Matsuura, H.N.; Fett-Neto, A.G. Plant alkaloids: Main features, toxicity, and mechanisms of action. In Plant Toxins; Springer: Dordrecht, The Netherland, 2017; pp. 243–261. [Google Scholar]
- Morone-Fortunato, I.; Montemurro, C.; Ruta, C.; Perrini, R.; Sabetta, W.; Blanco, A.; Lorusso, E.; Avato, P. Essential oils, genetic relationships and in vitro establishment of Helichrysum italicum (Roth) G. Don ssp. italicum from wild Mediterranean germplasm. Ind. Crops Prod. 2010, 32, 639–649. [Google Scholar]
- Chauke, S.H.; Lall, N.; Kritzinger, Q. Antifungal activity of South African indigenous plants against aflatoxigenic Aspergillus species. South Afr. J. Bot. 2018, 115, 318. [Google Scholar] [CrossRef]
- Tiwari, R.; Rana, C.S. Plant secondary metabolites: A review. Int. J. Eng. Res. Gen. 2015, 3, 661–670. [Google Scholar]
- Faizal, A.; Geelen, D. Saponins and their role in biological processes in plants. Phytochem. Rev. 2013, 12, 877–893. [Google Scholar] [CrossRef]
- Desai, S.D.; Desai, D.G.; Kaur, H. Saponins and their biological activities. Pharma-Times 2009, 41, 13–16. [Google Scholar]
- Soto-Blanco, B. Herbal glycosides in healthcare. In Herbal Biomolecules in Healthcare Applications; Academic Press: Cambridge, MA, USA, 2022; pp. 239–282. [Google Scholar]
- Khan, H.; Saeedi, M.; Nabavi, S.M.; Mubarak, M.S.; Bishayee, A. Glycosides from medicinal plants as potential anti-cancer agents: Emerging trends towards future drugs. Curr. Med. Chem. 2019, 26, 2389–2406. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, M.; Mengi, S. Evaluation of phytoconstituents of Terminalia arjuna for wound healing activity in rats. Phytother. Res. 2006, 20, 799–805. [Google Scholar] [CrossRef]
- Dawe, A.; Pierre, S.; Tsala, D.E.; Habtemariam, S. Phytochemical constituents of Combretum loefl. (Combretaceae). Pharm. Crops 2013, 4, 38–59. [Google Scholar] [CrossRef]
- Lattanzio, V. Phenolic compounds: Introduction. In Natural Products; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1543–1580. [Google Scholar]
- Garcia-Macias, P.; Ordidge, M.; Vysini, E.; Waroonphan, S.; Battey, N.H.; Gordon, M.H. Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo rosso) due to cultivation under plastic films varying in ultraviolet transparency. J. Agric. Food Chem. 2007, 55, 10168–10172. [Google Scholar] [CrossRef]
- Masoko, P.; Picard, J.; Eloff, J.N. The antifungal activity of twenty-four Southern African Combretum species (Combretaceae). South Afr. J. Bot. 2007, 73, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Pettit, G.R.; Cragg, G.M.; Herald, D.L.; Schmidt, J.M.; Lohavanijaya, P. Isolation and structure of combretastatin. Can. J. Chem. 1982, 60, 1374–1376. [Google Scholar] [CrossRef]
- Chandar, B.; Ramasamy, K.M. Evaluation of antioxidant, antibacterial activity of ethanolic extract in the leaves of Combretum albidum and gas chromatography-mass spectrometry analysis. Asian J. Pharm. Clin. Res. 2016, 9, 325–329. [Google Scholar]
- Karim, N.; Khan, I.; Khan, H.; Ayub, B.; Abdel-Halim, H.; Gavande, N. Anxiolytic potential of natural flavonoids. SM J. Steroids Horm. 2018, 1, 1001–1010. [Google Scholar]
- Wang, T.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Baron, E.P. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache J. Head Face Pain 2018, 58, 1139–1186. [Google Scholar] [CrossRef] [PubMed]
- Bujang, K. Production, Purification, and Health Benefits of Sago Sugar. In Sago Palm; Springer: Singapore, 2018; pp. 299–307. [Google Scholar]
- Monteiro, N.E.; Queirós, L.D.; Lopes, D.B.; Pedro AOMaced, G.A. Impact of microbiota on the use and effects of isoflavones in the relief of climacteric symptoms in menopausal women–A review. J. Funct. Foods 2018, 41, 100–111. [Google Scholar] [CrossRef]
- Kaleem, M.; Ahmad, A. Flavonoids as Nutraceuticals. In Therapeutic, Probiotic, and Unconventional Foods (137–155); Academic Press: Karachi, Pakistan, 2018. [Google Scholar]
- Berkoff, N. Focus on Flavonoids. 1998. Available online: Http://www.healthwell.com/hnbreakthroughs/sep98/flavonoids.cfm?path=hw (accessed on 17 July 2018).
- Martini, N.; Katerere, D.R.P.; Eloff, J.N. Biological activity of five antibacterial flavonoids isolated from Combretum erythrophyllum (Combretaceae). J. Ethnopharmacol. 2004, 93, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.; Day, A.J.; Plumb, G.W.; Couteau, D. Human metabolic pathways of dietary flavonoids and cinnamates. Biochem. Soc. Trans. 2000, 28, 16–22. [Google Scholar] [CrossRef]
- Schmelzer, G.H.; Gurib-Fakim, A. Plant resources of tropical Africa medicinal plants. PROTA Found. 2013, 2, 2–11. [Google Scholar]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Paiva, É.A.S. Do calcium oxalate crystals protect against herbivory? Sci. Nat. 2021, 108, 1–7. [Google Scholar] [CrossRef]
- Baláž, M.; Bedlovičová, Z.; Daneu, N.; Siksa, P.; Sokoli, L.; Tkáčiková, L.; Salayová, A.; Džunda, R.; Kováčová, M.; Bureš, R.; et al. Mechanochemistry as an Alternative Method of Green Synthesis of Silver Nanoparticles with Antibacterial Activity: A Comparative Study. Nanomaterials 2021, 11, 1139. [Google Scholar] [CrossRef]
- Kumar, M.; Puri, S.; Pundir, A.; Bangar, S.P.; Changan, S.; Choudhary, P.; Parameswari, E.; Alhariri, A.; Samota, M.K.; Damale, R.D.; et al. Evaluation of nutritional, phytochemical, and mineral composition of selected medicinal plants for therapeutic uses from cold desert of Western Himalaya. Plants 2021, 10, 1429. [Google Scholar]
- Kuppuswamy, K.M.; Jonnalagadda, B.; Arockiasamy, S. GC-MS analysis of chloroform extracts of Croton bonplandianum. Int. J. Pharmacol. Biol. Sci. 2013, 4, 613–617. [Google Scholar]
- Ali, A.; Ali, A.; Warsi, M.H.; Ahmad, W. Chemical characterization, antidiabetic and anticancer activities of Santolina chamaecyparissus. Saudi J. Biol. Sci. 2021, 28, 4575–4580. [Google Scholar] [CrossRef] [PubMed]
- Duke, J.; Bogenschutz, M.J. Dr. Duke’s Phytochemical and Ethnobotanical Databases; Agricultural Research Service: Washington, DC, USA, 1994; pp. 1–8.
- Quijano-Avilés, M.; Chóez-Guaranda, I.; Viteri, R.; Barragán-Lucas, A.; Sosa, D.; Manzano, P. Effect of Cocoa Bean Shell Addition on Metabolite Profile and Antioxidant Activity of Herbal Infusions. Int. J. Food Sci. 2021, 2021, 9915797. [Google Scholar] [CrossRef] [PubMed]
- Alade, A.; Aboaba, S.; Satyal, P.; Setzer, W. Evaluation of chemical profiles and biological properties of Gliricidia sepium (Jacq.) Walp. volatile oils from Nigeria. Nat. Volatiles Essent. Oils 2021, 8, 34–43. [Google Scholar] [CrossRef]
- Elamin, M.M.; Abdelrahim, N.A.; Elhag, D.E.A.; Joseph, M.R.; Hamid, M.E. Bioactive pyrrole-pyrazine derivative from a novel Bacillus species and review of the literature. Afr. J. Pharm. Pharmacol. 2021, 15, 138–151. [Google Scholar]
- Joy, P.P.; Thomas, J.; Mathew, S.; Skaria, B.P. Medicinal Plants. Aromatic and Medicinal Plants Research Station; Kerala Agricultural University: Kerala, India, 1998; Volume 1, pp. 211–217. [Google Scholar]
- Singh, K.; Panghal, M.; Kadyan, S.; Yadav, J.P. Evaluation of antimicrobial activity of synthesized silver nanoparticles using Phyllanthus amarus and Tinospora cordifolia medicinal plants. J. Nanomed. Nanotechnol. 2014, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Umarani, G.; Nethaji, S. Gas chromatographic and mass spectroscopic analysis of Erythrina variegata LEAF EXTRACT. J. Nat. Remedies 2021, 21, 30–34. [Google Scholar]
- Wal, P.; Wal, A.; Sharma, G.; Rai, A.K. Biological activities of lupeol. Syst. Rev. Pharm. 2011, 2, 96–103. [Google Scholar] [CrossRef]
- Wagner, G.J.; Wang, E.; Shepard, R.W. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot. 2004, 93, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.P.; Kumaravel, S.; Lalitha, C. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr. J. Biochem. Res. 2010, 4, 191–195. [Google Scholar]
- Hajar, A.S.; Gumgumjee, N.M. Antimicrobial activities and evaluation of genetic effects of Moringa peregrina (forsk) fiori using molecular techniques. Int. J. Plant Anim. Environ. Sci. 2014, 4, 65–72. [Google Scholar]
- Rhetso, T.; Shubharani, R.; Roopa, M.; Sivaram, V. Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense G. Don. Future J. Pharm. Sci. 2020, 6, 102. [Google Scholar] [CrossRef]
- Ahsan, T.; Chen, J.; Zhao, X.; Irfan, M.; Wu, Y. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express 2017, 7, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Kumari, A.; Dhatwalia, J.; Guleria, I.; Lal, S.; Upadhyay, N.; Kumar, V.; Kumar, A. Effect of solvents extraction on phytochemical profile and biological activities of two Ocimum species: A comparative study. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100348. [Google Scholar] [CrossRef]
- Osuntokun, O.T.; Cristina, G.M. Bio-guided isolation, chemical purification, identification, antimicrobial and synergistic efficacy of extracted essential oils from stem bark extract of Spondias mombin (Linn). Int. J. Mol. Biol. Open Access 2019, 4, 135–143. [Google Scholar] [CrossRef]
- Hassan, L.G.; Liman, M.G.; Msheila, H.E.; Ogbiko, C.; Babagana, A.; Andrew, O. Lupeol acetate isolated from n-Hexane extract of Tapinanthus globiferus Leaf. Chem. Search J. 2018, 9, 83–88. [Google Scholar]
- Najar, A.A.; Ashaq, M.; Bhat, N.A.; Khare, S.; Rather, A.A.; Wani, A.A.; Jahangir, R. A Diagnostic approach for same looking plants for their Pharmacognosy value. Indian J. Sci. Technol. 2021, 14, 1105–1115. [Google Scholar] [CrossRef]
- Khan, S.A.; Ibrar, M.; Barkatullah, B. Pharmacognostic evaluation of the leaf OFRhus succedanea Var Himalaica, J. D Hooker. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 107–120. [Google Scholar] [CrossRef] [Green Version]
Test | Leaves | Stembark | ||||
---|---|---|---|---|---|---|
Hexane | Chloro Form | Methanol | Hexane | Chloro Form | Methanol | |
Carbohydrates Molisch test | ++ | ++ | ++ | ++ | ++ | ++ |
Benedicts test | − | ++ | ++ | − | − | ++ |
Fehlings test | ++ | ++ | − | + | ++ | ++ |
Alkaloids Mayers test | ++ | − | ++ | ++ | + | + |
Wagners test | ++ | ++ | − | ++ | + | − |
Dragensdorffs test | ++ | − | ++ | ++ | + | + |
Flavonoids Lead acetate test | ++ | + | + | − | − | − |
Saponins Froth test | − | − | − | − | + | − |
Foam test | − | − | − | + | − | + |
Glycosides Sulfuric acid test | + | ++ | + | − | − | ++ |
Sterols test Chloroform test | ++ − | − + | + − | ++ + | + − | + ++ |
Phenols Ferric trichloride test | + | + | ++ | + | + | ++ |
Mucilage and Gums Ruthenium red test | − | − | − | − | − | ++ |
Fixed Oils and fats Filter paper test | ++ | − | + | − | − | ++ |
Element | Composition (%) Leaf Stembark | |
---|---|---|
C | 74.67 | 52.015 |
O | 21.01 | 17.32 |
Cl | 0.43 | 1.22 |
K | 2.05 | 6.37 |
Ca | 0.92 | 23.08 |
Al | 0.14 | - |
Mg | 0.56 | - |
Si | 0.17 | - |
No | Phytochemical Compound | CAS NO. | Solvent | RT | Peak (%) | Pharmacological Activity and References |
---|---|---|---|---|---|---|
1 | Phenol, 2,4-bis(1,1-dimethylethyl)- | 96-76-4 | Chloroform | 12.715 | 2.17 | Antibacterial activity [31] |
Hexane | 12.719 | 2.77 | ||||
2 | n-Pentadecanol | 629-76-5 | Chloroform | 16.901 | 1.23 | Antioxidant and antidiabetic [72] |
3 | Phytol, acetate | 0-00-0 | Methanol | 17.052 | 3.09 | Unknown |
4 | n-Heptadecanol-1 | 1454-85-9 | Methanol | 17.522 | 6.13 | Anti-oxidant [5,73] |
5 | Pentadecanoic acid | 1002-84-2 | Chloroform | 17.770 | 2.82 | Possible cancer prevention [58,73] |
Hexane | 17.773 | 2.93 | ||||
Methanol | 18.327 | 3.80 | ||||
6 | Phytol | 150-86-7 | Hexane | 19.124 | 1.05 | Anti-microbial, anti-inflammatory and possible cancer prevention [74] |
7 | 9-Octadecen-1-ol, (Z)- | 143-28-2 | Methanol | 19.287 | 14.44 | Emollien and delivery of medication [73] |
8 | cis,cis,cis-7,10,13-Hexadecatrienal | 56797-43-4 | Hexane | 19.447 | 2.68 | Antioxidant, antifungal and antibacterial [75] |
9 | n-Nonadecanol-1 | 1454-84-8 | Methanol | 19.509 | 6.33 | Antioxidant, anti-inflammatory, and possible cancer prevention [70,76] |
10 | Eicosanoic acid | 506-30-9 | Hexane | 19.670 | 1.51 | Anti-inflammatory, anti-diabetic, anti-bacterial and anti-oxidant [30] |
11 | Octadecanoic acid | 57-11-4 | Hexane | 19.670 | 4.82 | Lowers cholesterol, antimicrobial, and anticancer activity [58] |
Chloroform | 19.678 | 5.39 | ||||
12 | Phytol | 150-86-7 | Methanol | 19.741 | 4.10 | Antimicrobial, anti-inflammatory, and anticancer [74] |
13 | Thiophene, 2-butyl-5-hexyl- | 4806-12-6 | Methanol | 24.534 | 2.74 | Unknown |
14 | 13-Docosenamide, (Z)- | 112-84-5 | Hexane | 24.606 | 1.31 | anti-oxidant and anti-microbial [77] |
Chloroform | 24.634 | 2.36 | ||||
15 | Tetratetracontane | 7098-22-8 | Hexane | 26.745 | 6.74 | Cytoprotective and antioxidant [71] |
16 | 1-Heptacosanol | 2004-39-9 | Methanol | 27.334 | 2.98 | Membrane stabilizer [5,73] |
17 | beta-Sitosterol | 83-46-5 | Hexane | 28.384 | 2.21 | Chronic wound treatment, anti-inflammatory and anti-proliferation [73] |
Methanol | 29.247 | 9.06 | ||||
18 | 9,19-Cyclolanost-25-en-3-ol, 24-methyl-, (3.b,24 S) | 511-61-5 | Methanol | 30.022 | 2.78 | Unknown |
No | Phytochemical Compound | CAS NO. | Solvent | RT | Peak (%) | Pharmacological Activity and References |
---|---|---|---|---|---|---|
1 | Phenol, 2,4-bis(1,1-dimethylethyl) | 96-76-4 | Hexane | 12.716 | 1.95 | Antibacterial activity [37] |
2 | n-Pentadecanol | 629-76-5 | Chloroform | 16.906 | 1.38 | Antioxidant and antidiabetic [14] |
3 | n-Heptadecanol-1 | 1454-85-9 | Methanol | 17.523 | 3.57 | Antioxidant [5,78] |
4 | Pentadecanoic acid | 1002-84-2 | Hexane | 17.738 | 3.56 | Possible cancer prevention [30,78] |
5 | 9-Octadecen-1-ol, (Z)- | 143-28-2 | Methanol | 19.285 | 9.31 | Anti-neoplastic, Antioxidant, Natural moisturizer [78] |
6 | n-Nonadecanol-1 | 1454-84-8 | Methanol | 19.509 | 4.28 | Anti-acne, anti-inflammatory, and possible cancer prevention [58,65] |
7 | Octadecanoic acid | 57-11-4 | Hexane Chloroform | 19.675 19.644 | 2.15 0.68 | Lowers cholesterol, antimicrobial, and anticancer activity [30,33] |
8 | Decanedioic acid, dibutyl ester | 109-43-3 | Hexane | 19.667 | 1.23 | Antimicrobial, Antifouling activity [5] |
9 | 2-methyloctacosane | 0-00-0 | Hexane | 19.936 | 1.39 | Unknown |
10 | Eicosane | 7098-22-8 | Hexane | 23.236 | 5.10 | Antioxidant [79] |
11 | Phthalic acid, di(4-methylhept-3-yl) ester | 117-81-7 | Chloroform | 24.525 | 31.17 | Antioxidant, Antimicrobial Allelopathy [80] |
12 | Terephthalic acid, dodecyl 2-ethylhexyl ester | 6422-86-2 | Chloroform | 24.578 | 32.93 | Antioxidant, Hypocholestero-lemic activity, Antimicrobial [81] |
13 | 13-Docosenamide, (Z)- | 112-84-5 | Hexane | 24.593 | 2.70 | Anti-oxidant and anti-microbial [29] |
Chloroform Methanol | 24.687 25.169 | 0.996 2.62 | ||||
14 | Tetratetracontane | 7098-22-8 | Hexane | 26.080 | 3.38 | Cytoprotective and antioxidant [66] |
15 | 1-Heptacosanol | 2004-39-9 | Methanol | 26.783 | 1.02 | Treats Diabetes, Potential anticancer activity, Antioxidant, Antimicrobial [5] |
16 | Silane | 0-00-0 | Hexane | 28.901 | 1.39 | Unknown |
17 | beta-Sitosterol | 83-46-5 | Methanol | 29.247 | 4.20 | Chronic wound treatment, anti-inflammatory and anti-proliferation [78] |
18 | 4,4,6a,6b,8a,11,11,14b-Octamethyl-1,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-octadecahydro-2H-picen-3-one | 0-00-0 | Methanol | 29.748 | 2.59 | Unknown |
19 | Androst-5-en-17-ol, 4,4-dimethyl | 0-00-0 | Methanol | 30.088 | 2.08 | Unknown |
20 | Lupeol | 545-47-1 | Methanol | 30.221 | 11.32 | Treats Arthritis, Treats Diabetes, Potential anticancer activity [30] |
21 | Lup-20(29)-en-3-ol, acetate, (3.beta.) | 1617-68-1 | Methanol | 32.432 | 15.51 | TreatsDiabetes, Potential anticancer activity [30] |
Leaves | Stembark | |||
---|---|---|---|---|
Bright Light | UV (ex330/380) | Bright Light | UV (ex330/380) | |
Powder only | Dark Green | Blue, Red | Brown | Green, Blue |
Powder + water | Greenish brown | Orange, Blue | Brown | Green, Blue, Red |
Powder + 50% H2SO4 | Brown | Orange, Blue | Brown, Red | Green, Blue |
Powder + acetic acid | Brown | Red, Blue | Brown | Green, Blue |
Powder only + aqueous NaOH | Brown | Blue | Brown | Green, Blue, Red |
Powder + HCl | Greenish brown | Orange, Blue | Brown, Red | Green, Blue, Red |
Powder + ethanol | Greenish brown | Orange, Blue | Brown, Red | Green, Blue, Red |
Powder + ethyl acetate | Greenish brown | Orange, Blue | Brown, Red | Green, Blue, Red |
Powder + hexane | Brown | Green, Blue | Brown | Green, Blue, Red |
Powder + chloroform | Greenish brown | Green, Blue, Red | Green, Brown, Red | Green, Blue, Red |
Powder + methanol | Greenish brown | Orange, Blue | Brown, Red | Green, Blue, Red |
Powder + petroleum ether | Greenish brown | Orange, Blue | Brown, Red | Green, Blue, Red |
Powder + diethyl ether | Greenish brown | Orange, Blue | Brown, Red | Green, Blue, Red |
Powder + acetone | Greenish brown | Orange, Blue | Brown, Red | Green, Blue, Red |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bantho, S.; Naidoo, Y.; Dewir, Y.H.; Bantho, A.; Murthy, H.N. Chemical Composition of Combretum erythrophyllum Leaf and Stem Bark Extracts. Horticulturae 2022, 8, 755. https://doi.org/10.3390/horticulturae8080755
Bantho S, Naidoo Y, Dewir YH, Bantho A, Murthy HN. Chemical Composition of Combretum erythrophyllum Leaf and Stem Bark Extracts. Horticulturae. 2022; 8(8):755. https://doi.org/10.3390/horticulturae8080755
Chicago/Turabian StyleBantho, Sahejna, Yougasphree Naidoo, Yaser Hassan Dewir, Ayuvna Bantho, and Hosakatte Niranjana Murthy. 2022. "Chemical Composition of Combretum erythrophyllum Leaf and Stem Bark Extracts" Horticulturae 8, no. 8: 755. https://doi.org/10.3390/horticulturae8080755
APA StyleBantho, S., Naidoo, Y., Dewir, Y. H., Bantho, A., & Murthy, H. N. (2022). Chemical Composition of Combretum erythrophyllum Leaf and Stem Bark Extracts. Horticulturae, 8(8), 755. https://doi.org/10.3390/horticulturae8080755