Effects of Funneliformis mosseae and Potassium Silicate on Morphological and Biochemical Traits of Onion Cultivated under Water Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Funneliformis Mosae and Potassium Silicate Treatment
2.3. Estimation of Morphological Traits and Mineral Content
2.4. Estimation of Biochemical Traits
2.5. Statistical Analysis
3. Results
3.1. Effect on Morphological Traits and Mineral Content
Traits | Years | C (T1) | Fm (T2) | Ps (T3) | Fm + Ps (T4) |
---|---|---|---|---|---|
Plant height (cm) | 2019 | 22.50 ± 2.21 c | 64.97 ± 2.74 b | 66.87 ± 1.52 b | 69.6 ± 1.63 a,* |
2020 | 32.42 ± 2.06 a | 65.54 ± 2.72 d | 67.52 ± 2.04 d | 71.37 ± 2.53 b | |
Overall | 27.46 ± 1.20 c | 65.25 ± 1.73 a | 67.19 ± 2.06 d | 70.48 ± 1.08 b | |
Number of leaves | 2019 | 4.45 ± 0.08 c | 13.06 ± 1.02 b | 13.50 ± 1.03 b | 14.24 ± 1.01 a |
2020 | 6.13 ± 0.06 a | 13.29 ± 1.09 a | 13.88 ± 1.06 c | 15.14 ± 1.04 b | |
Overall | 5.29 ± 0.54 c | 13.17 ± 1.65 a | 13.69 ± 1.04 a | 14.69 ± 1.90 b | |
Polar diameter (mm) | 2019 | 23.17 ± 1.54 b | 41.55 ± 1.37 a | 43.01 ± 1.53 a | 44.40 ± 1.83 a |
2020 | 30.94 ± 2.06 a | 42.18 ± 1.75 a | 43.58 ± 2.65 a | 45.61 ± 2.20 a | |
Overall | 27.05 ± 1.87 c | 41.86 ± 1.32 a | 43.29 ± 1.89 b | 45.00 ± 1.67 d | |
Equatorial diameter (mm) | 2019 | 20.27 ± 1.43 c | 51.97 ± 1.54 b | 54.19 ± 1.34 b | 55.38 ± 1.75 a |
2020 | 25.1 ± 0.93 a | 52.21 ± 1.20 a | 54.66 ± 1.34 c | 57.23 ± 1.07 b | |
Overall | 22.68 ± 1.09 c | 52.09 ± 1.03 a | 54.42 ± 1.05 a | 56.3 ± 1.20 b | |
Weight of bulb (g) | 2019 | 10.37 ± 1.06 d | 61.63 ± 1.20 c | 68.52 ± 1.87 b | 71.53 ± 1.25 a |
2020 | 17.88 ± 1.07 b | 63.20 ± 1.62 c | 69.46 ± 1.28 d | 74.44 ± 1.23 a | |
Overall | 14.12 ± 1.09 c | 62.41 ± 1.54 a | 68.99 ± 1.89 d | 72.98 ± 1.83 b | |
Yield (t/ha) | 2019 | 2.00 ± 0.54 d | 34.35 ± 1.20 c | 38.2 ± 1.40 b | 41.24 ± 1.90 a |
2020 | 5.57 ± 0.65 a | 35.58 ± 1.34 c | 39.39 ± 1.84 d | 45.03 ± 1.76 a | |
Overall | 3.78 ± 0.06 a | 34.96 ± 1.21 c | 38.79 ± 1.87 d | 43.13 ± 1.34 b | |
Leaf area (cm2) | 2019 | 17.8 ± 1.34 b | 18.32 ± 1.21 b | 34.62 ± 1.21 c | 43.36 ± 1.20 b |
2020 | 19.91 ± 1.21 c | 30.82 ± 1.03 c | 38.89 ± 1.21 b | 45.74 ± 1.23 c | |
Overall | 18.85 ± 1.93 a | 24.57 ± 1.05 a | 36.75 ± 1.08 b | 44.55 ± 1.09 a | |
N (%) | 2019 | 0.18 ± 0.03 c,* | 1.95 ± 0.23 b | 2.46 ± 0.56 b | 2.6 ± 0.65 a |
2020 | 0.66 ± 0.03 a | 1.99 ± 1.23 a | 2.53 ± 1.34 b | 3.35 ± 0.21 b | |
Overall | 0.42 ± 0.35 a | 1.97 ± 0.56 b | 2.49 ± 0.32 c | 2.97 ± 0.64 c | |
P (%) | 2019 | 0.07 ± 0.01 b | 0.12 ± 0.05 a | 0.16 ± 0.02 b | 0.22 ± 0.06 b |
2020 | 0.10 ± 0.06 a | 0.13 ± 0.02 a | 0.19 ± 0.06 a | 0.30 ± 0.04 a | |
Overall | 0.08 ± 0.02 b | 0.12 ± 0.01 c | 0.17 ± 0.05 a | 0.26 ± 0.03 b | |
K (%) | 2019 | 0.24 ± 0.12 b | 1.48 ± 0.63 a | 1.61 ± 0.45 b | 1.80 ± 0.67 b |
2020 | 0.37 ± 0.14 a | 1.53 ± 0.13 a | 1.74 ± 0.63 a | 1.95 ± 0.43 a | |
Overall | 0.30 ± 0.05 b | 1.50 ± 0.54 c | 1.67 ± 0.14 a | 1.87 ± 0.43 c | |
S (%) | 2019 | 0.13 ± 0.06 c | 0.54 ± 0.06 c | 0.65 ± 0.06 b | 0.74 ± 0.15 b |
2020 | 0.21 ± 0.14 c | 0.58 ± 0.07 a | 0.66 ± 0.21 b | 0.81 ± 0.08 c | |
Overall | 0.17 ± 0.06 b | 0.56 ± 0.04 c | 0.65 ± 0.21 c | 0.77 ± 0.13 a |
3.2. Effect on Biochemical Traits
Traits | Years | C (T1) | Fm (T2) | Ps (T3) | Fm + Ps (T4) |
---|---|---|---|---|---|
Total sugars (% fresh weight) | 2019 | 6.13 ± 0.92 a,* | 9.47 ± 1.21 a | 12.43 ± 1.76 a | 18.12 ± 1.54 b |
2020 | 6.17 ± 0.12 a | 10.53 ± 0.92 a | 15.17 ± 1.21 a | 24.81 ± 1.42 a | |
Overall | 6.15 ± 0.21 c | 10.00 ± 0.23 a | 13.8 ± 0.21 c | 21.46 ± 1.24 b | |
Reducing sugars (% fresh weight) | 2019 | 2.04 ± 0.03 b | 7.43 ± 0.21 b | 8.81 ± 0.34 a | 9.33 ± 0.24 b |
2020 | 3.28 ± 0.43 b | 7.78 ± 0.05 c | 8.97 ± 0.04 c | 10.03 ± 0.54 c | |
Overall | 2.66 ± 0.06 a | 7.6 ± 0.05 b | 8.89 ± 0.12 b | 9.68 ± 0.54 c | |
Non-reducing sugars (% fresh weight) | 2019 | 0.43 ± 0.06 a | 2.03 ± 0.21 a | 3.52 ± 0.65 b | 9.22 ± 0.43 b |
2020 | 0.71 ± 0.04 a | 2.48 ± 0.47 a | 5.99 ± 0.06 a | 16.05 ± 0.87 a | |
Overall | 0.57 ± 0.01 a | 2.25 ± 0.07 c | 4.75 ± 0.04 a | 12.63 ± 0.14 a | |
Total amino acids (mg g−1 of fresh weight) | 2019 | 0.28 ± 0.01 d | 1.38 ± 0.08 c | 2.49 ± 0.05 b | 2.62 ± 0.05 a |
2020 | 0.82 ± 0.08 a | 1.4 ± 0.06 d | 2.55 ± 0.09 c | 2.97 ± 0.06 a | |
Overall | 0.55 ± 0.95 c | 1.39 ± 0.03 a | 2.52 ± 0.08 d | 2.79 ± 0.8 b | |
Phenolics (mg g−1 of dry weight) | 2019 | 3.77 ± 0.84 c | 6.07 ± 1.23 c | 7.98 ± 1.43 b | 11.63 ± 1.43 a |
2020 | 4.96 ± 1.32 a | 6.57 ± 1.43 a | 9.51 ± 1.65 c | 15.43 ± 1.54 b | |
Overall | 4.36 ± 1.73 d | 6.32 ± 1.54 b | 8.74 ± 2.54 c | 13.53 ± 2.54 a | |
Antioxidant activity (μg g−1 dry weight) | 2019 | 0.76 ± 0.06 a | 1.40 ± 0.06 b | 2.08 ± 0.06 d | 2.48 ± 0.56 c |
2020 | 0.91 ± 0.45 a | 1.68 ± 0.03 b | 2.4 ± 0.34 a | 2.91 ± 0.65 c | |
Overall | 0.83 ± 0.08 b | 1.54 ± 0.04 c | 2.24 ± 0.04 a | 2.69 ± 0.34 d | |
Membrane stability index | 2019 | 41.26 ± 1.30 b | 63.15 ± 1.23 b | 69.15 ± 1.04 c | 72.48 ± 1.04 b |
2020 | 43.2 ± 1.21 b | 64.37 ± 1.34 c | 69.9 ± 2.03 b | 74.92 ± 2.12 c | |
Overall | 42.23 ± 1.04 b | 63.76 ± 2.43 b | 69.52 ± 1.24 a | 73.70 ± 1.21 a | |
Relative water content (%) | 2019 | 33.26 ± 1.32 c | 54.08 ± 1.02 b | 59.25 ± 1.04 b | 69.22 ± 1.90 c |
2020 | 41.42 ± 1.28 b | 54.95 ± 2.05 b | 60.59 ± 1.23 c | 70.66 ± 1.21 b | |
Overall | 37.34 ± 2.02 b | 54.51 ± 1.23 a | 59.92 ± 2.20 a | 69.94 ± 2.53 c | |
Total soluble solids (ºBrix) | 2019 | 7.00 ± 0.45 b | 8.21 ± 0.68 b | 10.37 ± 1.34 b | 12.47 ± 1.24 a |
2020 | 8.83 ± 0.92 c | 10.53 ± 0.05 a | 11.78 ± 1.65 c | 13.44 ± 1.26 b | |
Overall | 7.91 ± 0.04 b | 9.37 ± 1.06 a | 11.07 ± 0.03 b | 12.95 ± 1.03 c |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharifi-Rad, J.; Mnayer, D.; Tabanelli, G.; Stojanović-Radić, Z.Z.; Sharifi-Rad, M.; Yousaf, Z.; Vallone, L.; Setzer, W.N.; Iriti, M. Plants of the genus Allium as antibacterial agents: From tradition to pharmacy. Cell. Mol. Biol. 2016, 62, 57–68. [Google Scholar] [PubMed]
- Smith, R.; Biscaro, A.; Cahn, M.; Daugovish, O. Fresh Market Bulb Onion Production in California; UCANR Publications: Davis, CA, USA, 2011. [Google Scholar]
- Fahramand, M.; Mahmoody, M.; Keykha, A.; Noori, M.; Rigi, K. Influence of Abiotic Stress on Proline, Photosynthetic Enzymes and Growth. Int. Res. J. Appl. Basic Sci. 2014, 8, 257–265. [Google Scholar]
- Mącik, M.; Gryta, A.; Frąc, M. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Adv. Agron. 2020, 162, 31–87. [Google Scholar]
- Igiehon, N.O.; Babalola, O.O. Biofertilizers and sustainable agriculture: Exploring arbuscular mycorrhizal fungi. Appl. Microbiol. Biotechnol. 2017, 101, 4871–4881. [Google Scholar] [CrossRef] [PubMed]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Purewal, S.S. Biofertilizers and Their Role in Sustainable Agriculture. In Biofertilizers for Sustainable Agriculture and Environment; Giri, B., Prasad, R., Wu, Q.-S., Varma, A., Eds.; Soil Biology; Springer International Publishing: Cham, Switzerland, 2019; Volume 55, pp. 285–300. ISBN 978-3-030-18932-7. [Google Scholar]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Bhantana, P.; Rana, M.S.; Sun, X.; Moussa, M.G.; Saleem, M.H.; Syaifudin, M.; Shah, A.; Poudel, A.; Pun, A.B.; Bhat, M.A.; et al. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021, 84, 19–37. [Google Scholar] [CrossRef]
- Marodin, J.C.; Resende, J.T.; Morales, R.G.; Silva, M.L.; Galvão, A.G.; Zanin, D.S. Yield of tomato fruits in relation to silicon sources and rates. Hortic. Bras. 2014, 32, 220–224. [Google Scholar] [CrossRef]
- Zargar, S.M.; Mahajan, R.; Bhat, J.A.; Nazir, M.; Deshmukh, R. Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. 3 Biotech 2019, 9, 73. [Google Scholar] [CrossRef]
- Talebi, S.; Majd, A.; Mirzai, M.; Jafari, S.; Abedini, M. The Study of Potassium Silicate Effects on Qualitative and Quantitative Performance of Potato (Solanum tuberosum L.). Proc. Biol. Forum Res. Trend 2015, 7, 1021–1026. [Google Scholar]
- Howladar, S.M.; Al-Robai, S.A.; Al-Zahrani, F.S.; Howladar, M.M.; Aldhebiani, A.Y. Silicon and its application method effects on modulation of cadmium stress responses in Triticum aestivum (L.) through improving the antioxidative defense system and polyamine gene expression. Ecotoxicol. Environ. Saf. 2018, 159, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Debnath, S.; Sharma, S.; Sharma, P.; Purohit, J. Role of Nutrients in Controlling the Plant Diseases in Sustainable Agriculture. In Agriculturally Important Microbes for Sustainable Agriculture; Springer: New York, NY, USA, 2017; pp. 217–262. [Google Scholar]
- Balakhnina, T.; Borkowska, A. Effects of Silicon on Plant Resistance to Environmental Stresses. Int. Agrophys. 2013, 27, 225–232. [Google Scholar] [CrossRef]
- Vikaspedia Domains. Available online: https://vikaspedia.in/agriculture/crop-production/package-of-practices/vegetables-1/onion-allium-cepa (accessed on 25 May 2022).
- Owusu-Bennoah, E.; Mosse, B. Plant Growth Responses to Vesicular-Arbuscular Mycorrhiza. New Phytol. 1979, 83, 671–679. [Google Scholar] [CrossRef]
- Cottenie, A.; Verloo, M.; Kiekens, L.; Velghe, G.; Camerlynck, R. Chemical Analysis of Plants and Soils. Laboratory of Analytical Agrochemistry, State University: Gent, Belgium, 1982; pp. 63–72. [Google Scholar]
- El-Sayed, S.A.A. Effect of Potassium Fertilization Levels and Algae Extract on Growth, Bulb Yield and Quality of Onion (Allium cepa L.). Middle East J. Agric. Rec. 2018, 7, 625–638. [Google Scholar]
- Helrich, K.; Association of Official Analytical Chemists. Official Methods of Analysis, Association of the Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Sun, S.-W.; Lin, Y.-C.; Weng, Y.-M.; Chen, M.-J. Efficiency improvements on ninhydrin method for amino acid quantification. J. Food Compos. Anal. 2006, 19, 112–117. [Google Scholar] [CrossRef]
- Cheng, A.; Chen, X.; Jin, Q.; Wang, W.; Shi, J.; Liu, Y. Comparison of phenolic content and antioxidant capacity of red and yellow onions. Czech J. Food Sci. 2013, 31, 501–508. [Google Scholar] [CrossRef]
- Golubkina, N.; Amagova, Z.; Matsadze, V.; Zamana, S.; Tallarita, A.; Caruso, G. Effects of Arbuscular Mycorrhizal Fungi on Yield, Biochemical Characteristics, and Elemental Composition of Garlic and Onion under Selenium Supply. Plants 2020, 9, 84. [Google Scholar] [CrossRef]
- Barrs, H.D.; Weatherley, P.E. A Re-Examination of the Relative Turgidity Technique for Estimating Water Deficits in Leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef]
- Sairam, R.; Shukla, D.; Saxena, D. Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biol. Plant. 1997, 40, 357–364. [Google Scholar] [CrossRef]
- Beltrano, J.; Ruscitti, M.; Arango, M.C.; Ronco, M. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J. Soil Sci. Plant Nutr. 2013, 13, 123–141. [Google Scholar] [CrossRef]
- Zafar, M.M.; Manan, A.; Razzaq, A.; Zulfqar, M.; Saeed, A.; Kashif, M.; Khan, A.I.; Sarfraz, Z.; Mo, H.; Iqbal, M.S.; et al. Exploiting Agronomic and Biochemical Traits to Develop Heat Resilient Cotton Cultivars under Climate Change Scenarios. Agronomy 2021, 11, 1885. [Google Scholar] [CrossRef]
- Sarkar, S.; Bhaduri, D.; Chakraborty, K. Plant Adaptation Mechanisms in Phosphorus-Deprived Soil: Mitigation of Stress and Way to Balanced Nutrition. Adv. Plant Physiol. 2014, 15, 254–282. [Google Scholar]
- Altomare, C.; Tringovska, I. Beneficial Soil Microorganisms, an Ecological Alternative for Soil Fertility Management. In Genetics, Biofuels and Local Farming Systems; Springer: Dordrecht, The Netherlands, 2011; pp. 161–214. [Google Scholar]
- Detmann, K.C.; Araújo, W.L.; Martins, S.C.; Sanglard, L.M.; Reis, J.V.; Detmann, E.; Rodrigues, F.Á.; Nunes-Nesi, A.; Fernie, A.R.; DaMatta, F.M. Silicon Nutrition Increases Grain Yield, Which, in Turn, Exerts a Feed-Forward Stimulation of Photosynthetic Rates via Enhanced Mesophyll Conductance and Alters Primary Metabolism in Rice. New Phytol. 2012, 196, 752–762. [Google Scholar] [CrossRef]
- Haddad, C.; Arkoun, M.; Jamois, F.; Schwarzenberg, A.; Yvin, J.-C.; Etienne, P.; Laîné, P. Silicon Promotes Growth of Brassica Napus L. and Delays Leaf Senescence Induced by Nitrogen Starvation. Front. Plant Sci. 2018, 9, 516. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P.; Alyemeni, M.N.; Alsahli, A.A.; Ahmad, P. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi J. Biol. Sci. 2021, 28, 1465–1476. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, E.C.N.; de Resende, J.T.V.; Córdova, K.R.V.; Nascimento, D.A.; Saggin, O.J.; Zeist, A.R.; Favaro, R. Arbuscular mycorrhizal fungi action on the quality of strawberry fruits. Hortic. Bras. 2019, 37, 437–444. [Google Scholar] [CrossRef]
- Moradtalab, N.; Hajiboland, R.; Aliasgharzad, N.; Hartmann, T.E.; Neumann, G. Silicon and the Association with an Arbuscular-Mycorrhizal Fungus (Rhizophagus clarus) Mitigate the Adverse Effects of Drought Stress on Strawberry. Agronomy 2019, 9, 41. [Google Scholar] [CrossRef]
- Bijalwan, P.; Jeddi, K.; Saini, I.; Sharma, M.; Kaushik, P.; Hessini, K. Mitigation of saline conditions in watermelon with mycorrhiza and silicon application. Saudi J. Biol. Sci. 2021, 28, 3678–3684. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.A.; da Silva, J.A.T.; Fujita, M. Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor. In Crop Stress and Its Management: Perspectives and Strategies; Venkateswarlu, B., Shanker, A., Shanker, C., Maheswari, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 261–315. [Google Scholar]
- Zafar, M.M.; Jia, X.; Shakeel, A.; Sarfraz, Z.; Manan, A.; Imran, A.; Mo, H.; Ali, A.; Youlu, Y.; Razzaq, A. Unraveling Heat Tolerance in Upland Cotton (Gossypium Hirsutum L.) Using Univariate and Multivariate Analysis. Front. Plant Sci. 2021, 12, 727835. [Google Scholar] [CrossRef]
- Ordookhani, K.; Zare, M. Effect of Pseudomonas, Azotobacter and Arbuscular Mycorrhiza Fungi on Lycopene, Antioxidant Activity and Total Soluble Solid in Tomato (Lycopersicon Esculentum F1 Hybrid, Delba). Adv. Environ. Biol. 2011, 5, 1290–1294. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, M.; Delta, A.K.; Kaushik, P. Effects of Funneliformis mosseae and Potassium Silicate on Morphological and Biochemical Traits of Onion Cultivated under Water Stress. Horticulturae 2022, 8, 663. https://doi.org/10.3390/horticulturae8070663
Sharma M, Delta AK, Kaushik P. Effects of Funneliformis mosseae and Potassium Silicate on Morphological and Biochemical Traits of Onion Cultivated under Water Stress. Horticulturae. 2022; 8(7):663. https://doi.org/10.3390/horticulturae8070663
Chicago/Turabian StyleSharma, Meenakshi, Anil Kumar Delta, and Prashant Kaushik. 2022. "Effects of Funneliformis mosseae and Potassium Silicate on Morphological and Biochemical Traits of Onion Cultivated under Water Stress" Horticulturae 8, no. 7: 663. https://doi.org/10.3390/horticulturae8070663
APA StyleSharma, M., Delta, A. K., & Kaushik, P. (2022). Effects of Funneliformis mosseae and Potassium Silicate on Morphological and Biochemical Traits of Onion Cultivated under Water Stress. Horticulturae, 8(7), 663. https://doi.org/10.3390/horticulturae8070663