The Effect of Flushing on the Nitrate Content and Postharvest Quality of Lettuce (Lactuca sativa L. Var. Acephala) and Rocket (Eruca sativa Mill.) Grown in a Vertical Farm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Evaluations Performed In Vivo with Non-Destructive Tools
2.2.1. Chlorophyll a Fluorescence
2.2.2. Non-Destructive Chlorophyll Content Estimation
2.3. Evaluations Performed at Harvest and during Storage with Laboratory Analyses
2.3.1. Total Sugar Content
2.3.2. Phenolic Index and Total Anthocyanins
2.3.3. Chlorophyll (a + b) Content and Total Carotenoids
2.3.4. Nitrate Concentration
2.4. Gas Concentration Determination in the Headspace during Storage
2.5. Statistical Analysis
3. Results
3.1. Evaluations Performed In Vivo Using Non-Destructive Tools
3.1.1. Chlorophyll a Fluorescence
3.1.2. Non-Destructive Chlorophyll Content Estimation
3.2. Evaluations Performed at Harvest and during Storage with Laboratory Analyses (Destructive Methods)
3.2.1. Total Sugar Content
3.2.2. Phenolic Index and Total Anthocyanins
3.2.3. Chlorophyll (a + b) Content and Total Carotenoids
3.2.4. Nitrate Concentration
3.3. Weight Loss and Gas Content Determination in the Package Headspace
3.3.1. Weight Loss
3.3.2. O2 Concentration
3.3.3. CO2 Concentration
3.3.4. Relative Humidity (RH)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Touliatos, D.; Dodd, C.; McAinsh, M. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food Energy Secur. 2016, 5, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healy, R.G.; Rosenberg, J.S. Issues in implementing State Land Use Controls. In Land Use and the States, 2nd ed.; Routledge: New York, NY, USA, 2011. [Google Scholar]
- ATTRA Sustainable Agriculture. What Are the Different Types of Vertical Farming Systems? Available online: www.attra.ncat.org (accessed on 10 September 2020).
- Howard, M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 7th ed.; Routledge: Boca Raton, FL, USA, 2016; p. 314. [Google Scholar]
- Despommier, D. Farming up the city: The rise of urban vertical farms. Trends Biotechnol. 2013, 31, 388–389. [Google Scholar] [CrossRef] [PubMed]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. In Sustainability: Science, Practice and Policy; Taylor & Francis Group: London, UK, 2017; Volume 13, pp. 13–26. [Google Scholar]
- Toscano, S.; Ferrante, A.; Branca, F.; Romano, D. Enhancing the Quality of Two Species of Baby Leaves Sprayed with Moringa Leaf Extract as Biostimulant. Agronomy 2021, 11, 1399. [Google Scholar] [CrossRef]
- Simko, I. Genetic variation and relationship among content of vitamins, pigments, and sugars in baby leaf lettuce. Food Sci. Nutr. 2019, 7, 3317–3326. [Google Scholar] [CrossRef] [Green Version]
- Limantara, L.; Dettling, M.; Indrawati, R.; Brotosudarmo, T.H.P. Analysis on the chlorophyll content of commercial green leafy vegetables. Procedia Chem. 2015, 14, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, A.; Maggiore, T. Chlorophyll a fluorescence measurements to evaluate storage time and temperature of Valeriana leafy vegetables. Postharvest Biol. Technol. 2007, 45, 73–80. [Google Scholar] [CrossRef]
- Žnidarčič, D.; Ban, D.; Šircelj, H. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem. 2011, 129, 1164–1168. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake, and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef] [Green Version]
- Ciriello, M.; Formisano, L.; Pannico, A.; El-Nakhel, C.; Fascella, G.; Duri, L.G.; Carillo, P. Nutrient Solution Deprivation as a Tool to Improve Hydroponics Sustainability: Yield, Physiological, and Qualitative Response of Lettuce. Agronomy 2021, 11, 1469. [Google Scholar] [CrossRef]
- Umar, S.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications: A Review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; De Pascale, S. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Signore, A.; Bell, L.; Santamaria, P.; Wagstaff, C.; Van Labeke, M.C. Red light is effective in reducing nitrate concentration in rocket by increasing nitrate reductase activity, and contributes to increased total glucosinolates content. Front. Plant Sci. 2020, 11, 604. [Google Scholar] [CrossRef]
- Masakazu, A.; Hirokazu, F.; Teruo, W. Crop Quality: Effect of Preharvest Light Treatments on Coloration and Nitrate level of Lettuce. In Plant Factory Using Artificial Light: Adapting to Environmental Disruption and Clues to Agricultural Innovation; Elsevier Science: Oxford, UK, 2018; pp. 292–293. [Google Scholar]
- EFSA. Nitrate in Vegetables—Scientific Opinion of the Panel on Contaminants in the Food Chain. Available online: www.efsa.europa.eu (accessed on 10 September 2020).
- Nicola, S.; Hoeberechts, J.; Fontana, E. Comparison between traditional and soilless culture systems to produce rocket (Eruca sativa) with low nitrate content. Acta Hortic. Int. Symp. Soil. Cult. Hydroponics 2004, 697, 549–555. [Google Scholar] [CrossRef]
- EUR-LEX. Legal-Content. Available online: www.eur-lex.europa.eu (accessed on 10 September 2020).
- Corré, W.J.; Breimer, T. Nitrate and Nitrite in Vegetables; Department of Soils and Fertilizers Agricultural University: Wageningen, The Netherlands, 1979; pp. 52–54. [Google Scholar]
- Ahvenainen, R. New approaches in improving the shelf-life of minimally processed fruit and vegetables. Trends Food Sci. Technol. 1996, 7, 179–187. [Google Scholar] [CrossRef]
- Sivertsvik, M.; Rosnes, J.T.; Bergslien, H. Modified atmosphere packaging. In Minimal Processing Technologies in the Food Industry; Ohlsson, T., Bengtsson, N., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2002; pp. 63–67. [Google Scholar]
- Zagory, D.; Kader, A.A. Modified atmosphere packaging of fresh produce. Food Sci. Nutr. 1989, 28, 1–30. [Google Scholar]
- Zivcak, M.; Brestic, M.; Olsovska, K.; Slamka, P. Performance index as a sensitive indicator of water stress in Triticum aestivum. Plant Soil Environ. 2008, 54, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by Anthrone. Biochem. J. 1954, 57, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Saltveit, M.E., Jr.; Dangyang, K.; Mikal, E. Wound-induced ethylene production, phenolic metabolism and susceptibility to russet spotting in iceberg lettuce. Physiol. Plant. 1989, 76, 412–418. [Google Scholar]
- Klein, A.O.; Hagen, C.W., Jr. Anthocyanin production in detached petals of Impatiens balsamina L. Plant Physiol. 1961, 36, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Cataldo, D.A.; Shrader, L.E. Rapid colorimetric determination of nitrate in plant-tissue by nitration of salicylic-acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Ferrante, A.; Incrocci, L.; Maggini, R.; Serra, G.; Tognoni, F. Colour changes of fresh-cut leafy vegetables during storage. J. Food Agric. Environ. 2004, 2, 40–44. [Google Scholar]
- Bussotti, F.; Hazem Kalaji, M.; Desotgiu, R.; Pollastrini, M. Fattori ambientali e parametri di fluorescenza. In Misurare la Vitalità delle Piante per Mezzo della Fluorescenza della Clorofilla; Firenze University Press: Firenze, Italy, 2012; pp. 93–105. [Google Scholar]
- Samuoliene, G.; Virsile, A.; Miliauskienė, J.; Haimi, P.; Laužikė, K.; Jankauskienė, J.; Novičkovas, A.; Kupčinskienė, A.; Brazaitytė, A. The Photosynthetic Performance of Red Leaf Lettuce under UV-A Irradiation. Agronomy 2020, 10, 761. [Google Scholar] [CrossRef]
- Ouzounis, T.; Razi Parjikolaei, B.; Fretté, X. Predawn and highintensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front. Plant Sci. 2015, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Kozai, T.; Niu, G.; Takagaki, M. Growth, development, transpiration, and translocation as affected by environmental factors. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: Cambridge, MA, USA, 2015; pp. 207–218. [Google Scholar]
- Lie, L.; Yu-Xin, T.; Jun-Ling, L.; Yang-Mei, L.; Qi-Chang, Y. Lettuce Growth, Nutritional Quality, and Energy Use Efficiency as Affected by Red–Blue Light Combined with Different Monochromatic Wavelengths. HortScience 2020, 55, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Xuzhang, X.; Xiao-Li, C.; Wen Zhong, G.; Li-Chun, W. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and lightemitting diode (LED). Sci. Hortic. 2014, 172, 168–175. [Google Scholar]
- Taiz, L.; Zeiger, E. Metaboliti secondari e difese delle piante. In Fisiologia Vegetale, 4th ed.; Piccin-Nuova Libraria: Padova, Italy, 2012; pp. 543–548. [Google Scholar]
- Armstrong, G.; Hearst, J. Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J. 1996, 10, 228–237. [Google Scholar] [CrossRef]
- Santamaria, P.; Elia, A.; Papa, G.; Serio, F. Nitrate and ammonium nutrition in chicory and rocket salad plants. J. Plant Nutr. 1998, 21, 1779–1789. [Google Scholar] [CrossRef]
- Santamaria, P.; Gonnella, M.; Elia, A.; Parente, A.; Serio, F. Ways of reducing rocket salad nitrate content. Acta Hortic. 2001, 548, 529–536. [Google Scholar] [CrossRef]
- Cavaiuolo, M.; Ferrante, A. Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients 2014, 6, 1519–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.M.; Wang, Z.H.; Li, S.X.; Wang, G.X.; Song, H.X.; Wang, X.N. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 2013, 167, 635–643. [Google Scholar] [CrossRef]
- Kmecl, V.; Žnidarčič, D. The influence of cultivation method on nitrate content in some lettuce samples. Acta Agric. Slov. 2018, 111, 683–690. [Google Scholar]
- Jakse, M. Production of rocket (Eruca sativa Mill.) on plug trays and on a floating system in relation to reduced nitrate content nitrate content. Acta Agric. Slov. 2013, 111, 59–68. [Google Scholar]
Flushed 24 h | Flushed 48 h | |||
---|---|---|---|---|
Treatment | Control | Flushed | Control | Flushed |
Fv/Fm | 0.83 ± 0.005 | 0.82 ± 0.004 | 0.84 ± 0.003 | 0.84 ± 0.002 |
PI | 0.93 ± 0.09 | 0.79 ± 0.10 | 1.17 ± 0.10 | 1.22 ± 0.06 |
Chlorophyll (AU) | 7.52 ± 0.44 | 8.15 ± 0.05 | 7.32 ± 0.31 a | 6.20 ± 0.27 b |
Total sugar (mg/g Glu eq.) | 15.42 ± 1.37 | 12.54 ± 2.70 | 10.04 ± 1.74 | 14.83 ± 2.67 |
Phenolic index (ABS 320 nm/g) | 19.46 ± 1.92 | 21.68 ± 0.86 | 23.04 ± 3.09 | 31.11 ± 1.96 |
Anthocyanins (mg/100 g) | 20.02 ± 0.84 | 21.67 ± 0.83 | 18.99 ± 0.20 | 18.43 ± 0.39 |
Total chlorophyll a + b (µg/mg) | 1.30 ± 0.03 | 1.22 ± 0.06 | 1.05 ± 0.01 | 1.03 ± 0.02 |
Total carotenoids (µg/mg) | 0.23 ± 0.008 | 0.23 ± 0.01 | 0.20 ± 0.001 | 0.18 ± 0.005 |
Nitrate (mg/Kg) | 1480.47 ± 100.77 a | 1093.15 ± 72.51 b | 835.75 ± 99.75 a | 367.79 ± 16.16 b |
Time | T0 | T3 | T6 | T9 | ||||
---|---|---|---|---|---|---|---|---|
Treatment | Control | Flushed | Control | Flushed | Control | Flushed | Control | Flushed |
Fv/Fm | 0.83 ± 0.003 | 0.83 ± 0.004 | 0.83 ± 0.003 | 0.82 ± 0.01 | 0.81 ± 0.01 | 0.84 ± 0.002 | 0.83 ± 0.003 | 0.83 ± 0.003 |
PI | 0.83 ± 0.08 a | 0.96 ± 0.06 ab | 1.39 ± 0.11 ab | 1.12 ± 0.20 ab | 1.31 ± 0.18 ab | 1.54 ± 0.07 b | 1.48 ± 0.15 b | 1.53 ± 0.05 b |
Chlorophyll (AU) | 7.69 ± 0.40 | 7.92 ± 0.60 | 6.62 ± 0.30 | 7.73 ± 0.87 | 6.98 ± 0.86 | 6.55 ± 0.45 | 6.22 ± 0.25 | 7.42 ± 0.80 |
Total sugar (mg/g Glu eq.) | 4.97 ± 1.34 | 4.73 ± 1.09 | 3.01 ± 0.25 | 4.93 ± 1.17 | 3.33 ± 0.60 | 4.17 ± 0.58 | 2.75 ± 0.28 | 3.18 ± 0.68 |
Phenolic index (ABS 320 nm/g) | 16.29 ± 1.23 | 14.01 ± 1.93 | 18.04 ± 0.78 | 16.66 ± 1.05 | 17.54 ± 0.54 | 15.66 ± 0.77 | 15.83 ± 0.98 | 18.19 ± 0.90 |
Anthocyanins (mg/100 g) | 20.22 ± 1.13 | 17.75 ± 1.77 | 26.59 ± 1.51 | 22.75 ± 1.02 | 25.90 ± 0.95 | 23.56 ± 0.97 | 21.96 ± 1.32 | 24.73 ± 1.50 |
Total chlorophyll a + b (µg/mg) | 0.92 ± 0.10 | 1.04 ± 0.01 | 1.13 ± 0.05 | 1.04 ± 0.02 | 1.15 ± 0.05 | 1.11 ± 0.06 | 1.15 ± 0.02 | 1.17 ± 0.05 |
Total carotenoids (µg/mg) | 0.19 ± 0.01 | 0.20 ± 0.007 | 0.23 ± 0.006 | 0.21 ± 0.005 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.22 ± 0.003 | 0.23 ± 0.008 |
Time | T0 | T2 | T6 | T9 | ||||
---|---|---|---|---|---|---|---|---|
Treatment | Control | Flushed | Control | Flushed | Control | Flushed | Control | Flushed |
Fv/Fm | 0.85 ± 0.003 b | 0.86 ± 0.001 b | 0.84 ± 0.004 ab | 0.84 ± 0.003 ab | 0.82 ± 0.003 ab | 0.82 ± 0.006 ab | 0.82 ± 0.004 ab | 0.81 ± 0.02 a |
PI | 3.86 ± 0.44 | 4.13 ± 0.28 | 3.82 ± 0.27 | 3.92 ± 0.19 | 4.08 ± 0.64 | 2.89 ± 0.29 | 2.57 ± 0.21 | 2.37 ± 0.37 |
Chlorophyll (AU) | 22.06 ± 0.48 | 21.70 ± 0.57 | 19.36 ± 3.37 | 18.37 ± 2.90 | 15.53 ± 1.67 | 19.85 ± 2.72 | 21.50 ± 3.16 | 18.61 ± 2.3 |
Total sugar content (mg/g Glu eq.) | 5.39 ± 0.08 | 3.02 ± 0.19 | 3.29 ± 0.68 | 3.30 ± 0.52 | 3.52 ± 0.62 | 2.98 ± 0.42 | 3.41 ± 0.42 | 3.13 ± 0.52 |
Phenolic index (ABS 320 nm/g) | 20.48 ± 1.08 | 23.41 ± 0.44 | 25.44 ± 3.06 | 22.16 ± 2.97 | 21.83 ± 2.42 | 23.20 ± 2.10 | 19.35 ± 1.14 | 25.39 ± 3.0 |
Anthocyanins (mg/100 g) | 18.97 ± 0.44 | 23.31 ± 0.31 | 23.67 ± 1.65 | 22.51 ± 1.36 | 20.004 ± 1.5 | 21.99 ± 1.54 | 16.66 ± 3.92 | 22.74 ± 1.6 |
Total chlorophyll a + b (µg/mg) | 1.12 ± 0.06 | 1.52 ± 0.005 | 1.16 ± 0.07 | 1.36 ± 0.08 | 1.22 ± 0.06 | 1.02 ± 0.03 | 0.77 ± 0.38 | 1.043 ± 0.0 |
Total carotenoids (µg/mg) | 0.15 ± 0.02 | 0.23 ± 0.008 | 0.18 ± 0.009 | 0.21 ± 0.01 | 0.20 ± 0.01 | 0.16 ± 0.008 | 0.11 ± 0.05 | 0.16 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guffanti, D.; Cocetta, G.; Franchetti, B.M.; Ferrante, A. The Effect of Flushing on the Nitrate Content and Postharvest Quality of Lettuce (Lactuca sativa L. Var. Acephala) and Rocket (Eruca sativa Mill.) Grown in a Vertical Farm. Horticulturae 2022, 8, 604. https://doi.org/10.3390/horticulturae8070604
Guffanti D, Cocetta G, Franchetti BM, Ferrante A. The Effect of Flushing on the Nitrate Content and Postharvest Quality of Lettuce (Lactuca sativa L. Var. Acephala) and Rocket (Eruca sativa Mill.) Grown in a Vertical Farm. Horticulturae. 2022; 8(7):604. https://doi.org/10.3390/horticulturae8070604
Chicago/Turabian StyleGuffanti, Davide, Giacomo Cocetta, Benjamin M. Franchetti, and Antonio Ferrante. 2022. "The Effect of Flushing on the Nitrate Content and Postharvest Quality of Lettuce (Lactuca sativa L. Var. Acephala) and Rocket (Eruca sativa Mill.) Grown in a Vertical Farm" Horticulturae 8, no. 7: 604. https://doi.org/10.3390/horticulturae8070604
APA StyleGuffanti, D., Cocetta, G., Franchetti, B. M., & Ferrante, A. (2022). The Effect of Flushing on the Nitrate Content and Postharvest Quality of Lettuce (Lactuca sativa L. Var. Acephala) and Rocket (Eruca sativa Mill.) Grown in a Vertical Farm. Horticulturae, 8(7), 604. https://doi.org/10.3390/horticulturae8070604