Characterization of Okra Species, Their Hybrids and Crossability Relationships among Abelmoschus Species of the Western Ghats Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Location of the Experimental Site
2.2. Emasculation and Pollination Techniques
2.3. Evaluation of Hybridization Success
2.4. Crsossability Indices
2.5. In-Vitro Pollen Viability Test
2.6. In Vitro Pollen Germination
2.7. In Vitro Pollen Diameter
2.8. Morphological Characterization of Interspecific Crosses
2.9. Estimation of Heterosis (%) in Interspecific Hybrids
2.10. Treatment of Interspecific F1s with Colchicine to Overcome Sterility
3. Results
3.1. Crossability of A. esculentus cv. ‘Arka Anamika’ with Their Wild Species
3.2. Pollen Viability and Germination Studies
3.3. Morphological Characterization of Parents and Interspecific Hybrids Based on Qualitative Phenotypic Characters
3.4. Stem Characters
3.5. Leaf Characters
3.6. Floral Characters
3.7. Fruit Characters
3.8. Stigma and Pollen Characters
3.9. Mean Performance and Heterosis (%)
3.10. Hybrid Sterility Associated with Interspecific Hybridization and Colchiploidy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutar, S.P.; Patil, P.; Aitawade, M.; John, J.; Malik, S.; Rao, S.; Yadav, S.; Bhat, K.V. A new species of Abelmoschus medik. (Malvaceae) from Chhattisgarh, India. Genet. Resour. Crop Evol. 2013, 60, 1953–1958. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, J.; Luo, J.; Qin, W.; Luo, Q.; Zhang, Q.; Wu, D.; Lin, D.; Li, S.; Dong, H.; et al. Okra in Food Field: Nutritional Value, Health Benefits and Effects of Processing Methods on Quality. Food Rev. Int. 2021, 37, 67–90. [Google Scholar] [CrossRef]
- Kumar, S.; Dagnoko, S.; Haougui, A.; Ratnadass, A.; Pasternak, D.; Kouame, C. Okra (Abelmoschus spp.) in West and Central Africa: Potential and progress on its improvement. Afr. J. Agric. Res. 2010, 5, 3590–3598. Available online: http://oar.icrisat.org/id/eprint/168 (accessed on 14 May 2022).
- Verma, A.; Sood, S.; Singh, Y. Combining ability studies for yield and contributing traits in okra (Abelmoschus esculentus L. Moench). J. Appl. Nat. Sci. 2016, 8, 1594–1598. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, R.B.; Solankey, S.S.; Adarsh, A. Appraisal of okra (Abelmoschus esculentus L. Moench) genotypes for yield and yellow vein mosaic virus incidence. Indian Phytopathol. 2015, 68, 201–206. [Google Scholar]
- Reddy, M.T.; Pandravada, S.R.; Sivaraj, N.; Sunil, N.; Dikshit, N.; Kamala, V. Backyard farming of okra (Abelmoschus esculentus L. Moench) in traditional agricultural landscapes of Adilabad district, Telangana. India J. Glob. Agric. Ecol. 2016, 6, 147–161. [Google Scholar]
- Sanwal, K.; Singh, M.; Singh, B.; Naik, P.S. Resistance to Yellow Vein Mosaic Virus and Okra Enation Leaf Curl Virus: Challenges and future strategies. Curr. Sci. 2014, 106, 1470–1471. [Google Scholar]
- Chakraborty, S.; Pandey, P.K.; Singh, B. Okra enation leaf curl disease-a threat to cultivation of Okra (Abelmoschus esculentus (L.) Moench). Veg. Sci. 1997, 24, 52–54. [Google Scholar]
- Senevirathna, H.M.S.I.; Wasala, S.K.; Senanayake, D.M.J.B.; Weerasekara, D.; Wickamasinghe, H.A.M.; Deepa, P.K.G.A. Characterization and Detection of Yellow Vein Disease of Okra(Abelmoschus esculentus (L.) Moench) in Sri Lanka. Trop. Agric. Res. 2016, 27, 360–369. [Google Scholar] [CrossRef] [Green Version]
- Hajjar, R.; Hodgkin, T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 2007, 156, 1–13. [Google Scholar] [CrossRef]
- Kumari, M.; Naresh, P.; Singh, H.S. Utilization of wild species for biotic stress breeding in okra: A review. Adv. Plants Agric. Res. 2019, 9, 337–340. [Google Scholar] [CrossRef]
- Prabu, T.; Warade, S.D. Crossability studies in genus Abelmoschus. Veg. Sci. 2013, 40, 11–16. [Google Scholar]
- Vredebregt, J.H. Taxonomic and ecological observations on species of Abelmoschus Medik. Report of an International Workshop on Okra Genetic Resources. NBPGR Int. Crop Netw. Ser. 1991, 5, 69–76. [Google Scholar]
- Thakur, M.R.; Arora, S.K. Okra. In Vegetable Crops in India; Bose, T.K., Somm, M.G., Eds.; Naya Prokash: Calcutta, India, 1986; pp. 606–622. [Google Scholar]
- Singh, B.; Rai, M.; Kalloo, G.; Satpathy, S.; Pandey, K.K. Wild taxa of okra (Abelmoschus species): Reservoir of genes for resistance to biotic stresses. Acta Hortic. 2007, 752, 323–332. [Google Scholar] [CrossRef]
- Lowry, D.B.; Modliszewski, J.L.; Wright, K.M.; Wu, C.A.; Willis, J.H. Review. The strength and genetic basis of reproductive isolation barriers in flowering plants. Biol. Sci. 2008, 363, 3009–3021. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Reddy, M.T. Heterotic potential of Single cross hybrids in okra (Abelmoschus esculentus (L.) Moench). J. Glob. Agric. Ecol. 2016, 4, 45–66. [Google Scholar]
- Bowley, S.R.; Taylor, N.L. Introgressive hybridization. In CRC Handbook of Plant Science in Agriculture; Christie, B.R., Ed.; CRC Press: Boca Raton, FL, USA, 1987; Volume 1, pp. 23–59. Available online: https://www.jstor.org/stable/24084997 (accessed on 18 May 2022).
- Rao, N.N. Barriers to hybridization between Solanum melongena and some other species of Solanum. In The Biology and Taxonomy of the Solanaceae; Linnean Society Symposium Series; Hawker, J.G., Lester, R.N., Skelding, A.D., Eds.; FAO: Rome, Italy, 1979; pp. 605–615. [Google Scholar]
- Patil, P.; Malik, S.K.; Negi, K.S.; John, J.; Yadav, S.; Chaudhari, G.; Bhat, K.V. Pollen germination characteristics, pollen-pistil interaction and reproductive behaviour in interspecific crosses among Abelmoschus esculentus Moench and its wild relatives. Grana 2013, 52, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mendiburu, F.; Yaseen, M. Agricolae: Statistical Procedures for Agricultural Research; R Package Version 1.4.0; CRAN: Lima, Peru, 2020. [Google Scholar]
- Mahajan, R.; Sapra, R.; Umesh, S.; Singh, M.; Sharma, G. Minimal Descriptors (for Characterization and Evaluation) of Agri-Horticultural Crops (Part I); National Bureau of Plant Genetic Resources: New Delhi, India, 2000; p. 230. [Google Scholar]
- Kaul, G.L.; Swamy, K.M.R.; Singh, D.P.; Dhankar, B.S.; Pandey, S.K.; Rai, M.; Chakrabaty, S.K. Protection of Plant Varieties and Farmers’ Rights Authority. In Guidelines for the Conduct of Test for Distinctiveness, Uniformity and Stability on Okra/Lady’s Finger (Abelmoschus moschatus (L.) Moench; Chandu Press: Delhi, India, 2009. [Google Scholar]
- Arunachalam, V. The fallacy behind the use of modified line x tester design. Indian J. Genet. 1974, 34, 200–207. [Google Scholar]
- Patil, N.; Gangavathi, L.R. Gpbstat: Comprehensive Statistical Analysis of Plant Breeding Experiment; R Package Version 0.3.5; CRAN: Karnataka, India, 2021; Available online: https://cran.r-project.org/package=gpbStat (accessed on 18 May 2022).
- Reddy, M.T. Crsossability behaviour and fertility restoration through colchiploidy in interspecific hybrids of Abelmoschus esculentus × Abelmoschus manihot subsp. tetraphyllus. Int. J. Plant Sci. 2015, 4, 172–181. [Google Scholar]
- Reddy, M.T. Genetic Diversity, Heterosis Combining Ability and Stability in Okra (Abelmoschus esculentus (L.) Moench). Ph.D. Thesis, Ranga Agricultural University, Rajendranagar, Hyderabad, Andhra Pradesh, India, 2010. [Google Scholar]
- Rajamony, L.; Chandran, M.; Rajmohan, K. In vitro embryo rescue of interspecific crosses for transferring virus resistance in Okra (Abelmoschus esculentus (L.) Moench). Acta Hortic. 2006, 725, 235–240. [Google Scholar] [CrossRef]
- Jatkar, M.A.; Prabu, T.; Warade, S.D. Induction of colchiploidy in sterile interspecific okra F1 hybrids. Crop Res. 2007, 34, 133–136. [Google Scholar]
- Martin, J.; Rubiales, D.; Sillero, J.C.; Prats, E. Identification and characterization of sources of resistance in Avena sativa, A. byzantinea and A. strigosa germplasm against a pathotype of Puccinia coronate f.sp. avenae with virulence against the Pc94 resistance gene. Plant Pathol. 2012, 61, 315–322. [Google Scholar] [CrossRef]
- Shetty, A.A.; Singh, J.P.; Singh, D. Resistance to yellow vein mosaic virus in okra: A review. Biol. Agric. Hortic. Int. J. Sustain. Prod. Syst. 2013, 29, 159–164. [Google Scholar] [CrossRef]
- Amiteye, S.; Amitaaba, T.; Akama, C.; Amoatey, H.M. Hybridization Studies of Okra (Abelmoschus spp. (L.) Moench) Accessions. Int. J. Biotechnol. Trends Technol. 2019, 9, 42–47. [Google Scholar] [CrossRef]
- Kohler, C.; Mittelsten, S.O.; Erilova, A. The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet. 2010, 26, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.A.; Nijs, T.D.P.; Peloquin, S.J.; Hanneman, R.E. The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 1980, 57, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Afful, N.T.; Nyadanu, D.; Akromah, R.; Amoatey, H.M.; Annor, C.; Diawouh, R.G. Evaluation of crossability studies between selected eggplant accessions with wild relatives S. torvum, S. anguivi and S. aethopicum (Shum group). J. Plant. Breed Crop Sci. 2018, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Safdar, M. Impacts of genome size and ploidy level on the morphological traits of Okra. J. Plant Physiol. Pathol. 2018, 6, 30. [Google Scholar] [CrossRef]
- Salameh, M.N. Flow cytometric analysis of nuclear DNA between okra landraces (Abelmoschus esculentus L.). Am. J. Agric. Biol. Sci. 2014, 9, 245–250. [Google Scholar] [CrossRef]
- Sinha, A.K.; Mishra, P.K. Agro-morphological characterization and morphology based genetic diversity analysis of rice variety (Oryza sativa) of Bankura district of West Bengal. Int. J. Curr. Res. 2013, 5, 2764–2769. [Google Scholar]
- Bashar, A.; Jahan, N.; Fakhuruddin, A.A.; Hossain, M.K.; Alam, N. Morphological and phytochemical variation in eggplant (Solanum melongena L.). Pharma. Sci. Monit. 2015, 6, 1–11. [Google Scholar]
- Akhond, M.A.Y.; Molla, M.A.H.; Islam, M.O.; Ali, M. Cross compatibility between Abelmoschus esculentus and A. moschatus. Euphytica 2000, 114, 175–180. [Google Scholar] [CrossRef]
- Sekyere, D.O.; Akromah, R.; Nyamah, E.; Brenya, E.; Yeboah, S. Characterization of okra (Abelmoschus spp. L.) germplasm based on morphological characters in Ghana. J. Plant Breed Crop Sci. 2011, 3, 367–378. [Google Scholar] [CrossRef]
- Adeniji, O.T.; Aremu, C.O. Interrelationships among Characters and Path Analysis for Pod Yield Components in West African Okra (Abelmoschus caillei (A. Chev) Stevels. J. Agron. 2007, 6, 162–166. [Google Scholar] [CrossRef]
- Sureshbabu, K.V. Cytogenetic Studies in Okra (Abelmoschus esculentus (L.) Moench). Ph.D. Thesis, University of Agricultural Sciences, Bangalore, India, 1987. [Google Scholar]
- Lukhtanov, V.A.; Dinca, V.; Friberg, M.; Vila, R.; Wiklund, C. Incomplete Sterility of Chromosomal Hybrids: Implications for Karyotype Evolution and Homoploid Hybrid Speciation. Front. Genet. 2020, 11, 583827. [Google Scholar] [CrossRef]
- Meshram, L.D.; Dhapake, D.K. Cytogenetical studies on an interspecific hybrid between A. esculentus (L.) Moench × A. tetraphyllus. In Proceedings of the Fourth International SABRAO Congress, Kulalampur, Indonesia, 4–8 May 1981. [Google Scholar]
- Patel, B.N.; Hegde, G.K.; Manu, T.G. Interspecific hybridization as a way of resistance transfer against viruses in okra: Hindrances and way forward. Plant Genet. Resour. 2021, 19, 357–362. [Google Scholar] [CrossRef]
- Jayaprakash, P. Pollen Germination in vitro. In Pollination in Plants; Mokwala, P.W., Ed.; IntechOpen: Vienna, Austria, 2018; Volume 75, pp. 36–50. [Google Scholar]
- Tyagi, A.P.; Dass, C.R.; Nathan, S.; Racule, T.; Lakhan, S. Pollen fertility status in some exotic flora of Fiji. South Pac. J. Nat. Sci. 1995, 14, 211–222. [Google Scholar]
- Frizo, P.; Brammer, S.P.; Deuner, C.C.; Chechi, A.; Lima, M.I.P.; Scheeren, P.L. Genetic stability in interspecific hybridizations of wheat populations determined by meiotic index and pollen viability. Biotemas 2021, 34, 1–9. [Google Scholar] [CrossRef]
- Wright, J.W. Introduction to Forest Genetics; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Kerr, A. Tetraploidy Conversions: An Easy and Effective Method of Colchicine Method. 2001. Available online: http://members.tripods.com/~h_syriacus/tetraploidy (accessed on 18 May 2022).
- Shull, G.H. What Is “Heterosis”? Genetics 1948, 33, 439–446. [Google Scholar] [CrossRef]
- Dhillon, T.S.; Sharma, B.R. Interspecific hybridization in okra (Abelmoschus species). Genet. Agr. 1982, 36, 247–255. [Google Scholar]
- Labroo, M.R.; Studer, A.J.; Rutkoski, J.E. Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. Front. Genet. 2021, 12, 643761. [Google Scholar] [CrossRef]
- Tomkowiak, A.; Bocianowski, J.; Kwiatek, M.; Kowalczewski, L.P. Dependence of the heterosis effect on genetic distance, determined using various molecular markers. Open Life Sci. 2020, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Olivera, D.F.; Mugridge, A.; Chaves, A.R.; Mascheroni, R.H.; Vina, S.Z. Quality Attributes of Okra (Abelmoschus esculentus L. Moench) Pods as Affected by Cultivar and Fruit Size. J. Food Res. 2012, 1, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Jambhale, N.D.; Nerkar, Y.S. Parbhani Kranti, a yellow vein mosaic-resistant Okra. Hort. Sci. 1986, 21, 1470–1471. [Google Scholar]
- Thakur, M.R.; Arora, S.K. Punjab-7, a virus resistant variety of Okra. Prog. Farming 1988, 24, 13. [Google Scholar]
- Dutta, O.P. Breeding of Okra for resistance to yellow vein mosaic virus and okra leaf curl virus. Ann. Rep. 1984, 84, 43. [Google Scholar]
- Yamuna, M.; Sureshbabu, K.V.; George, T.E.; Prasanna, K.P.; Mathew, S.K.; Krishnan, S. Evaluation of promising interspecific hybrid derivatives of okra (Abelmoschus esculentus (L.) Moench). Veg. Sci. 2013, 40, 99–101. [Google Scholar]
Sl. No. | Species | Resistance to YVMV | Chromosme Number | Status |
---|---|---|---|---|
1 | Abelmoschus esculentus (L. Moench) cv. ‘Arka Anamika’ | No | 2n = 66, 72, 108, 118, 120, 124, 126–134 | Cultivated |
2 | Abelmoschus manihot (L.) Medik | Yes | 2n = 60, 66, 68, 120, 130, 132, 138, 196 | Wild |
3 | Abelmoschus ficulens L.) Wight & Arn. | No | 2n = 72 | Wild |
4 | Abelmoschus moschatus Medik | No | 2n = 72, 130 | Wild |
Parents/Crosses | No. of Flowers Selfed/Crossed | Fruit Set (Number) | Fruitset, % | Crossability Index of Fruits, % | Avg. No. of Seeds/Fruit | Seed Germination, % | |
---|---|---|---|---|---|---|---|
Set I | A. esculentus cv. ‘Arka Anamika’(selfed) | 46 | 44 | 95.6 | - | 56.50 | 96.0 |
A. manihot (selfed) | 40 | 38 | 95.0 | - | 22.20 | 22.0 | |
A. esculentus cv. ‘Arka Anamika’ × A. manihot (cross) | 78 | 68 | 87.2 | 82.4 | 34.53 | 92.0 | |
A. manihot × A. esculentus cv. ‘Arka Anamika’ (cross) | 54 | 0 | 0 | - | - | - | |
(A. esculentus cv. ‘Arka Anamika’ × A. manihot) F1 (selfed) | 58 | 50 | 86.2 | 92.7 | 0 | - | |
Set II | A. esculentus cv. ‘Arka Anamika’ (selfed) | 46 | 43 | 93.5 | - | 56.50 | 96.0 |
A.ficulens (selfed) | 54 | 52 | 96.3 | - | 12.52 | 18.3 | |
A. esculentus cv. ‘Arka Anamika’ × A. ficulens (cross) | 84 | 65 | 77.4 | 81.5 | 36.23 | 12.6 | |
A. ficulens × A. esculentus cv. ‘Arka Anamika’ (cross) | 74 | 20 | 27.0 | 28.5 | 9.26 | 0 | |
(A. esculentus cv. ‘Arka Anamika’ × A. ficulens) F1 (selfed) | 58 | 37 | 63.8 | 67.2 | 0.0 | - | |
Set III | A. esculentus cv. ‘Arka Anamika’ (selfed) | 46 | 43 | 93.5 | - | 56.50 | 96.0 |
A.moschatus (selfed) | 38 | 37 | 97.4 | - | 86.25 | 94.0 | |
A. esculentus cv. ‘Arka Anamika’ × A. moschatus (cross) | 75 | 53 | 70.7 | 74.0 | 30.21 | 5.3 | |
A. moschatus × A. esculentus cv. ‘Arka Anamika’ (cross) | 65 | 15 | 23.1 | 24.2 | 16.23 | 0.0 | |
(A. esculentus cv. ‘Arka Anamika’ × A. moschatus) F1 (selfed) | 52 | 28 | 53.9 | 56.4 | 0 | - |
Sl. No. | Parents, F1 Hybrids and Their Amphidiploid | Number of Pollen Examined | Viable Pollen% | Number of Pollen Examined | Germinated % |
---|---|---|---|---|---|
1 | A. esculentus cv. ‘Arka Anamika’ | 2328 | 98.4 | 574 | 96.5 |
2 | A. manihot | 1854 | 97.2 | 687 | 95.2 |
3 | A. ficulens | 1951 | 96.5 | 542 | 94.1 |
4 | A. moschatus | 2147 | 97.1 | 487 | 96.4 |
5 | A. esculentus cv. ‘Arka Anamika’ × A. manihot (F1) | 1654 | 56.2 | 554 | 46.2 |
6 | A. esculentus cv. ‘Arka Anamika’ × A. ficulens (F1) | 1875 | 68.1 | 621 | 52.5 |
7 | A. esculentuscv. ‘Arka Anamika’ × A. moschatus (F1) | 2047 | 62.7 | 487 | 55.6 |
8 | Amphidiploid F1 (A. esculentuscv. ‘Arka Anamika’ × A. manihot) | 1982 | 68.2 | 598 | 62.2 |
9 | Amphidiploid F1 (A. esculentus cv. ‘Arka Anamika’ × A. ficulens) | 1876 | 71.2 | 605 | 54.2 |
10 | Amphidiploid F1 (A. esculentuscv. ‘Arka Anamika’ × A. moschatus) | 2105 | 66.3 | 584 | 60.2 |
11 | Standard Deviation | - | 16.1 | - | 20.21 |
Sl. No | Characters | P1 | P2 | P3 | P4 | F1 (P1 × P2) | F1 (P1 × P3) | F1 (P1 × P4) |
---|---|---|---|---|---|---|---|---|
1 | Early plant vigour | Good | Good | Good | Good | Very good | Very good | Very good |
2 | Plant growth habit | Erect | Erect | Erect | Medium | Erect | Erect | Erect |
3 | Branching habit | Low | Medium | Medium | Profuse | Profuse | Low | Low |
4 | Plant: Number of branches | 1–2 | 4–5 | 3–4 | 9 | 7–8 | 1–2 | 1–2 |
5 | Stem colour | Light green | Light green | Green | Red | Light green | Light green | Light green |
6 | Stem pubescence | Absent | Absent | Absent | Strong | Absent | Absent | Absent |
7 | Leafblade: Depth of lobing | Medium | Deep | Medium | Medium | Deep | Medium | Medium |
8 | Leafblade: Serration of margin | Strong | Strong | Strong | Strong | Strong | Strong | Strong |
9 | Vein colour | Light green | Dark green | Dark green | Red | Dark green | Light Green | Light green |
10 | Flower: Petal colour | Yellow | Yellow | White | Yellow | Yellow | Yellowish White | Yellow |
11 | Flower: Petal base color | Both sides | Inside only | Inside only | Both sides | Both sides | Inside only | Both sides |
12 | Number of epicalyx segments | 8–10 | 5–7 | 5–7 | 5–7 | 5–7 | 7–9 | 7–9 |
13 | Shape of epicalyx segments | Linear | Lanceolate | Linear | Linear | Lanceolate | Linear | Linear |
14 | Fruit: Colour | Light green | Dark green | Dark green | Light green | Dark green | Light green | Light green |
15 | Fruit: Surface between ridges | Flat | Flat | Flat | Concave | Flat | Concave | Flat |
16 | Fruit: Pubescence | Weak | Strong | Strong | Strong | Strong | Medium | Strong |
17 | Fruit: Constriction of basal part | Absent | Absent | Absent | Absent | Absent | Absent | Absent |
18 | Fruit: Shape of apex | Narrow acute | Blunt | Blunt | Blunt | Acute | acute | Acute |
19 | Fruit: Number of locules | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
20 | Number of stigmatic lobes | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
21 | Fruit length | Long | Short | Short | Short | Medium | Medium | Medium |
22 | Fruit drop | No | No | No | No | No | Yes | Yes |
23 | Seed set | Yes | Yes | Yes | Yes | No | No | No |
Sl. No. | Character | ‘Arka Anamika’ (P1) | A. manihot (P2) | A. ficulens (P3) | A. moschatus (P4) | P1 × P2 | P1 × P3 | P1 × P4 |
---|---|---|---|---|---|---|---|---|
1 | Days to 50% flowering | 43.21 ± 2.51 | 82.15 ± 6.21 | 94.52 ± 4.25 | 76.83 ± 2.15 | 62.18 ± 1.25 | 57.83 ± 3.25 | 60.18 ± 5.21 |
2 | Internodal length (cm) | 6.83 ± 0.98 | 5.53 ± 1.25 | 6.53 ± 1.02 | 3.15 ± 0.21 | 9.53 ± 0.54 | 5.81 ± 0.35 | 5.77 ± 0.44 |
3 | Number of internodes | 18.26 ± 1.02 | 27.14 ± 2.15 | 23.92 ± 2.25 | 15.18 ± 1.45 | 35.84 ± 2.52 | 21.97 ± 3.15 | 21.21 ± 2.17 |
4 | Plant height (cm) | 125.18 ± 7.45 | 210.05 ± 15.21 | 220.18 ± 8.27 | 62.53 ± 4.22 | 230.52 ± 11.25 | 132.06 ± 6.37 | 147.08 ± 8.74 |
5 | Number of primary branches | 2.15 ± 0.18 | 6.21 ± 0.81 | 5.42 ± 0.54 | 9.21 ± 1.26 | 10.15 ± 1.42 | 4.21 ± 0.55 | 5.24 ± 0.21 |
6 | Fruit length (cm) | 15.21 ± 1.86 | 3.56 ± 0.28 | 2.50 ± 0.18 | 6.54 ± 0.21 | 7.52 ± 0.48 | 11.06 ± 0.52 | 12.52 ± 0.63 |
7 | Fruit Diameter (cm) | 1.62 ± 0.16 | 3.21 ± 0.22 | 1.82 ± 0.18 | 3.72 ± 0.34 | 2.50 ± 0.25 | 1.42 ± 0.17 | 1.44 ± 0.18 |
8 | Number of fruits per plant | 22.08 ± 1.42 | 71.85 ± 4.63 | 68.16 ± 3.86 | 37.83 ± 2.86 | 92.84 ± 5.63 | 14.21 ± 3.42 | 18.16 ± 3.77 |
9 | Fruit weight (cm) | 19.04 ± 2.55 | 4.53 ± 0.43 | 5.21 ± 0.87 | 11.20 ± 0.74 | 10.28 ± 0.41 | 12.62 ± 0.57 | 13.28 ± 0.68 |
10 | Fruit yield per plant (g) | 380.54 ± 20.28 | 315.26 ± 18.88 | 342.08 ± 20.35 | 425.63 ± 11.21 | 920.26 ± 28.32 | 170.25 ± 16.85 | 221.05 ± 20.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandeep, N.; Dushyanthakumar, B.M.; Sridhara, S.; Dasaiah, L.; Mahadevappa Satish, K.; El-Shehawi, A.M.; M Althaqafi, M.; Aloufi, S.; Sharma, H.; Alaklabi, A.; et al. Characterization of Okra Species, Their Hybrids and Crossability Relationships among Abelmoschus Species of the Western Ghats Region. Horticulturae 2022, 8, 587. https://doi.org/10.3390/horticulturae8070587
Sandeep N, Dushyanthakumar BM, Sridhara S, Dasaiah L, Mahadevappa Satish K, El-Shehawi AM, M Althaqafi M, Aloufi S, Sharma H, Alaklabi A, et al. Characterization of Okra Species, Their Hybrids and Crossability Relationships among Abelmoschus Species of the Western Ghats Region. Horticulturae. 2022; 8(7):587. https://doi.org/10.3390/horticulturae8070587
Chicago/Turabian StyleSandeep, Nanjundappa, Banur Marulasiddappa Dushyanthakumar, Shankarappa Sridhara, Lakshmana Dasaiah, Kundur Mahadevappa Satish, Ahmed M. El-Shehawi, Mohammed M Althaqafi, Salman Aloufi, Hanoor Sharma, Abdullah Alaklabi, and et al. 2022. "Characterization of Okra Species, Their Hybrids and Crossability Relationships among Abelmoschus Species of the Western Ghats Region" Horticulturae 8, no. 7: 587. https://doi.org/10.3390/horticulturae8070587
APA StyleSandeep, N., Dushyanthakumar, B. M., Sridhara, S., Dasaiah, L., Mahadevappa Satish, K., El-Shehawi, A. M., M Althaqafi, M., Aloufi, S., Sharma, H., Alaklabi, A., & Elansary, H. O. (2022). Characterization of Okra Species, Their Hybrids and Crossability Relationships among Abelmoschus Species of the Western Ghats Region. Horticulturae, 8(7), 587. https://doi.org/10.3390/horticulturae8070587