Real-Time Detection of the Nutritional Compounds in Green ‘Ratuni UNPAD’ Cayenne Pepper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cayenne Pepper Samples
2.2. Chemical Analysis Methods
2.3. Measurement of Vis/NIR Spectra
2.4. Data Analysis
3. Results and Discussion
3.1. Analysis of Vis/NIR Spectra
3.2. Prediction Results of Nutritional Compounds
3.3. Wavelength Selection by Regression Coefficient
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deepa, N.; Kaur, C.; George, B.; Singh, B.; Kapoor, H.C. Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. LWT Food Sci. Technol. 2007, 40, 121–129. [Google Scholar] [CrossRef]
- Del Rocío Gómez-García, M.; Ochoa-Alejo, N. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int. J. Mol. Sci. 2013, 14, 19025–19053. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Cen, H.; Zhang, C.; Lyu, X.; Weng, H.; Xu, H.; He, Y. Nondestructive quality assessment of chili peppers using near-infrared hyperspectral imaging combined with multivariate analysis. Postharvest Biol. Technol. 2018, 146, 147–154. [Google Scholar] [CrossRef]
- Al Othman, Z.A.; Ahmed, Y.B.H.; Habila, M.A.; Ghafar, A.A. Determination of capsaicin and dihydrocapsaicin in capsicum fruit samples using high performance liquid chromatography. Molecules 2011, 16, 8919–8929. [Google Scholar] [CrossRef] [Green Version]
- Villa-Rivera, M.G.; Ochoa-Alejo, N. Chili pepper carotenoids: Nutraceutical properties and mechanisms of action. Molecules 2020, 25, 5573. [Google Scholar] [CrossRef]
- Bixley, G.S.; Clark, K.M.; James, A.P. Skin colour predicts fruit and vegetable intake in young Caucasian men: A cross-sectional study. J. Nutr. Intermed. Metab. 2018, 12, 20–27. [Google Scholar] [CrossRef]
- Cheema, S.K.; Pant, M.R. Estimation of capsaicin in seven cultivated varieties of Capsicum annuum L. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 701–706. [Google Scholar]
- Barbero, G.F.; Liazid, A.; Azaroual, L.; Palma, M.; Barroso, C.G. Capsaicinoid contents in peppers and pepper-related spicy foods. Int. J. Food Prop. 2016, 19, 485–493. [Google Scholar] [CrossRef]
- Hornero-Méndez, D.; Minguez-Mosquera, M.I. Rapid spectrophotometric determination of red and yellow isochromic carotenoid fractions in paprika and red pepper oleoresins. J. Agric. Food Chem. 2001, 49, 3584–3588. [Google Scholar] [CrossRef]
- De Andrade, E.T.; Figueira, V.G.; Teixeira, L.P.; Martinazzo, A.P.; Araujo, K.G.D.L. Effect of drying kinetics on color of “Dedo de Moca” chili peppers (Capsicum baccatum). Eng. Agrícola 2019, 39, 659–667. [Google Scholar] [CrossRef]
- Genis, H.E.; Durna, S.; Boyaci, I.H. Determination of green pea and spinach adulteration in pistachio nuts using NIR spectroscopy. LWT Food Sci. Technol. 2021, 136, 110008. [Google Scholar] [CrossRef]
- Asikin, Y.; Kusumiyati; Shikanai, T.; Wada, K. Volatile aroma components and MS-based electronic nose profiles of dogfruit (Pithecellobium jiringa) and stink bean (Parkia speciosa). J. Adv. Res. 2018, 9, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Kusumiyati; Hadiwijaya, Y.; Putri, I.E.; Munawar, A.A. Multi-product calibration model for soluble solids and water content quantification in cucurbitaceae family, using visible/near-infrared spectroscopy. Heliyon 2021, 7, e07677. [Google Scholar] [CrossRef] [PubMed]
- Kusumiyati, K.; Hadiwijaya, Y.; Putri, I.E.; Munawar, A.A. Enhanced visible/near-infrared spectroscopic data for prediction of quality attributes in cucurbitaceae commodities. Data Br. 2021, 39, 107458. [Google Scholar] [CrossRef]
- Kusumiyati, K.; Hadiwijaya, Y.; Sutari, W.; Munawar, A.A. Global model for in-field monitoring of sugar content and color of melon pulp with comparative regression approach. AIMS Agric. Food 2022, 7, 312–325. [Google Scholar] [CrossRef]
- Saad, A.; Jha, S.N.; Jaiswal, P.; Srivastava, N.; Helyes, L. Non-destructive quality monitoring of stored tomatoes using VIS-NIR spectroscopy. Eng. Agric. Environ. Food 2016, 9, 158–164. [Google Scholar] [CrossRef]
- Beghi, R.; Giovanelli, G.; Malegori, C.; Giovenzana, V.; Guidetti, R. Testing of a VIS-NIR system for the monitoring of long-term apple storage. Food Bioprocess Technol. 2014, 7, 2134–2143. [Google Scholar] [CrossRef]
- Zude, M. Non-destructive prediction of banana fruit quality using VIS/NIR spectroscopy. Fruits 2003, 58, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Kusumiyati; Hadiwijaya, Y.; Hadiwijaya, Y.; Elisa Putri, I. Determination of Water Content of Intact Sapodilla Using Near Infrared Spectroscopy. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 1st International Conference on Food and Agriculture 2018, Bali, Indonesia, 20–21 October 2018; IOP Publishing: Bristol, Belgium, 2018; Volume 207, p. 012047. [Google Scholar] [CrossRef]
- Mc Glone, V.A.; Fraser, D.G.; Jordan, R.B.; Künnemeyer, R. Internal quality assessment of mandarin fruit by Vis/NIR spectroscopy. J. Near Infrared Spectrosc. 2003, 11, 323–332. [Google Scholar] [CrossRef]
- Kusumiyati, K.; Putri, I.E.; Munawar, A.A.; Suhandy, D. A data fusion model to merge the spectra data of intact and powdered cayenne pepper for the fast inspection of antioxidant properties. Sustainability 2022, 14, 201. [Google Scholar] [CrossRef]
- Biswas, A.K.; Sahoo, J.; Chatli, M.K. A Simple UV-Vis spectrophotometric method for determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT Food Sci. Technol. 2011, 44, 1809–1813. [Google Scholar] [CrossRef]
- González-Zamora, A.; Sierra-Campos, E.; Luna-Ortega, J.G.; Pérez-Morales, R.; Carlos, J.; Ortiz, R.; García-Hernández, J.L. Characterization of different capsicum varieties by evaluation of their capsaicinoids content by high performance liquid chromatography, determination of pungency and effect of high temperature. Molecules 2013, 18, 13471–13486. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M.; Kusumiyati. Chemometric Quantification of Peaberry Coffee in Blends Using UV-Visible Spectroscopy and Partial Least Squares Regression. In Proceedings of the 8th Annual Basic Science International Conference: Coverage of Basic Sciences toward the World’s Sustainability Challenges, East Java, Indonesia, 6–7 March 2018; AIP Conference Proceedings: College Park, MA, USA, 2018; Volume 2021, p. 060010. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. The Authentication of Peaberry and Civet Ground Roasted Robusta Coffee Using UV-Visible Spectroscopy and PLS-DA Method with Two Different Particle Sizes. In IOP Conference Series: Earth and Environmental Science, Proceedings of the International Conference on Science, Infrastructure Technology and Regional Development, Institut Teknologi Sumatera campus, Lampung Selatan, Indonesia, 19–20 October 2018; IOP Publishing: Bristol, Belgium, 2019; Volume 258, p. 012043. [Google Scholar]
- Kusumiyati, K.; Munawar, A.A.; Suhandy, D. Fast, simultaneous and contactless assessment of intact mango fruit by means of near infrared spectroscopy. AIMS Agric. Food 2021, 6, 172–184. [Google Scholar] [CrossRef]
- Kusumiyati, K.; Munawar, A.A.; Suhandy, D. Fast and Contactless Assessment of Intact Mango Fruit Quality Attributes Using near Infrared Spectroscopy (NIRS). In IOP Conference Series: Earth and Environmental Science, Proceedings of the International Conference on Agricultural Technology, Engineering and Environmental Sciences, Banda Aceh, Indonesia, 21–22 September 2020; IOP Publishing: Bristol, Belgium, 2021; Volume 644, p. 012028. [Google Scholar] [CrossRef]
- Skolik, P.; Morais, C.L.M.; Martin, F.L.; McAinsh, M.R. Determination of developmental and ripening stages of whole tomato fruit using portable infrared spectroscopy and chemometrics. BMC Plant Biol. 2019, 19, 236. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.B.; Blasco, J.; Zude-Sasse, M.; Sun, X. Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use. Postharvest Biol. Technol. 2020, 168, 111246. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Zhang, G. Rapid determination of leaf water content using Vis/NIR spectroscopy analysis with wavelength selection. Spectrosc. An Int. J. 2012, 27, 93–105. [Google Scholar] [CrossRef]
- Zhao, N.; Wu, Z.S.; Zhang, Q.; Shi, X.Y.; Ma, Q.; Qiao, Y.J. Optimization of parameter selection for partial least squares model development. Sci. Rep. 2015, 5, 11647. [Google Scholar] [CrossRef] [Green Version]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Workman, J.J. A review of calibration transfer practices and instrument differences in spectroscopy. Appl. Spectrosc. 2018, 72, 340–365. [Google Scholar] [CrossRef]
- Davey, M.; Saeys, W.; Hof, E.; Ramon, H.; Swennen, R.; Keulemans, J. Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. J. Agric. Food Chem. 2009, 57, 1742–1751. [Google Scholar] [CrossRef]
- Xu, S.; Lu, H.; Ference, C.; Qiu, G.; Liang, X. Rapid nondestructive detection of water content and granulation in postharvest “Shatian” pomelo using visible/near-infrared spectroscopy. Biosensors 2020, 10, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.B.; Mani, J.S.; Naiker, M. Infrared spectroscopy for the quality assessment of habanero chilli: A proof-of-concept study. Eng. Proc. 2021, 8, 19. [Google Scholar] [CrossRef]
- Lim, J.; Kim, G.; Mo, C.; Kim, M.S. Design and fabrication of a real-time measurement system for the capsaicinoid content of Korean red pepper (Capsicum annuum L.) powder by visible and near-infrared spectroscopy. Sensors 2015, 15, 27420–27435. [Google Scholar] [CrossRef] [PubMed]
- Saeys, W.; Mouazen, A.M.; Ramon, H. Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosyst. Eng. 2005, 91, 393–402. [Google Scholar] [CrossRef]
- Xie, D.; Liu, D.; Guo, W. Relationship of the optical properties with soluble solids content and moisture content of strawberry during ripening. Postharvest Biol. Technol. 2021, 179, 111569. [Google Scholar] [CrossRef]
- Ruiz, D.; Reich, M.; Bureau, S.; Renard, C.M.G.C.; Audergon, J.M. Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.). J. Agric. Food Chem. 2008, 56, 4916–4922. [Google Scholar] [CrossRef]
- Jamshidi, B.; Minaei, S.; Mohajerani, E.; Ghassemian, H. Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of valencia oranges. Comput. Electron. Agric. 2012, 85, 64–69. [Google Scholar] [CrossRef]
Nutritional Compounds | Calibration Set | Prediction Set | ||
---|---|---|---|---|
Range | Mean | Range | Mean | |
Water content (%) | 72.26–76.87 | 74.52 | 72.47–76.86 | 74.57 |
Total carotenoids (mg/100 g) | 7.79–25.69 | 16.65 | 9.24–22.73 | 16.93 |
Capsaicin (mg/100 g) | 208.57–1424.72 | 752.26 | 240.35–1328.36 | 762.95 |
Nutritional Compounds | Regression Methods | Spectra | PC | Rcal | RMSEC | Rpred | RMSEP | RPD |
---|---|---|---|---|---|---|---|---|
Water content | PLSR | Original | 7 | 0.86 | 0.59 | 0.85 | 0.61 | 1.90 |
dg1 | 7 | 0.83 | 0.64 | 0.76 | 0.75 | 1.57 | ||
SNV | 7 | 0.82 | 0.65 | 0.81 | 0.68 | 1.72 | ||
PCR | Original | 11 | 0.86 | 0.59 | 0.83 | 0.64 | 1.81 | |
dg1 | 7 | 0.76 | 0.75 | 0.80 | 0.69 | 1.69 | ||
SNV | 8 | 0.81 | 0.68 | 0.81 | 0.67 | 1.74 | ||
Total carotenoids | PLSR | Original | 14 | 0.94 | 1.29 | 0.89 | 1.75 | 2.21 |
dg1 | 15 | 0.95 | 1.18 | 0.86 | 1.97 | 1.96 | ||
SNV | 14 | 0.93 | 1.47 | 0.82 | 2.17 | 1.78 | ||
PCR | Original | 20 | 0.93 | 1.43 | 0.87 | 1.91 | 2.02 | |
dg1 | 20 | 0.91 | 1.65 | 0.78 | 2.40 | 1.61 | ||
SNV | 20 | 0.90 | 1.67 | 0.83 | 2.11 | 1.83 | ||
Capsaicin | PLSR | Original | 8 | 0.89 | 117.82 | 0.90 | 115.62 | 2.29 |
dg1 | 9 | 0.89 | 119.29 | 0.64 | 199.98 | 1.32 | ||
SNV | 9 | 0.89 | 120.60 | 0.74 | 176.03 | 1.50 | ||
PCR | Original | 11 | 0.89 | 118.26 | 0.90 | 115.92 | 2.28 | |
dg1 | 14 | 0.87 | 130.14 | 0.57 | 215.19 | 1.23 | ||
SNV | 13 | 0.88 | 124.40 | 0.69 | 188.14 | 1.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusumiyati, K.; Putri, I.E.; Hamdani, J.S.; Suhandy, D. Real-Time Detection of the Nutritional Compounds in Green ‘Ratuni UNPAD’ Cayenne Pepper. Horticulturae 2022, 8, 554. https://doi.org/10.3390/horticulturae8060554
Kusumiyati K, Putri IE, Hamdani JS, Suhandy D. Real-Time Detection of the Nutritional Compounds in Green ‘Ratuni UNPAD’ Cayenne Pepper. Horticulturae. 2022; 8(6):554. https://doi.org/10.3390/horticulturae8060554
Chicago/Turabian StyleKusumiyati, Kusumiyati, Ine Elisa Putri, Jajang Sauman Hamdani, and Diding Suhandy. 2022. "Real-Time Detection of the Nutritional Compounds in Green ‘Ratuni UNPAD’ Cayenne Pepper" Horticulturae 8, no. 6: 554. https://doi.org/10.3390/horticulturae8060554
APA StyleKusumiyati, K., Putri, I. E., Hamdani, J. S., & Suhandy, D. (2022). Real-Time Detection of the Nutritional Compounds in Green ‘Ratuni UNPAD’ Cayenne Pepper. Horticulturae, 8(6), 554. https://doi.org/10.3390/horticulturae8060554