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Abstract: The detection of nutritional compounds is usually performed through laboratory analy-
sis, which requires extensive planning, time, cost, and effort. Alternatively, visible/near-infrared
(Vis/NIR) spectroscopy can be used to determine the presence of nutritional compounds in real-time.
This study aimed to investigate the potential application of the Vis/NIR spectroscopy in the quanti-
tative detection of nutritional compounds in green ‘Ratuni UNPAD’ cayenne pepper. Prior to the
model development, 80 samples were prepared for the calibration set, while another 40 samples were
provided for the prediction set. Subsequently, the parameters used to calculate the model accuracy
included the coefficient of correlation in calibration set (Rcal), coefficient of correlation in prediction
set (Rpred), root mean square error of calibration set (RMSEC), root mean square error of prediction
set (RMSEP) and the ratio of prediction to deviation (RPD). The experimental results involving the
total carotenoids showed good model indicators with Rcal, Rpred, RMSEC, RMSEP, and RPD at 0.94,
0.89, 1.29, 1.75, and 2.21, respectively. Additionally, the analysis of the water content indicated Rcal,
Rpred, RMSEC, RMSEP, and RPD values of 0.86, 0.85, 0.59, 0.61, and 1.90, respectively, while that
of capsaicin had Rcal, Rpred, RMSEC, RMSEP, and RPD values of 0.89, 0.90, 117.82, 115.62, and 2.29,
respectively. The results showed that Vis/NIR spectroscopy can be used to detect the nutritional
compounds in green ‘Ratuni UNPAD’ cayenne pepper based on total carotenoids, water content, and
capsaicin parameters.

Keywords: chemometrics; fruit quality; multivariate analysis; rapid detection; Vis–NIR spectroscopy

1. Introduction

Cayenne pepper (Capsicum frustencens L.) is one of the world’s most cultivated hor-
ticultural crops. ‘Ratuni UNPAD’ is one of the varieties that has been grown extensively
in West Java, Indonesia due to its high yield potential and suitability for planting in the
medium-high plains. The potential varies from 7–10 tons/hectare. Moreover, cayenne pep-
per is also nutrient dense. Generally, some of the ingredients associated with the cayenne
pepper include color pigments, water content, and capsaicin [1–4].

The color pigments present in cayenne pepper contain carotenoids, such as lutein,
β-carotene, β-cryptoxanthin, zeaxanthin, violaxanthin, capsanthin, and capsorubin, which
affect the appearance of the fruit [5] and have a positive relationship with the color of the
fruit peel [6]. Additionally, the water content can also affect the appearance of the fruit
since it determines the texture, and freshness.

Cayenne pepper, like other commodities in the Capsicum group, contains a unique
compound called capsaicin, which gives it a spicy flavor. According to Cheema and
Pant [7], capsaicin levels are affected by variety, climate, geographical location, maturity
level, and post-harvest processing methods. Capsaicin is the most abundant compound
in the capsaicinoid group, accounting for approximately 49–68% of total capsaicinoid
content [8].
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The various methods used to quantify the water content, carotenoid, and capsaicin in
cayenne pepper include gravimetry, spectrophotometry, and chromatography due to their
high precision [9,10]. However, the disadvantages associated with these methods include
the need for expertise in laboratory analysis, sample preparation, time, cost, the use of
chemicals, and the uncertainty of the destruction measurement results in real-time. Practi-
cally, it will be challenging to ascertain the nutritional content within a short time frame in
the industrial world. Consequently, a technology is required for measuring nutritional com-
pounds present in cayenne pepper in a real-time manner, which provides fast, chemical-free,
and accurate determination regarding the chemical content of samples [11,12].

Visible/near-infrared (Vis/NIR) spectroscopy is a recent technology that can be used
to predict the chemical content of fruit with speed and accuracy. The quantitative nutri-
tional content can be determined in real-time using this method. Vis/NIR spectroscopy has
been extensively used to monitor the quality of various vegetables and fruits for example
in the Cucurbitaceae family [13–15], tomato [16], apple [17], banana [18], sapodilla [19],
and mandarin orange [20]. Kusumiyati et al. [21] conducted a study on cayenne pepper
and predicted the quality attributes of intact and powdered ‘Manik’ and ‘Domba’ cayenne
peppers. However, the built calibration model only considers antioxidant property pa-
rameters. To the best of our knowledge, there has never been a real-time detection of
green ‘Ratuni UNPAD’ cayenne pepper on various nutritional compounds. This calibration
model is designed to be more efficient, representative, fast, and accurate in prediction. The
application of this technology to the ‘Ratuni UNPAD’ cayenne pepper allows for grading
based on its nutritional compounds. This will replace the conventional grading method
based solely on the appearance of the sample. The hypothesis is that Vis/NIR spectroscopy
guarantees precision and reliability in predicting nutritional compounds in green ‘Ratuni
UNPAD’ cayenne pepper. Consequently, this study aimed to test the reliability of Vis/NIR
spectroscopy, as well as regression and spectra correction methods to predict water content,
total carotenoids, and capsaicin present in the green ‘Ratuni UNPAD’ cayenne pepper.

2. Materials and Methods
2.1. Cayenne Pepper Samples

The samples were harvested at the green stage based on visual appearance. There
were 120 samples of green ‘Ratuni UNPAD’ cayenne pepper, all fresh and powdered,
with approximately 30 g of cayenne pepper in each. The samples were split into two
groups, with 80 representing the calibration set and 40 representing the prediction set. The
study was conducted at Horticulture Laboratory, Faculty of Agriculture, Universitas
Padjadjaran, Indonesia.

2.2. Chemical Analysis Methods

Various methods were employed to conduct the water content, total carotenoids, and
capsaicin analysis. The gravimetric method was used to measure the water content [13].
For total carotenoid quantification, approximately 0.05 g of powdered sample was weighed
into a centrifuge tube, followed by 10 mL of acetone. The sample was then centrifuged at
4000 rpm for 10 minutes. The working standard was prepared to obtain 0.5; 1; 2; 4; 8; 16;
32 ppm of β-carotene. Total carotenoids were analyzed at a wavelength of
450 nm using UV–visible spectrophotometer (Shimadzu, UV mini-1240, Tokyo, Japan) [22].
Lastly, the capsaicin was evaluated using high-performance liquid chromatography (HPLC)
(Shimadzu, LC 20AT Prominence, Tokyo, Japan). The HPLC was equipped with C18 col-
umn (particle size 5 µm; 4.6 mm × 150 mm) and UV–visible detector. The standard solution
of capsaicin was made at 2, 4, 8, 16, 32, and 64 ppm. The detection of capsaicin was set at
222 nm. The sample preparation and extraction for capsaicin analysis refer to the procedures
described by González-Zamora et al. [23].
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2.3. Measurement of Vis/NIR Spectra

The Vis/NIR spectrometer (NirVana AG410, Integrated Spectronics Pty, Ltd., North
Ryde, Australia) with a wavelength range of 381–1065 nm at 3 nm intervals was utilized
for spectra acquisition. Each sample was placed into a Petri dish and exposed to radiation
five times [21]. The irradiated parts of each sample included the top, bottom, right, left,
and center surfaces. Afterward, the original spectra were generated from the absorbance
spectra and averaged for each sample.

2.4. Data Analysis

The Unscrambler X 10.4 (Camo AS, Oslo, Norway) software was used for the data
analysis. The regression methods employed were the partial least squares regression (PLSR)
and principal component regression (PCR). PLSR and PCR are the most commonly used
linear regression methods for the development of the Vis/NIR calibration model. The simi-
larity between the two methods is that they transform independent variables into principal
components (PCs). However, in PCR, PCs are formed only by involving the independent
variables, while in PLSR, PCs are determined by independent and dependent variables.
The goal of PLSR is to maximize the covariance of both variables [24,25]. Additionally, the
standard normal variate (SNV) and first derivative Savitzky–Golay (dg1) spectra correction
methods were applied. The parameters associated with the model accuracy were evaluated
by the coefficient of correlation in the calibration set (Rcal), root mean square error of the
calibration set (RMSEC), coefficient of correlation in the prediction set (Rpred), root mean
square error of the prediction set (RMSEP), and the ratio of prediction to deviation (RPD).
The developed model is expected to have low RMSEC and RMSEP, and also have high Rcal,
Rpred, and RPD [26,27].

3. Results and Discussion
3.1. Analysis of Vis/NIR Spectra

The absorbance spectra of green ‘Ratuni UNPAD’ cayenne pepper are shown in
Figure 1. Several peaks and valleys have been identified to provide relevant information
and are closely related to the chemical content of the sample. The wavelengths used ranged
from 381–1065 nm, and the absorption peaks indicated that these wavelengths were related,
and they became the primary focus of biochemical information [28]. The green ‘Ratuni
UNPAD’ cayenne pepper displayed absorption peaks approximately at 465 nm, 498 nm,
639 nm, 642 nm, and 915 nm, and they were found to be closely related to color pigments
and water. The wavelengths ranging from 465 nm to 642 nm were associated with various
color pigments such as carotenoids, xanthophylls, and chlorophyll [29]. Furthermore, there
was a peak of approximately 915 nm that correlated with the water content. The previous
study reported the wavelength of 760–970 nm was discovered to be the second overtones
of O-H bands that correspond to water absorption [30].

3.2. Prediction Results of Nutritional Compounds

The nutritional compounds data collected from laboratory analysis were displayed in
Table 1. The data were then used for model development and evaluation. The calibration
model was achieved through regression analysis involving spectra data of samples and
actual data of nutritional compounds (calibration). The developed calibration model was
then applied to predict the unknown samples (prediction). The best calibration model
was selected based on the consistency of the high Rcal, Rpred, and RPD, as well as the
low RMSEC/RMSEP [31]. The presence of noise in the spectra could reduce the model
accuracy, which led to the application of various spectra correction methods. The appli-
cation of PLSR + original resulted in the best model for total carotenoids with Rcal, Rpred,
RMSEC, RMSEP, and RPD having values of 0.94, 0.89, 1.29, 1.75, and 2.21, respectively
(Table 2). These results indicate that the total carotenoids can be predicted with a high
degree of accuracy and reliability for further prediction [32,33]. This analysis is consistent
with the use of Vis/NIR spectroscopy on total banana fruit carotenoids, which yielded
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R2
cal, R2

pred, RMSEC, RMSEP, and RPD values of 0.95, 0.96, 18.89, 28.70, and 3.35, respec-
tively [34]. This discovery supported the hypothesis that Vis/NIR spectroscopy can predict
total carotenoids in cayenne pepper, particularly the ‘Ratuni UNPAD’ variety, which was
determined statistically through the multivariate analysis.
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Table 1. Summary of laboratory analysis of water content, total carotenoids, and capsaicin in
calibration set and prediction set.

Nutritional Compounds
Calibration Set Prediction Set

Range Mean Range Mean

Water content (%) 72.26–76.87 74.52 72.47–76.86 74.57
Total carotenoids (mg/100 g) 7.79–25.69 16.65 9.24–22.73 16.93

Capsaicin (mg/100 g) 208.57–1424.72 752.26 240.35–1328.36 762.95

Table 2. Summary of PLSR and PCR of water content, total carotenoids, and capsaicin in calibration
set and prediction set.

Nutritional Compounds Regression Methods Spectra PC Rcal RMSEC Rpred RMSEP RPD

Water content

PLSR
Original 7 0.86 0.59 0.85 0.61 1.90

dg1 7 0.83 0.64 0.76 0.75 1.57
SNV 7 0.82 0.65 0.81 0.68 1.72

PCR
Original 11 0.86 0.59 0.83 0.64 1.81

dg1 7 0.76 0.75 0.80 0.69 1.69
SNV 8 0.81 0.68 0.81 0.67 1.74

Total carotenoids

PLSR
Original 14 0.94 1.29 0.89 1.75 2.21

dg1 15 0.95 1.18 0.86 1.97 1.96
SNV 14 0.93 1.47 0.82 2.17 1.78

PCR
Original 20 0.93 1.43 0.87 1.91 2.02

dg1 20 0.91 1.65 0.78 2.40 1.61
SNV 20 0.90 1.67 0.83 2.11 1.83
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Table 2. Cont.

Nutritional Compounds Regression Methods Spectra PC Rcal RMSEC Rpred RMSEP RPD

Capsaicin

PLSR
Original 8 0.89 117.82 0.90 115.62 2.29

dg1 9 0.89 119.29 0.64 199.98 1.32
SNV 9 0.89 120.60 0.74 176.03 1.50

PCR
Original 11 0.89 118.26 0.90 115.92 2.28

dg1 14 0.87 130.14 0.57 215.19 1.23
SNV 13 0.88 124.40 0.69 188.14 1.41

PC: principal component, Rcal: coefficient of correlation in calibration set, RMSEC: root mean square error of
calibration set, Rpred: coefficient of correlation in prediction set, RMSEP: root mean square error of prediction set,
RPD: the ratio of prediction to deviation.

The model development and evaluation for water content and capsaicin also showed
sufficient results. Furthermore, the best water content results were obtained using
PLSR + original, with Rcal, RMSEC, Rpred, RMSEP, and RPD with their values given as
0.86, 0.59, 0.85, 0.61, and 1.90, respectively. The Vis/NIR prediction of the water content
of pomelo fruit was reported to have similar accuracy, with the R2

cal, R2
pred, RMSEC, and

RMSEP having accuracies of 0.89, 0.71, 0.03, and 0.04, respectively [35]. The accuracy of
the capsaicin parameter with PLSR + original was the highest, with Rcal, Rpred, RMSEC,
RMSEP, and RPD having accuracies of 0.89, 0.90, 117.82, 115.62, and 2.29, respectively. The
results of this study produced higher accuracies than those obtained by Johnson et al. [36]
in Habanero chili, which gave the capsaicin accuracy results of R2

cal, RMSEC, Rpred, RM-
SEP, and RPD to be 0.19, 589, 0.15, 611, and 1.08, respectively. However, Lim et al. [37]
obtained better results on capsaicinoids in Korean red pepper with R2

cal, R2
pred, RMSEC,

and RMSEP having values of 0.87, 0.84, 12.18, and 13.63, respectively. Different accuracy
in the prediction of nutritional compounds can occur due to various factors, for exam-
ple, the variability of data, the number of samples, type of samples, samples condition,
instrumentation, model development, etc.

Figure 2 depicts the visualization of the data distribution for the calibration and
prediction sets. The two sets were selected after comparing the results of the best regression
and spectra correction methods for each quality attribute. Subsequently, satisfactory results
were obtained from all quality attributes, with Rcal and Rpred having values greater than
or equal to 0.86 and 0.85, respectively. The model obtained met the criteria for being
designated as a robust model for predicting total carotenoids, as well as the water content
and capsaicin. Furthermore, RPD values obtained for water content, total carotenoids, and
capsaicin were 1.90, 2.21, and 2.29, respectively. The RPD below 1.5 indicate poor prediction
and unsuitability, while those between 1.5 and 2 show that the model can distinguish
between low and high response variables. Additionally, RPD values between 2 and 2.5
suggest the possibility of making coarse quantitative predictions, while a value between
2.5 and 3 or above indicates good and outstanding prediction accuracy [32,38].

3.3. Wavelength Selection by Regression Coefficient

Figure 3 describes the regression coefficients on model development of water content,
total carotenoids, and capsaicin. The water absorption was found at wavelengths of 561,
621, 651, 906, and 999 nm (Figure 3a). Our findings regarding the water absorption peaks
were comparable to those of strawberries at various stages of ripeness [39]. In this study, we
employed a total of 230 wavelengths; however, the peaks that contributed to the prediction
of total carotenoids were 402, 429, 483, 633, 645, 669, 750, 891, and 930 nm (Figure 3b).
This discovery is consistent with studies arranged by Walsh et al. [29] and Ruiz et al. [40],
which stated that the carotenoid content has wavelengths ranging from 420–503 nm and
940–1200 nm. Zhang et al. [30] and Jamshidi et al. [41], also reported that the absorption
around 550 nm and 650 nm were associated with pigments interpretation.
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‘Ratuni UNPAD’ cayenne pepper.

Furthermore, this study revealed information about the wavelength that contributed
to the capsaicin. Figure 3c represents wavelengths of 468, 519, 633, 657, 714, 912, and
1005 nm at peaks for capsaicin. The previous study addressed that absorption of the
capsaicinoids content was around 450–950 nm [37]. This finding verifies that Vis/NIR
spectroscopy has peaks that can predict water content, total carotenoids, and capsaicin
of green ‘Ratuni UNPAD’ cayenne pepper. In this study, reliable and potent nutritional
compounds were detected in real-time and with high accuracy. However, there has not
been any other study on Vis/NIR technology that has developed a predictive potential for
various quality attributes of green ‘Ratuni UNPAD’ cayenne pepper besides this study. The
application of Vis/NIR spectroscopy has the advantage of being practical, efficient, and
real-time. Overall, the hypothesis in this study demonstrates that Vis/NIR spectroscopy
can be trusted to predict nutritional compounds in green ‘Ratuni UNPAD’ cayenne pepper.
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4. Conclusions

The Vis/NIR spectroscopy has the potential to predict the nutritional compounds of
green ‘Ratuni UNPAD’ cayenne pepper in real-time. The overall accuracy of the carotenoids
obtained for Rcal, Rpred, RMSEC, RMSEP, and RPD were 0.94, 0.89, 1.29, 1.75, and 2.21, re-
spectively. Furthermore, the Rcal, Rpred, RMSEC, RMSEP, and RPD values for water content
and capsaicin were 0.86, 0.85, 0.59, 0.61, and 1.90, and of 0.89, 0.90, 117.82, 115.62, and
2.29, respectively. The finding of this study also confirmed the expectations that Vis/NIR
spectroscopy is reliable in detecting the total carotenoids, water content, and capsaicin of
green ‘Ratuni UNPAD’ cayenne pepper. The application of Vis/NIR spectroscopy as a
real-time and accurate quality prediction technology needs to be explored further because
it has many advantages over other measurement methods in terms of practicality, labor,
time, and cost. In terms of cost–benefit, this technique can reduce cost for quality control
when used by cayenne pepper producers who need daily quality control for large samples.
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