Decreased Leaf Potassium Content Affects the Chemical Composition of Must for Sparkling Wine Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vine, Soil, and Climate
2.2. Fertilization Treatments
2.3. Leaf Analysis
2.4. Harvest and Chemical Must Analysis
2.5. Statistical Analysis
3. Results
3.1. Leaf Analysis
3.2. Yield
3.3. Chemical Must Analysis
4. Discussion
4.1. Leaf Analysis
4.2. Chemical Must Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreno-Arribas, M.V.; Polo, M.C. Wine Chemistry and Biochemistry; Springer Science + Business Media: New York, NY, USA, 2009; pp. 61–63. [Google Scholar]
- Grainger, K.; Tattersall, H. Sparkling wines. In Wine Production and Quality, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 136–142. [Google Scholar] [CrossRef]
- O.I.V. International Code of Oenological Practices. The Boom of Sparkling Wine on Focus. OIV Life, 3. Available online: http://www.oiv.int/en/oiv-life/2020-world-wine-production-first-estimates (accessed on 18 March 2021).
- Zoecklein, B. A Review of Méthode Champenoise Production, 2nd ed.; Virginia Tech: Blacksburg, VA, USA, 2002. [Google Scholar]
- Cataldo, E.; Salvi, L.; Sbraci, S.; Storchi, P.; Mattii, G.B. Sustainable Viticulture: Effects of Soil Management in Vitis vinifera. Agronomy 2020, 10, 1949. [Google Scholar] [CrossRef]
- Palčić, I. Effect of Fertilization Treatments on the Concentration of Minerals and Organic Acids in cv. Istrian Malvasia (Vitis vinifera L.) Wines from Different Terroirs. Ph.D. Thesis, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia, 2015. Available online: https://www.bib.irb.hr/773522 (accessed on 20 March 2019).
- Jones, J.E.; Kerslake, F.L.; Close, D.C.; Dambergs, R.G. Viticulture for Sparkling Wine Production: A Review. Am. J. Enol. Vitic. 2014, 65, 407–416. [Google Scholar] [CrossRef]
- Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2015. [Google Scholar]
- Chen, Z.C.; Peng, W.; Li, J.; Liao, H. Functional dissection and transport mechanism of magnesium in plants. Semin. Cell Dev. Biol. 2018, 74, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Zatloukalová, A.; Lošák, T.; Hlušek, J.; Pavloušek, P.; Sedláček, M.; Filipčík, R. The effect of soil and foliar applications of magnesium fertilisers on yields and quality of vine (Vitis vinifera, L.) grapes. Acta Univ. Agric. Silvic. Mendel. Brun. 2011, 59, 221–226. [Google Scholar] [CrossRef]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef]
- Ahmad, I.; Maathuis, F.J.M. Cellular and tissue distribution of potassium: Physiological relevance, mechanisms and regulation. J. Plant Physiol. 2014, 171, 708–714. [Google Scholar] [CrossRef] [PubMed]
- García-Escudero, E.; Romero, I.; Benito, A.; Domínguez, N.; Martín, I. Reference Levels for Leaf Nutrient Diagnosis of cv. Tempranillo Grapevine in the Rioja Appellation. Commun. Soil Sci. Plant Anal. 2013, 44, 645–654. [Google Scholar] [CrossRef]
- Mpelasoka, B.S.; Schachtman, D.P.; Treeby, M.T.; Thomas, M.R. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust. J. Grape Wine Res. 2003, 9, 154–168. [Google Scholar] [CrossRef]
- Villette, J.; Cuéllar, T.; Verdeil, J.L.; Delrot, S.; Gaillard, I. Grapevine Potassium Nutrition and Fruit Quality in the Context of Climate Change: MINI REVIEW article. Front. Plant Sci. 2020, 11, 123. [Google Scholar] [CrossRef]
- Bérud, F.; Boutin, F.; Chantelot, E.; Filleron, E.; Jacquet, O.; Méjean, I.; Oustric, J.; Reynaud, C.; Rodriguez Lovelle, B.; Roustang, O.; et al. Guide de la Fertilisation Raisonnée—Vignobles de la Vallée du Rhône; Institut Rhodanien: Orange, France, 2003. [Google Scholar]
- Lošák, T.; Zezulová, T.; Baroň, M.; Elbl, J.; Kintl, A.; Ducsay, L.; Varga, L.; Torma, S.; Petek, M. Foliar application of potassium to grapevine (Vitis vinifera L.). Agrochémia 2020, 1, 23–27. [Google Scholar]
- Bišof, R. Utjecaj gnojidbe na koncentraciju biogenih elemenata u lišću Malvazije istarske bijele. Agron. Glas. 1991, 4–5, 179–195. [Google Scholar]
- Gluhić, D.; Herak Ćustić, M.; Petek, M.; Čoga, L.; Slunjski, S.; Sinčić, M. The Content of Mg, K and Ca Ions in Vine Leaf under Foliar Application of Magnesium on Calcareous Soils. Agric. Conspec. Sci. 2009, 74, 81–84. [Google Scholar]
- Herak Ćustić, M.; Gluhić, D.; Čoga, L.; Petek, M.; Gošćak, I. Vine plant chlorosis on unstructured calcareous soils and leaf Ca, Mg and K content. Cereal Res. Commun. 2008, 36, 439–442. [Google Scholar]
- Pessarakli, M. Handbook of Plant and Crop Stress, 4th ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2020. [Google Scholar]
- Santos, B.M.; Dusky, J.A.; Stall, W.M.; Gilreath, J.P. Effects of Phosphorus Fertilization on Common Lambsquarters (Chenopodium album) Duration of Interference in Lettuce (Lactuca sativa). Weed Technol. 2004, 18, 179–183. [Google Scholar] [CrossRef]
- Goldammer, T. Grape Grower’s Handbook. A Guide to Viticulture for Wine Production, 3rd ed.; Apex Publishers: Centreville, VA, USA, 2018. [Google Scholar]
- Kodur, S. Effects of juice pH and potassium on juice and wine quality, and regulation of potassium in grapevines through rootstocks: A short review. Vitis 2011, 50, 1–6. [Google Scholar] [CrossRef]
- Chidi, B.S.; Bauer, F.F.; Rossouw, D. Organic Acid Metabolism and the Impact of Fermentation Practices on Wine Acidity—A Review. South Afr. J. Enol. Vitic. 2018, 39, 315–329. [Google Scholar] [CrossRef]
- White, R.E. Soils for Fine Wine; Oxford University Press: New York, NY, USA, 2003; pp. 129–136. [Google Scholar]
- Daudt, C.E.; Fogaça, A. Effect of tartaric acid upon potassium, total acidity and pH, during the vinification of Cabernet Sauvignon grapes. Ciência Rural 2008, 38, 2345–2350. [Google Scholar] [CrossRef]
- Čoga, L.; Slunjski, S.; Herak Ćustić, M.; Maslać, J.; Petek, M.; Ćosić, T.; Pavlović, I. Influence of Soil Reaction on Phosphorus, Potassium, Calcium and Magnesium Dynamics in Grapevine (Vitis vinifera L.). Agric. Conspec. Sci. 2009, 74, 39–43. [Google Scholar]
- Torresi, S.; Frangipane, M.T.; Anelli, G. Biotechnologies in sparkling wine production. Interesting approaches for quality improvement: A review. Food Chem. 2011, 129, 1232–1241. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Majean, A.; Dubourideu, D. Handbook of Enology: The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 3–28. [Google Scholar]
- Jackson, R.S. Wine Science, Principle, Practice, Perception; Academic Press: New York, NY, USA, 2000. [Google Scholar]
- Liu, P.H.; Vrigneau, C.; Salmon, T.; Hoang, D.A.; Boulet, J.C.; Jégou, S.; Marchal, R. Influence of Grape Berry Maturity on Juice and Base Wine Composition and Foaming Properties of Sparkling Wines from the Champagne Region. Molecules 2018, 23, 1372. [Google Scholar] [CrossRef]
- Michelini, S.; Tomada, S.; Kadison, A.E.; Pichler, F.; Hinz, F.; Zejfart, M.; Iannone, F.; Lazazzara, V.; Sanoll, C.; Robatscher, P.; et al. Modeling malic acid dynamics to ensure quality, aroma and freshness of Pinot blanc wines in South Tyrol (Italy). OENO One 2021, 55, 159–179. [Google Scholar] [CrossRef]
- Maletić, E.; Karoglan Kontić, J.; Pejić, I.; Preiner, D.; Zdunić, G.; Bubola, M.; Stupić, D.; Andabaka, Ž.; Marković, Z.; Šimon, S.; et al. Zelena Knjiga: Hrvatske Izvorne Sorte Vinove Loze; Državni Zavod za Zaštitu Prirode: Zagreb, Croatia, 2015; pp. 312–314. [Google Scholar]
- Croatian bureau of statistics. Basic Survey on Vineyard Structure, 2015—Final Data. Available online: https://web.dzs.hr/Hrv_Eng/publication/2016/01-01-34_01_2016.htm (accessed on 11 April 2022).
- Reščič, J.; Mikulic-Petkovsek, M.; Rusjan, D. The impact of canopy managements on grape and wine composition of cv. ‘Istrian Malvasia’ (Vitis vinifera L.). J. Sci. Food Agric. 2016, 96, 4724–4735. [Google Scholar] [CrossRef] [PubMed]
- ISO 10390; HRN ISO 10390 (2005)—Soil Quality—Determination of pH; Croatian Standards Institute: Zagreb, Croatia, 2005.
- JDPZ—Yugoslav Society for the Study of Soil. Priručnik za Ispitivanje Zemljišta. In Kemijske Metode Ispitivanja Zemljišta; Knjiga I; Zaštita Beograd: Beograd, Serbia, 1966. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; AOAC: Arlington, TX, USA, 1995; Volume 1. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor-und Kaliumbestimmung. K. Lantbr. Ann. 1960, 26, 199–215. [Google Scholar]
- HRN ISO 22036; Soil Quality—Determination of Trace Elements in Extracts of Soil by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES); Croatian Standards Institute: Zagreb, Croatia, 2011.
- AOAC. Official Method of Analysis of AOAC International; AOAC: Gaithersburg, MD, USA, 2015. [Google Scholar]
- International Code of Oenological Practices. Compendium of International Methods of Wine and Must Analysis. 2007. Available online: https://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol (accessed on 2 March 2022).
- Dequin, S.; Escudier, J.L.; Bely, M.; Noble, J.; Albertin, W.; Masneuf-Pomarède, I.; Marullo, P.; Salmon, J.M.; Sablayrolles, J.M. How to adapt winemaking practices to modified grape composition under climate change conditions. OENO One 2017, 51, 205–214. [Google Scholar] [CrossRef]
- Margalit, Y. Concepts in Wine Chemistry; Wine Appreciation Guild Ltd.: San Francisco, CA, USA, 1997; pp. 16–18; 76–82. [Google Scholar]
- Peršurić Palčić, A.; Jeromel, A.; Pecina, M.; Palčić, I.; Gluhić, D.; Herak Ćustić, M. Effect of foliar fertilization on cv. Istrian Malvasia (Vitis vinifera L.) must on basic chemical composition. Glas. Zaštite Bilja 2020, 4, 32–38. Available online: https://hrcak.srce.hr/file/375854 (accessed on 25 August 2020). [CrossRef]
Soil Property | Depth, 0–30 cm | Depth, 30–60 cm |
---|---|---|
pHH2O | 6.40 | 6.37 |
pHKCl | 5.86 | 5.51 |
% humus | 2.01 | 2.10 |
% Ntotal | 0.22 | 0.22 |
mg P2O5/100 g soil | <1 | <1 |
mg K2O/100 g soil | 21.50 | 21.25 |
mg Mg/100 g soil | 14.0 | 14.0 |
Property | p-Value | Significance |
---|---|---|
P | 0.0980 | ns |
K | 0.0013 | ** |
Mg | 0.1975 | ns |
Property | p-Value | Significance |
---|---|---|
Yield | 0.9880 | ns |
Number of clusters | 0.2433 | ns |
Property | p-Value | Significance |
---|---|---|
pH | 0.0171 | * |
TA | 0.7956 | ns |
Sugar | 0.0001 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peršurić Palčić, A.; Jeromel, A.; Pecina, M.; Palčić, I.; Gluhić, D.; Petek, M.; Herak Ćustić, M. Decreased Leaf Potassium Content Affects the Chemical Composition of Must for Sparkling Wine Production. Horticulturae 2022, 8, 512. https://doi.org/10.3390/horticulturae8060512
Peršurić Palčić A, Jeromel A, Pecina M, Palčić I, Gluhić D, Petek M, Herak Ćustić M. Decreased Leaf Potassium Content Affects the Chemical Composition of Must for Sparkling Wine Production. Horticulturae. 2022; 8(6):512. https://doi.org/10.3390/horticulturae8060512
Chicago/Turabian StylePeršurić Palčić, Ana, Ana Jeromel, Marija Pecina, Igor Palčić, David Gluhić, Marko Petek, and Mirjana Herak Ćustić. 2022. "Decreased Leaf Potassium Content Affects the Chemical Composition of Must for Sparkling Wine Production" Horticulturae 8, no. 6: 512. https://doi.org/10.3390/horticulturae8060512
APA StylePeršurić Palčić, A., Jeromel, A., Pecina, M., Palčić, I., Gluhić, D., Petek, M., & Herak Ćustić, M. (2022). Decreased Leaf Potassium Content Affects the Chemical Composition of Must for Sparkling Wine Production. Horticulturae, 8(6), 512. https://doi.org/10.3390/horticulturae8060512