A Sustainable Intercropping System for Organically Produced Lettuce and Green Onion with the Use of Arbuscular Mycorrhizal Inocula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Plant and Fungal Material
2.3. Harvest-Sample Preparation and Root Scanning
2.4. Quantification of AMF Colonization in Roots: Clearing and Staining Roots
2.5. Chemical Composition
2.6. Antioxidant Capacity
2.7. Phenolics
2.8. Nitrate Content
2.9. Vitamin C
2.10. Nutrient Content
2.11. Statistical Analysis
3. Results and Discussion
3.1. Colonization
3.2. Root Architecture
3.3. Color Parameters
3.4. Yield
3.5. Chemical Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hydbom, S.; Ernfors, M.; Birgander, J.; Hollander, J.; Jensen, E.S.; Olsson, P.A. Reduced tillage stimulated symbiotic fungi and microbial saprotrophs, but did not lead to shift in the saprotrophic microorganism community structure. Appl. Soil Ecol. 2017, 119, 104–114. [Google Scholar] [CrossRef]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of No-Tillage and Conventional Systems on Soil Microbial Communities. Appl. Environ. Soil Sci. 2012, 2012, 548620. [Google Scholar] [CrossRef] [Green Version]
- Kladivko, E.J. Tillage systems and soil ecology. Soil Till. Res. 2001, 61, 61–66. [Google Scholar] [CrossRef]
- Rigby, D.; Cáceres, D. Organic farming and the sustainability of agricultural systems. Agric. Syst 2001, 68, 21–40. [Google Scholar] [CrossRef]
- Sanders, J. (Ed.) Evaluation of the EU Legislation on Organic Farming; Thünen-Institute: Braunschweig, Germany, 2013. [Google Scholar]
- De Vries, I.M. Origin and domestication of Lactuca sativa L. Gen. Res. Crop. Evol. 1997, 44, 165–174. [Google Scholar] [CrossRef]
- Pareek, S.; Sagar, N.A.; Shama, A.; Kumar, V. Onion (Allium Cepa L.). In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; Elhadi, M.Y., Ed.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 1145–1161. [Google Scholar]
- Trivedi, P.; Wallenstein, M.D.; Delgado-Baquerizo, M.; Singh, B.K. Microbial modulators and mechanisms of soil carbon storage. In Soil Carbon Storage, Modulators, Mechanisms and Modeling; Brajesh, K.S., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 73–115. [Google Scholar]
- The significance of mycorrhizal fungi for crop productivity and ecosystem sustainability in organic farming systems. In Proceedings of the 16th IFOAM Organic World Congress, Modena, Italy, 16–20 June 2008.
- Harley, J.L. The Significance of mycorrhizal. Mycol. Res. 1989, 92, 129–139. [Google Scholar] [CrossRef]
- Bidabadi, S.S.; Mehralian, M. Arbiscular Mycorrhizal Fungi Inoculation to Enhance Chilling Stress Tolerance of Waterlemon. Gesunde Pflanz. 2020, 72, 171–179. [Google Scholar] [CrossRef]
- Rozpądek, P.; Rąpała-Kozik, M.; Wężowicz, K.; Grandin, A.; Karlsson, S.; Wanżny, R.; Anielska, T.; Turnau, K. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa). Plant. Physiol. Biochem. 2016, 107, 264–272. [Google Scholar] [CrossRef]
- Klironomos, J.N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 2003, 84, 2292–2301. [Google Scholar] [CrossRef]
- Baum, C.; El-Tohamy, W.; Gruda, N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic. 2015, 187, 131–141. [Google Scholar] [CrossRef]
- Hart, M.M.; Antunes, P.M.; Chaudhary, V.B.; Abbott, L.K. Fungal inoculants in the field: Is the reward greater than the risk? Fun. Ecol. 2017, 32, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Tigka, T.; Ipsilantis, I. Effects of sand dune, desert and field arbuscular mycorrhizae on lettuce (Lactuca sativa L.) growth in a natural saline soil. Sci. Hortic. 2020, 264, 109191. [Google Scholar] [CrossRef]
- Sparks, D.L. Methods of Soil Analysis: Part 3, Chemical methods 5.3; American Society of Agronomy Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Lindsay, W.L.; Norvell, W. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Boron, K.R. Methods of Soil Analysis, Part. 3: Chemical Methods, 3rd ed.; Sparks, D.L., Page, E.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 603–626. [Google Scholar]
- McGuire, R.G. Reporting of Objective Color Measurements. Hortscience 1992, 72, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Sylvia, D.M. Vesicular-Arbuscular Mycorrhizal Fungi. In Methods of Soil Analysis: Part. 2. Microbiological and Biochemical Properties, 3rd ed.; Peter, J., Bootomley, P.J., Scott Angle, J., Weaver, R.W., Eds.; Soil Science Society of America: Madison, WI, USA, 2020; pp. 351–360. [Google Scholar]
- Jones, A.; Pravadali-Cekic, S.; Dennis, G.R.; Bashir, R.; Mahon, P.J.; Shalliker, R. A Ferric reducing antioxidant potential (FRAP) of antioxidants using reaction flow chromatography. Anal. Chim. Acta. 2017, 967, 93–101. [Google Scholar] [CrossRef]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in Wood: Comparison of Different Estimation Methods. J. Agric. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil. Sci. Plant. Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Oller, A.L.W.; Agostini, E.; Milrad, S.R.; Medina, M.I. In situ and de novo biosynthesis of vitamin C in wild type and transgenic tomato hairy roots: A precursor feeding study. Plant Sci. 2009, 177, 28–34. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis: Part. 2, 2nd ed.; Sparks, D.L., Page, E.L., Helmke, P.A., Loeppert, R.H., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Jones, J.B., Jr.; Case, V.W. Sampling, Handling and Analyzing Plant Tissue Samples. In SSSA Book Series, Soil Testing and Plant. Analysis, 3rd ed.; Westerman, R.L., Ed.; Soil Science Society of America, Inc.: Madison, WI, USA, 1990; pp. 389–420. [Google Scholar]
- Scullion, J.; Eason, W.R.; Scott, E.P. The effectivity of arbuscular mycorrhizal fungi from high input conventional and organic grassland and grass–arable rotations. Plant. Soil 1998, 204, 243–254. [Google Scholar] [CrossRef]
- Dekkers, T.B.M.; van der Werff, P.A. Mutualistic functioning of indigenous arbuscular mycorrhizae in spring barley and winter wheat after cessation of long-term phosphate fertilization. Mycorrhiza 2001, 10, 195–201. [Google Scholar] [CrossRef]
- Charron, G.; Furlan, V.; Bernier-Cardou, M.; Doyon, G. Response of onion plants to arbuscular mycorrhizae. 1. Effects of inoculation method and phosphorus fertilization on biomass and bulb firmness. Mycorrhiza 2001, 11, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Gosling, P.; Hodge, A.; Goodlass, G.; Bending, G.D. Arbuscular mycorrhizal fungi and organic farming. Sci. Direct 2006, 113, 17–35. [Google Scholar] [CrossRef]
- Kahiluoto, H.; Vestberg, M. The effect of arbuscular mycorrhiza on biomass production and phosphorus uptake from sparingly soluble sources by leek (Allium porrum L.) in Finnish field soils. Biol. Agric. Hortic. 1998, 16, 65–85. [Google Scholar] [CrossRef]
- Zuccarini, P. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Pant Soil Environ. 2007, 53, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Berta, G.; Trotta, A.; Fusconi, A.; Hooker, J.E.; Munro, M.; Atkinson, D.; Giovannetti, M.; Morini, S.; Fortuna, P.; Tisserant, B.; et al. Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol. 1995, 15, 281–293. [Google Scholar] [CrossRef]
- Balsam, M.; Garmendia, I.; Goicoechea, N. Arbuscular Mycorrhizal Fungi (AMF) Improved Growth and Nutritional Quality of Greenhouse-Grown Lettuce. J. Agric. Food Chem. 2011, 59, 5504–5515. [Google Scholar]
- Charoonnart, P.; Seraypheap, K.; Chadchawan, S.; Wangsomboondee, T. Arbuscular mycorrhizal fungus improves the yield and quality of Lactuca sativa in an organic farming system. Sci. Asia 2016, 42, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Charron, G.; Furlan, V.; Bernier-Cardou, M.; Doyon, G. Response of onion plants to arbuscular mycorrhizae. 2 Effects of nitrogen fertilization on biomass and bulb firmness. Mycorrhiza 2001, 11, 145–150. [Google Scholar] [CrossRef]
- Golubkina, N.; Krivenkov, L.; Sekara, A.; Vasileva, V.; Tallarita, A.; Caruso, G. Prospects of Arbuscular Mycorrhizal Fungi Utilization in Prodyction of Allium Plants. Plants 2020, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Lone, R.; Shuab, R.; Wani, K.A.; Ganaie, M.A.; Tiwari, A.K.; Koul, K.K. Mycorrhizal influence on metabolites, indigestible oligosaccharides, mineral nutrition and phytochemical constituents in onion (Allium cepa L.) plant. Sci. Hortic. 2015, 193, 55–61. [Google Scholar] [CrossRef]
- Albrechtova, J.; Latr, A.; Nedorost, L.; Pokluda, R.; Posta, K.; Vosatka, M. Dual inoculation with mycorrhizal and saprotrophic fungi applicable in sustainable cultivation improves the yield and nutritive value of onion. Sci. World J. 2012, 2012, 374091. [Google Scholar] [CrossRef] [Green Version]
- Santander, C.; Ruiz, A.; García, S.; Aroca, R.; Cumming, J.; Cornejo, P. Efficiency of two arbuscular mycorrhizal fungal inocula to improve saline stress tolerance in lettuce plants by changes of antioxidant defense mechanisms. J. Sci. Food Agric. 2019, 100, 1577–1587. [Google Scholar] [CrossRef] [PubMed]
- Avio, L.; Sbrana, C.; Giovannetti, M.; Frassinetti, S. Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci. Hortic. 2017, 224, 265–271. [Google Scholar] [CrossRef]
- Avio, L.; Turrini, A.; Giovannetti, M.; Sbrana, C. Designing the Ideotype Mycorrhizal Symbiots for the Production of Healthy Food. Front. Plant. Sci. 2018, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
Crop and AMF | Colonization (%) | Total Root Length (cm) | Surface Area (cm2) | Root Volume (cm3) | Tip No. |
---|---|---|---|---|---|
Lettuce | |||||
Control | 4.33 ± 2.19 a | 673 ± 348 a | 126 ± 70 a | 1.91 ± 1.20 a | 1593 ± 817 a |
R. intraradices | 4.67 ± 1.33 a | 1304 ± 157 a | 261 ± 40 a | 4.17 ± 0.80 a | 4807 ± 652 a |
Diversispora spp. | 0.33 ± 0.33 a | 1190 ± 283 a | 215 ± 54 a | 3.08 ± 0.80 a | 3476 ± 932 a |
Green onion | |||||
Control | 3.00 ± 2.00 a | 92.96 ± 1.70 a | 30.11 ± 1.80 a | 0.79 ± 0.10 a | 51.5 ± 4.90 a |
R. intraradices | 2.00 ± 2.00 a | 55.65 ± 26.70 a | 22.19 ± 2.30 a | 0.52 ± 0.10 a | 50.83 ± 1.50 a |
Diversispora spp. | 5.67 ± 4.17 a | 83.20 ± 14.20 a | 28.55 ± 4.30 a | 0.78 ± 0.10 a | 46.67 ± 5.50 a |
Crop and AMF | Lightness | Chroma | Hue Angle | |
---|---|---|---|---|
Lettuce | ||||
Control | 45.13 ± 0.54 a | 33.00 ± 1.71 a | 122.52 ± 0.71 a | |
R. intraradices | 47.77 ± 0.94 a | 35.60 ± 0.15 a | 121.95 ± 0.23 a | |
Diversispora spp. | 48.71 ± 1.02 a | 36.26 ± 1.28 a | 122.01 ± 0.51 a | |
Green onion | ||||
1 cm | Control | 83.53 ± 0.27 a | 8.52 ± 0.62 a | 69.84 ± 0.26 a |
R. intraradices | 78.35 ± 0.98 b | 7.71 ± 0.52 a | 69.24 ± 0.56 a | |
Diversispora spp. | 84.39 ± 0.92 a | 8.60 ± 0.38 a | 69.92 ± 0.48 a | |
3 cm | Control | 75.90 ± 0.14 b | 13.83 ± 2.44 a | 110.47 ± 0.74 a |
R. intraradices | 68.36 ± 0.70 a | 16.14 ± 0.99 a | 111.63 ± 0.99 a | |
Diversispora spp. | 76.55 ± 0.59 b | 12.82 ± 0.73 a | 110.74 ± 0.49 a | |
5 cm | Control | 69.24 ± 1.46 a | 26.08 ± 0.69 a | 114.75 ± 0.36 a |
R. intraradices | 63.23 ± 0.51 b | 24.61 ± 0.25 a | 115.90 ± 0.40 a | |
Diversispora spp. | 68.21 ± 1.04 a | 25.95 ± 0.80 a | 115.46 ± 0.11 a | |
7 cm | Control | 67.44 ± 0.45 a | 19.69 ± 0.23 a | 130.87 ± 0.58 a |
R. intraradices | 62.43 ± 0.33 a | 19.21 ± 1.26 a | 131.32 ± 1.40 a | |
Diversispora spp. | 67.44 ± 0.56 a | 20.02 ± 0.56 a | 130.27 ± 0.67 a |
Crop and AMF | Nitrates (μg/g f.w) | Total Soluble Solids (Brixo) | K (ppm d.w) | Na (ppm d.w) | P (ppm d.w) | Relative Chl. Content |
---|---|---|---|---|---|---|
Lettuce | ||||||
Control | 335.1 ± 37.2 a | 3.07 ± 0.19 a | 24.00 ± 1.00 a | 125.67 ± 22.34 a | 0.32 ± 0.14 a | 15.63 ± 2.18 a |
R. intraradices | 298.4 ± 22.2 a | 3.10 ± 0.12 a | 21.00 ± 2.40 a | 102.67 ± 2.85 a | 0.16 ± 0.02 a | 14.48 ± 0.92 a |
Diversispora spp. | 361.1 ± 36.7 a | 3.03 ± 0.24 a | 24.30 ± 1.52 a | 121.67 ± 19.27 a | 0.32 ± 0.07 a | 14.58 ± 1.08 a |
Green onion | ||||||
Control | 154.8 ± 18.0 a | 4.43 ± 0.29 a | 66.00 ± 9.71 a | 84.33 ± 1.86 a | 0.10 ± 0.06 a | 66.21 ± 8.91 a |
R. intraradices | 178.5 ± 32.6 a | 4.47 ± 0.43 a | 64.67 ± 9.77 a | 80.67 ± 2.40 a | 0.20 ± 0.06 a | 53.57 ± 4.23 a |
Diversispora spp. | 175.8 ± 24.7 a | 4.73 ± 0.19 a | 72.33 ± 3.18 a | 73.00 ± 9.29 a | 0.10 ± 0.04 a | 57.75 ± 15.03 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papoui, E.; Bantis, F.; Kapoulas, N.; Ipsilantis, I.; Koukounaras, A. A Sustainable Intercropping System for Organically Produced Lettuce and Green Onion with the Use of Arbuscular Mycorrhizal Inocula. Horticulturae 2022, 8, 466. https://doi.org/10.3390/horticulturae8050466
Papoui E, Bantis F, Kapoulas N, Ipsilantis I, Koukounaras A. A Sustainable Intercropping System for Organically Produced Lettuce and Green Onion with the Use of Arbuscular Mycorrhizal Inocula. Horticulturae. 2022; 8(5):466. https://doi.org/10.3390/horticulturae8050466
Chicago/Turabian StylePapoui, Eleni, Filippos Bantis, Nikolaos Kapoulas, Ioannis Ipsilantis, and Athanasios Koukounaras. 2022. "A Sustainable Intercropping System for Organically Produced Lettuce and Green Onion with the Use of Arbuscular Mycorrhizal Inocula" Horticulturae 8, no. 5: 466. https://doi.org/10.3390/horticulturae8050466
APA StylePapoui, E., Bantis, F., Kapoulas, N., Ipsilantis, I., & Koukounaras, A. (2022). A Sustainable Intercropping System for Organically Produced Lettuce and Green Onion with the Use of Arbuscular Mycorrhizal Inocula. Horticulturae, 8(5), 466. https://doi.org/10.3390/horticulturae8050466