Effect of Harvesting in Different Ripening Stages on the Content of the Mineral Elements of Rosehip (Rosa spp.) Fruit Flesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Soil Agrochemical Analyses
2.3. Samples Preparation
2.4. Mineral Element Analysis
2.5. Color Parameter Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Effect of the Species/Cultivars on the Mineral Content
3.2. The Effect of the Species/Cultivars and Ripening Stage on the Mineral Content
3.3. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Winther, K.; Hansen, A.S.V.; Tofte, C.J. Bioactive ingredients of rose hips (Rosa canina L) with special reference to antioxidative and anti-inflammatory properties: In vitro studies. Botanics 2016, 6, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Mármol, I.; Sánchez-de-Diego, C.; Moreno, J.N.; Azpilicueta, A.C.; Yoldi, R.M. Therapeutic Applications of Rose Hips from Different Rosa Species. Int. J. Mol. Sci. 2017, 18, 1137. [Google Scholar] [CrossRef] [PubMed]
- Demir, F.; Özcan, M. Chemical and technological properties of rose (Rosa canina L.) fruits grown wild in Turkey. J. Food Eng. 2001, 47, 333–336. [Google Scholar] [CrossRef]
- Medveckienė, B.; Kulaitienė, J.; Levickienė, D.; Hallmann, E. The Effect of Ripening Stages on the Accumulation of Carotenoids, Polyphenols and Vitamin C in Rosehip Species/Cultivars. Appl. Sci. 2021, 15, 6761. [Google Scholar] [CrossRef]
- Kulaitienė, J.; Medveckienė, B.; Levickienė, D.; Vaitkevičienė, N.; Makarevičienė, V.; Jarienė, E. Changes in Fatty Acids Content in Organic Rosehip (Rosa spp.) Seeds during Ripening. Plants 2020, 12, 1793. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Björk, L.; Trajkovski, V.; Uggla, M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J. Sci. Food. Agric. 2000, 80, 2021–2027. [Google Scholar] [CrossRef]
- Vasić, D.; Paunović, D.; Trifunović, B.Š.; Miladinović, J.; Vujošević, L.; Đinović, D.; Đorđević, P.J. Fatty acid composition of rosehip seed oil. Acta Agric. Serb. 2020, 25, 45–49. [Google Scholar] [CrossRef]
- Al-Yafeai, A.; Bellstedt, P.; Böhm, V. Bioactive Compounds and Antioxidant Capacity of Rosa rugosa Depending on Degree of Ripeness. Antioxidants 2018, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Pullar, J.M.; Carr, A.C.; Vissers, M.C.M. The Roles of Vitamin C in Skin Health. Nutrition 2017, 9, 866. [Google Scholar] [CrossRef] [Green Version]
- Tumbas, V.T.; Brunet, C.J.M.; Simin, C.D.D.; Cetković, G.S.; Ethilas, S.M.; Gille, L. Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. J. Sci. Food Agric. 2012, 92, 1273–1281. [Google Scholar] [CrossRef]
- Kizil, S.; Toncer, O.; Sogut, T. Mineral Content and Fatty Acid Compositions of Wild and Cultivated Rose Hip (Rosa canina L.). Fresen. Environ. Bull. 2018, 27, 744–748. [Google Scholar]
- Aguirre, G.U.; Loza, M.; Gazquez, J.; Fusco, M.; Sosa, A.; Ciuffo, M.G.; Ciuffo, L.E.C. The Potentiality of Non-Timber Forest Products. Fruit Availability, Phytochemical Properties of Rosa rubiginosa L. Rose Hips. Am. J. Plant Sci. 2016, 7, 2272–2287. [Google Scholar] [CrossRef] [Green Version]
- Özcan, M.M.; Ünver, A.; Uçar, T.; Arslan, D. Mineral content of some herbs and herbal teas by infusion and decoction. Food Chem. 2018, 106, 1120–1127. [Google Scholar] [CrossRef]
- Beto, J.A. The Role of Calcium in Human Aging. Clin. Nutr. Res. 2015, 4, 1059788. [Google Scholar] [CrossRef] [Green Version]
- Gupta, C.P. Role of Iron (Fe) in Body. IOSR J. Appl. Chem. 2014, 7, 38–46. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar] [CrossRef]
- Türkben, C.; Uylaşer, V.; İnceday, B.; Çelikok, I. Effects of different maturity periods and processes on nutritional components of rose hip (Rosa canina L.). J. Food Agric. Environ. 2010, 1, 26–30. [Google Scholar]
- Mahmood, T.; Anwar, F.; Iqbal, T.; Ahmad, B.; Ashraf, M. Mineral composition of strawberry, mulberry, and cherry fruits at different ripening stage as analyzed by inductively coupled plasma-optical emission spectroscopy. J. Plant Nutr. 2012, 35, 111–122. [Google Scholar] [CrossRef]
- Dolek, U.; Gunes, M.; Genc, N.; Elmastas, M. Total Phenolic Compound and Antioxidant Activity Changes in Rosehip (Rosa sp.) during Ripening. J. Agric. Sci. Technol. 2018, 20, 817–828. [Google Scholar]
- LST ISO 10390:2005; Soil Quality. Determination of pH. Lithuanian Organization for Standardization: Vilnius, Lithuania, 2005.
- Oreshkin, N. Extraction of mobile forms of phosphorus and potassium by the Egner–Riehm–Domingo method. Agrokhimiia 1980, 8, 135–138. [Google Scholar]
- ISO 11261:1995; Soil Quality. Determination of total nitrogen—Modified Kjeldahl method. International Organization for Standardization: Geneve, Switzerland, 1995.
- EU Regulation. No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. OJEU 2011, 304, 18–63. [Google Scholar]
- Ercisli, S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem. 2007, 104, 1379–1384. [Google Scholar] [CrossRef]
- Martin, K.J.; Gonzalez, E.A.; Slatopolsky, E. Clinical consequences and management of hypomagnesemia. J. Am. Soc. Nephrol. 2009, 20, 2291–2295. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: Washington, DC, USA, 1997; pp. 1–448. [Google Scholar] [CrossRef]
- Anderson, R.A. Nutritional role of chromium. Sci. Total Environ. 1981, 17, 13–29. [Google Scholar] [CrossRef]
- Worl Health Organization. Environmental Health Criteria 204 for Boron; International Programme on Chemical Safety (IPCS): Geneva, Switzerland, 1998. [Google Scholar]
- Bilgin, N.A.; Mısırlı, A.; Şen, F.; Türk, B. Fruit Pomological, Phytochemical Characteristic and Mineral Content of Rosehip Genotypes. J. Food Eng. 2020, 6, 18–23. [Google Scholar] [CrossRef]
- Strazzullo, P. Sodium. Adv. Nutr. 2014, 2, 188–190. [Google Scholar] [CrossRef] [Green Version]
- Hurley, L.S.; Keen, C.L. Manganese. In Trace Elements in Human and Animal Nutrition, 5th ed.; Mertz, W., Ed.; Academic Press: New York, NY, USA, 1987; Volume 1, pp. 185–223. [Google Scholar]
- Koç, A. Chemical changes in seeds and fruits of natural growing rosehip (Rosa sp.) from Yozgat (Turkey). Acta Sci. Polonorum. Hortorum Cultus 2020, 19, 123–134. [Google Scholar] [CrossRef]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of minerelas and trace elements in diabetes and insulin resistance. Nutrients 2020, 6, 1864. [Google Scholar] [CrossRef]
- Ramesh, V.; Paul, V.; Pande, R. Dynamics of mineral nutrients in tomato (Solanum lycopersicum L.) fruits during ripening: Part II—off the plant. Plant Physiol. 2020, 26, 23–37. [Google Scholar] [CrossRef]
- Trakner, M.; Tavakol, E.; Jakli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Wu, X.; Zorrilla, C.; Vega, S.E.; Palta, J.P. Fractionating of Calcium in Tuber and Leaf Tissues Explains the Calcium Deficiency Symptoms in Potato Plant Overexpressing CAX1. Front. Plant Sci. 2020, 10, 1793. [Google Scholar] [CrossRef] [PubMed]
- Hocking, B.; Tyerman, S.; Burton, R.A.; Gilliham, M. Fruit Calcium: Transport and Physiology. Front. Plant Sci. 2016, 7, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallahi, E.; Conway, W.S.; Hickey, K.D.; Sams, C.E. The role of calcium and nitrogen in postharvest quality and disease resistance of apples. Hortic. Sci. 1997, 5, 831–835. [Google Scholar] [CrossRef] [Green Version]
- Paul, V.; Pande, R.; Ramesh, K.V.; Singh, A. Role of mineral nutrients in physiology, ripening and storability of fruits. Plant Physiol. 2012, 13, 56–96. [Google Scholar] [CrossRef]
- Gransee, A.; Fuhurs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Huber, D.H.; Jeff, B. The role of magnesium in plant disease. Plant Soil 2013, 368, 73–85. [Google Scholar] [CrossRef]
- Bose, J.; Babourina, O.; Rengel, Z. Role of magnesium in alleviation of aluminium toxicity in plants. J. Exp. Bot. 2011, 62, 2251–2264. [Google Scholar] [CrossRef] [Green Version]
- Özrenk, K.; Gündoğdu, M.; Doğan, A. Organic acid, sugar and mineral matter contents in rosehip (Rosa canina L.) Fruits of Erzincan Region. Yüzüncü Yıl Univ. J. Agric. Sci. 2012, 22, 20–25. [Google Scholar]
- Christian, T.; Husted, S.; Laursen, K.H.; Persson, D.P.; Schjoerring, J.K. The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 2021, 229, 2446–2469. [Google Scholar] [CrossRef]
- Rop, O.; Sochor, J.; Jurikova, T.; Zitka, O.; Skutkova, H.; Mlcek, J.; Salas, P.; Krsk, B.; Babula, P.; Adam, V.; et al. Effect of Five Different Stages of Ripening on Chemical Compounds in Medlar (Mespilus germanica L.). Molecules 2011, 16, 74–91. [Google Scholar] [CrossRef] [Green Version]
- Tosun, I.; Ustun, N.S.; Tekguler, B. Physical and chemical changes during ripening of blackberry fruits. Sci. Agric. 2008, 1, 87–90. [Google Scholar] [CrossRef]
- Bai, Q.; Shen, Y.; Huang, Y. Advances in Mineral Nutrition Transport and Signal Transduction in Rosaceae Fruit Quality and Postharvest Storage. Front. Plant Sci. 2021, 12, 68. [Google Scholar] [CrossRef] [PubMed]
- Fernando, D.R.; Baker, A.J.M.; Woodrow, I.E. Physiological responses in Macadamia integrifolia on exposure to Mn treatment. Aust. J. Bot. 2009, 57, 406–413. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants: Acquisition, transport and interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, A.; Creissen, G.; Kular, B.; Firmin, J.; Robinson, S.; Verhoeyen, M.; Mullineaux, P. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 2002, 214, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Kaur, N.; Siddique, K.H.M.; Nayar, H. Beneficial elements for agricultural crops and their functional relevance in defense against stresses. Arch. Agron. Soil Sci. 2016, 62, 905–920. [Google Scholar] [CrossRef]
- Schulz, M.; Seraglio, S.K.T.; Betta, F.D.; Nehring, P.; Valese, A.C.; Daguer, H.; Gonzago, L.V.; Costa, A.C.O.; Fett, R. Blackberry (Rubus ulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Int. Food Res. J. 2019, 122, 627–634. [Google Scholar] [CrossRef]
- Gentili, R.; Ambrosini, R.; Montagnani, C.; Caronni, S.; Citterio, S. Effect of Soil pH on the Growth, Reproductive Investment and Pollen Allergenicity of Ambrosia artemisiifolia L. Front. Plant Sci. 2018, 9, 1335. [Google Scholar] [CrossRef] [Green Version]
- Maathuis, F.J.M. Sodium in plants: Perception, signalling, and regulation of sodium fluxes. J. Exp. Bot. 2014, 65, 849–858. [Google Scholar] [CrossRef]
- Gupta, S.K.; Rai, A.K.; Kanwar, S.S.; Sharma, T.R. Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS ONE 2012, 7, e42578. [Google Scholar] [CrossRef] [Green Version]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef] [PubMed]
Years | Months | |||||
---|---|---|---|---|---|---|
May | June | June | August | September | Average | |
Air temperature, °C | ||||||
2018 | 17.1 | 17.4 | 19.6 | 19.2 | 14.5 | 17.6 |
2019 | 13.4 | 21.2 | 17.2 | 18.2 | 12.5 | 16.5 |
2020 | 10.4 | 18.8 | 17.0 | 17.9 | 14.7 | 15.8 |
SCN * | 12.8 | 15.7 | 18.0 | 17.1 | 12.0 | 15.1 |
Rainfall, mm | Sum | |||||
2018 | 27.5 | 16.0 | 107.9 | 65.6 | 57.0 | 274 |
2019 | 28.6 | 27.5 | 50.3 | 100.5 | 46.5 | 253.4 |
2020 | 32.8 | 106.8 | 79.3 | 46.7 | 21.9 | 287.5 |
SCN | 57 | 73 | 89 | 75 | 66 | 360 |
Sunshine, h | Sum | |||||
2018 | 365 | 286 | 210 | 276 | 207 | 1344 |
2019 | 232 | 349 | 233 | 264 | 189 | 1267 |
2020 | 260 | 250 | 229 | 222 | 196 | 1157 |
SCN | 252 | 246 | 260 | 237 | 154 | 1149 |
Ripening Stage | Color Parameter | ||||
---|---|---|---|---|---|
L* | a* | b* | C | h° | |
I | 39.32 ± 3.01 | −4.66 ± 0.69 | 33.98 ± 2.50 | 34.32 ±2.43 | 97.80 ± 2.23 |
II | 36.73 ± 3.43 | −2.26 ± 0.33 | 34.90 ± 3.79 | 34.98 ± 3.78 | 93.70 ± 0.79 |
III | 36.33 ± 3.43 | 14.62 ± 4.54 | 35.68 ± 5.59 | 38.79 ± 6.06 | 67.71 ± 6.06 |
IV | 34.60 ± 2.67 | 28.98 ± 3.80 | 33.72 ± 3.82 | 44.53 ± 4.65 | 49.32 ± 3.37 |
V | 26.61 ± 2.06 | 35.16 ± 1.75 | 24.93 ± 3.12 | 43.93 ± 1.51 | 35.33 ± 4.29 |
Mineral Element | Species/Cultivars | |||
---|---|---|---|---|
Rosa canina | Rosa rugosa | Rosa rugosa cv. ‘Rubra’ | Rosa rugosa cv. ‘Alba’ | |
Macro element | ||||
K | 8292.83 ± 62.00 a* | 8735.83 ± 70.98 b | 13,221.55 ± 26.59 d | 12,151.82 ± 12.27 c |
Ca | 4572.70 ± 32.91 d | 3980.24 ± 8.38 c | 3106.68 ± 14.58 a | 3355.77 ± 7.74 b |
Mg | 1501.64 ± 8.18 d | 625.883 ± 3.29 a | 909.75 ± 7.74 c | 679.43 ± 0.67 b |
P | 1015.44 ± 5.10 d | 702.46 ± 1.40 c | 630.65 ± 1.01 a | 684.69 ± 2.77 b |
Micro element | ||||
Fe | 77.30 ± 0.19 d | 27.61 ± 0.18 a | 31.29 ± 0.21 c | 30.10 ± 0.44 b |
Na | 11.62 ± 0.18 a | 26.73 ± 0.83 b | 37.69 ± 0.19 d | 28.41 ± 0.43 c |
Ti | 17.20 ± 0.02 c | 14.05 ± 0.06 a | 16.43 ± 0.23 b | 18.03 ± 0.05 d |
Cu | 11.83 ± 0.25 b | 6.42 ± 0.21 a | 12.91 ± 0.06 c | 13.44 ± 0.01 d |
B | 28.99 ± 0.29 c | 6.93 ± 0.08 a | 5.49 ± 0.02 a | 7.30 ± 0.02 b |
Mn | 6.20 ± 0.02 c | 4.00 ± 0.04 b | 8.10 ± 0.02 d | 3.60 ± 0.03 a |
Al | 5.89 ± 0.04 b | 3.62 ± 0.04 a | 3.28 ± 0.03 a | 6.13 ± 0.16 b |
Zn | 2.75 ± 0.08 b | 0.77 ± 0.05 a | 7.12 ± 0.14 c | 19.23 ± 0.42 d |
Cr | 0.38 ± 0.03 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medveckienė, B.; Kulaitienė, J.; Vaitkevičienė, N.; Levickienė, D.; Bunevičienė, K. Effect of Harvesting in Different Ripening Stages on the Content of the Mineral Elements of Rosehip (Rosa spp.) Fruit Flesh. Horticulturae 2022, 8, 467. https://doi.org/10.3390/horticulturae8060467
Medveckienė B, Kulaitienė J, Vaitkevičienė N, Levickienė D, Bunevičienė K. Effect of Harvesting in Different Ripening Stages on the Content of the Mineral Elements of Rosehip (Rosa spp.) Fruit Flesh. Horticulturae. 2022; 8(6):467. https://doi.org/10.3390/horticulturae8060467
Chicago/Turabian StyleMedveckienė, Brigita, Jurgita Kulaitienė, Nijolė Vaitkevičienė, Dovilė Levickienė, and Kristina Bunevičienė. 2022. "Effect of Harvesting in Different Ripening Stages on the Content of the Mineral Elements of Rosehip (Rosa spp.) Fruit Flesh" Horticulturae 8, no. 6: 467. https://doi.org/10.3390/horticulturae8060467
APA StyleMedveckienė, B., Kulaitienė, J., Vaitkevičienė, N., Levickienė, D., & Bunevičienė, K. (2022). Effect of Harvesting in Different Ripening Stages on the Content of the Mineral Elements of Rosehip (Rosa spp.) Fruit Flesh. Horticulturae, 8(6), 467. https://doi.org/10.3390/horticulturae8060467