The Effect of Low-Growing Rootstocks on the Adaptability and Productivity of Sour Cherry Varieties (Prunus cerasus L.) in Arid Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Resources
2.2. Location of the Experimental Site and Conditions
2.3. Maintaining the Prototype, Records, and Observations
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCune, L.M.; Kubota, C.; Stendell-Hollis, N.R.; Thomson, C.A. Cherries and Health: A Review. Food Sci. Hortic. 2011, 51, 1–12. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Mladenović, J. Combining fruit quality and main antioxidant attributes in the sour cherry: The role of new clonal rootstock. Sci. Hortic. 2020, 265, 109236. [Google Scholar] [CrossRef]
- Lang, G.A. The cherry industries in the USA: Current trends and future perspectives. In Proceedings of the VIII International Cherry Symposium, Yamagata, Japan, 5–9 June 2019; pp. 119–132. [Google Scholar]
- Cline, J.A. Planting density and size-controlling rootstocks influence the performance of Montmorency tart cherry (Prunus cerasus L.). Can. J. Plant Sci. 2020, 100, 16–28. [Google Scholar] [CrossRef]
- Kolesnikova, A.F. Sour and Sweet Cherry; AST: Moscow, Russia, 2003; p. 255. [Google Scholar]
- Kuznetsova, A.; Romanenko, A.; Since, S. Revealing the influence of rootstocks on the adaptive potential of scion-rootstock combinations of plum using anatomical and morphological studies. Fruit Berry Grow. Russ. 2013, 37, 215–221. [Google Scholar]
- Dudko, O. About the Import of Fruits to RUSSIA in 2015–2021. 2021. Available online: https://ab-centre.ru/news/ob-importe-fruktov-v-rossiyu-v-2015-2021-gg (accessed on 12 January 2021).
- Long, L.E.; Brewer, L.J.; Kaiser, C. Cherry Rootstocks for the Modern Orchard. OSU Extension Service. Oregon State University: Pacific Northwest Extension Publication. 2014. Available online: http://extension.oregonstate.edu/wasco/sites/default/files/cherryrootstocksmodern-long.pdf (accessed on 15 November 2020).
- Gonçalves, B.; Moutinho-Pereira, J.; Santos, A.; Silva, A.P.; Bacelar, E.; Correia, C.; Rosa, E. Scion-rootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiol. 2006, 26, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solonkin, A.; Nikolskaya, O.; Kikteva, E. Preliminary assessment of variety-rootstock combinations of plums in the conditions of the Lower Volga region. Bull. Nizhnevolzhsky Agro-Univ. Complex Sci. High. Prof. Educ. 2019, 1, 105–113. [Google Scholar]
- Solonkin, A.; Semenyutina, A.; Nikolskaya, O.; Kikteva, E. Assessment of drought resistance and heat resistance of varieties and forms of stone fruit crops in the conditions of the Volgograd region. Bull. Nizhnevolzhsky Agro-Univ. Complex Sci. High. Prof. Educ. 2019, 4, 55–64. [Google Scholar]
- Ozherelyeva, Z.; Gulyaeva, A. The effect of frost on the stability of the generative organs of cherries during the flowering period. Mod. Gard. 2013, 3, 45–51. [Google Scholar]
- Robinson, T. The Evolution towards More Competitive Apple Orchard Systems in the USA. In Proceedings of the XXVII International Horticultural Congress-IHC2006: International Symposium on Enhancing Economic and Environmental 772, Seoul, Korea, 13 August 2006; pp. 491–500. [Google Scholar]
- Fadon, E.; Herrera, M.; Rodrigo, J. Development of cherry blossoms on a scale BBCH. Sci. Hortic. 2015, 192, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Hedhli, A.; Hormaza, D.; Herrera, M. The influence of temperature on the kinetics and dynamics of pollen tubes in sweet cherries, Prunus avium (Rosaceae). Am. J. Bot. 2004, 91, 558–564. [Google Scholar] [CrossRef] [Green Version]
- Sanzol, J.; Herrero, M. “Effective pollination period” of fruit trees. Sci. Hortic. 2001, 90, 1–17. [Google Scholar] [CrossRef]
- Morandi, B.; Manfrini, L.; Lugli, S.; Tugnoli, A.; Micheli, A.; Boini, A.; Perulli, G.; Bresilla, K.; Corelli Grappadelli, L. Physiological responses to rootstocks vigor in cherry: Why dwarfing is efficient? In Proceedings of the XXX International Horticultural Congress IHC2018: International Symposium on Cultivars, Rootstocks and Management Systems of 1281, Istanbul, Turkey, 12–16 August 2018; pp. 487–492. [Google Scholar]
- Maas, F.M.; Balkhoven-Baart, J.; van der Steeg, P.A.H. Evaluation of Krymsk 5 (VSL-2) and Krymsk 6 (LC-52) as rootstocks for sweet cherry “Kordia”. Acta. Hortic. 2014, 1058, 531–536. [Google Scholar] [CrossRef]
- Lenivtseva, M.; Radchenko, E.; Kuznetsova, A. Genetic diversity of varieties of stone crops (genus Prunus L.) resistant to coccocomycosis. Agric. Biol. 2017, 52, 895–904. [Google Scholar]
- Drabudko, N.; Ganusenko, M.; Grusheva, T.; Levshunova, V.; Samus, V.; Shkrobova, M. Clonal Rootstocks Are the Basis for Increasing the Productivity of Fruit Plantations. Fruit Growing; Collection of Scientific Papers; RUE “Institute of Fruit Growing”: Minsk, Russia, 2018; pp. 247–257. [Google Scholar]
- Eremin, G.; Eremin, V. Clonal rootstocks for intensive cultivation technologies of plum, peach and apricot in the North Caucasus. Fruit Grow. Vitic. South Russ. 2020, 64, 168–176. [Google Scholar] [CrossRef]
- Popova, L.; Ivanenko, E.; Tumanyan, A.; Menshutina, T.; Sukhovetchenko, O. Drought resistance of undersized stone fruit stocks in the conditions of the Northern Caspian. Theor. Appl. Probl. Agro-Ind. Complex 2018, 4, 25–29. [Google Scholar]
- García-Montiel, F.; Serrano, M.; Martinez-Romero, D.; Alburquerque, N. Factors influencing fruit set and quality in different sweet cherry cultivars. Span. J. Agric. Res. 2010, 8, 1118–1128. [Google Scholar] [CrossRef] [Green Version]
- Russo, N.L.; Robinson, T.L.; Fazio, G.; Aldwinckle, H.S. Field evaluation of 64 apple rootstocks for orchard performance and fire blight resistance. HortScience 2007, 42, 1517–1525. [Google Scholar] [CrossRef] [Green Version]
- Daniel, C.; Grunder, J. Integrated management of European cherry fruit fly, Rhagoletis cerasi (L.): Situation in Switzerland and Europe. Insects 2012, 3, 956–988. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-L.; Huang, C.-H.; Gu, Q.-Q.; Qu, X.-Y.; Xu, X.-B. Evaluation of drought-resistance traits of citrus rootstock seedlings by multiple statistics analysis. Acta Hortic. 2015, 1065, 379–386. [Google Scholar] [CrossRef]
- Egorov, E.; Shadrina, Z.; Kochian, G. Methodological approaches to biologization of intensification processes (on the example of industrial fruit growing). J. Fruit Grow. Vitic. South Russ. 2021, 71, 1–22. [Google Scholar]
- Kuznetsova, A.; Drygina, A.I.; Samus, V.A.; Drabudko, N.N. Study of the effect of rootstock genotypes and new growth-correcting drugs on the yield of planting material of cherries and cherries. Fruit Grow. Vitic. South Russ. 2021, 71, 147–160. [Google Scholar] [CrossRef]
- Campoy, J.; Ruiz, D.; Egea, J. Dormancy in temperate fruit trees in a global warming context: A review. Sci. Hortic. 2011, 130, 357–372. [Google Scholar] [CrossRef]
- Else, M.; Atkinson, C. Climate change impacts on UK top and soft fruit production. Outlook Agric. 2010, 39, 257–262. [Google Scholar] [CrossRef]
- Woznicki, T.L.; Heide, O.M.; Sønsteby, A.; Måge, F.; Remberg, S.F. Climate warming enhances flower formation, earliness of blooming and fruit size in plum (Prunus domestica L.) in the cool Nordic environment. Sci. Hortic. 2019, 257, 108750. [Google Scholar] [CrossRef]
- Moraiti, C.A.; Nakas, C.T.; Köppler, K.; Papadopoulos, N.T. Geographical variation in adult lifehistory traits of the European cherry fruit fly Rhagoletis cerasi (Diptera: Tephritidae). Biol. J. Linn. Soc. 2012, 107, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. Warm temperatures at bloom reduce fruit set in sweet cherry. J. Appl. Bot. Food Qual. 2007, 81, 158–164. [Google Scholar]
- Sitarek, M.; Grzyb, Z.S.; Sas-Paszt, L. The effect of eight clonal rootstocks on the growth and yield of ‘Kordia’ sweet cherry trees. Acta Hortic. 2011, 903, 535–540. [Google Scholar] [CrossRef]
- Salazar-Gutiérrez, M.R.; Chaves, B.; Anothai, J.; Whiting, M.; Hoogenboom, G. Variation in cold hardiness of sweet cherry flower buds through different phenological stages. Sci. Hortic. 2014, 172, 161–167. [Google Scholar] [CrossRef]
- Alburquerque, N.; García-Montiel, F.; Carrillo, A.; Burgos, L. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ. Exp. Bot. 2008, 64, 162–170. [Google Scholar] [CrossRef]
- Eremin, G.V.; Chepinoga, I.S.; Safarov, R.M. Biological features of reproduction by lignified cuttings of Magaleb forms in connection with their use as a new rootstock for sweet cherries and cherries. Fruit Berry Grow. Russ. 2017, 49, 116–120. [Google Scholar]
- Eremin, V.G. Clone Rootstocks of Stone Crops for Intensive Gardens in The South of Russia. Hortic. Vitic. 2014, 6, 24–29. [Google Scholar]
- Federal Agency of Scientific Organization; Federal State Budgetary Scientific Institution “Nizhne-Volzhsky Scientific Research, Institute of Agriculture”. Breeding of New Varieties in the Volgograd Region: Monograph/Solonkin Andrey Valeryevich; Sphere: Volgograd, Russia, 2015; p. 127. ISBN 978-5-9906340-1-5. [Google Scholar]
- Isachkin, A.V.; Vorobyov, B.N. Varietal Catalog of Fruit Crops of Russia; LLC “Astrel Publishing House”: Moscow, Russia, 2003; p. 573. [Google Scholar]
- Weather Archive in Volgograd [Electronic Resource]. Available online: http://pogodaiklimat.ru.html (accessed on 25 October 2021).
- Kruzhilin, I.P.; Nikolskaya, O.A. Justification of the water regime of the soil and the regulation of drip irrigation of cherry seedlings. Russ. Agric. Sci. 2021, 2, 9–13. [Google Scholar]
- Lactionov, K.S. Private fruit growing. In Stone Cultures, 2nd ed.; Lan: St. Petersburg, Russia, 2020; p. 124. [Google Scholar]
- Dospekhov, B. Field Experiment Technique, 5th ed.; Alliance: Moscow, Russia, 2014; p. 351. [Google Scholar]
- Sedov, E.; Ogoltsova, T. The Program and Methodology for the Variety Study of Fruit, Berry and Nut Crops; Under Total. ed.; Academician RAASKHN-OREL. Publishing House of the All-Russian Scientific Research. Institute of Fruit Crop Breeding: Orel, Russia, 1999; p. 608. [Google Scholar]
- Tyurina, M.M.; Gogoleva, G.A.; Efimova, N.V.; Goloulina, L.K.; Morozova, N.G.; Echedi, Y.Y.; Volkov, F.A.; Arsentiev, A.P.; Matyash, N.A. Determination of Stability of Fruit and Berry Crops to the Stressors of the Cold Season in Field and Controlled Conditions; All-Russian Breeding and Technological Institute of Horticulture and Nursery: Moscow, Russia, 2002; p. 120. [Google Scholar]
- Alyokhina, E.; Dolya, Y. Methodology for determining the potential productivity of sweet cherry varieties. Fruit Grow. Vitic. South Russ. 2013, 24, 10–17. [Google Scholar]
- Eremin, G.; Solonkin, A.; Eremina, O.; Smirnova, E.; Chepinoga, I. Catalogue of Passports of Donors and Sources of Breeding-Significant Signs of Stone Crops; Federal Research Center for Agroecology, Russian Academy of Sciences: Volgograd, Russia, 2018; p. 76. [Google Scholar]
- Wheeler, W.; Black, B.; Bugbee, B. Water Stress in Dwarfing Cherry Rootstocks: Increased Carbon Partitioning to Roots Facilitates Improved Tolerance of Drought. Horticulturae 2021, 7, 424. [Google Scholar] [CrossRef]
- Barać, G.; Ognjanov, V.; Vidaković, D.O.; Dorić, D.; Ljubojević, M.; Dulić, J.; Miodragović, M.; Gašić, K. Genetic diversity and population structure of European ground cherry (Prunus fruticosa Pall.) using SSR markers. Sci. Hortic. 2017, 224, 374–383. [Google Scholar] [CrossRef]
- Eremin, G.; Podorozhny, V. Results and current trends in the selection of clone rootstocks for cherries. Fruit Berry Grow. Russ. Fnsttsp 2011, 28, 174–180. [Google Scholar]
Months | 2019 | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|
Average Air Temperature, °C | Precipitation, mm | Relative Humidity of the Air, % | Average Air Temperature, °C | Precipitation, mm | Relative Humidity of the Air, % | Average air Temperature, °C | Precipitation, mm | Relative Humidity of the Air, % | |
April | 11.7 | 21.8 | 65 | 8.9 | 2.2 | 45 | 11.8 | 29.2 | 55 |
May | 19.9 | 50.4 | 60 | 15.7 | 53.4 | 59 | 20.3 | 31.2 | 45 |
June | 26.9 | 13.9 | 35 | 25.5 | 18.6 | 32 | 16.8 | 21.7 | 53 |
July | 23.5 | 59.8 | 58 | 28.8 | 0.6 | 27 | 29.6 | 13.8 | 29 |
August | 20.7 | 3.8 | 63 | 23.5 | 13.6 | 35 | 28.6 | 8.2 | 31 |
September | 16.4 | 19.5 | 50 | 19.2 | 1.8 | 39 | 16.0 | 19.1 | 52 |
During the growing season | 169.2 | 110.3 | 123.2 |
Variety | Rootstock | Water Scarcity, % | Weight before Drying, g | Loss of Water by Leaves after 6 h of Withering, % | |||
---|---|---|---|---|---|---|---|
2019 Year | 2020 Year | 2021 Year | Average for 3 Years | ||||
Toy | Magaleb, st | 22.00 | 3.80 | 12.70 | 13.30 | 12.60 | 12.90 |
VSL-1 | 14.30 | 6.04 | 13.40 | 14.90 | 14.00 | 14.10 | |
RVL-2 | 13.30 | 4.28 | 11.30 | 12.90 | 12.80 | 12.30 | |
VSL-2 (K5) | 14.60 | 3.73 | 10.80 | 11.90 | 12.30 | 11.70 | |
RVL -9 | 17.80 | 4.92 | 11.90 | 12.10 | 13.80 | 12.60 | |
LC-52 (K6) | 17.70 | 5.90 | 14.20 | 15.10 | 14.90 | 14.70 | |
Average | 16.90 | 4.90 | 13.00 | 13.70 | 15.20 | 13.90 | |
Memory of Zhukova | Magaleb, st | 10.40 | 3.09 | 17.30 | 15.80 | 33.00 | 22.00 |
VSL-1 | 12.10 | 3.20 | 11.50 | 11.70 | 23.10 | 15.40 | |
VSL-2 (K5) | 20.80 | 3.09 | 12.10 | 14.60 | 4.50 | 10.40 | |
RVL-2 | 15.30 | 2.46 | 12.20 | 15.10 | 11.40 | 12.90 | |
RVL-9 | 11.40 | 3.32 | 16.80 | 14.00 | 20.20 | 17.00 | |
LC-52 (K6) | 13.80 | 4.49 | 15.50 | 16.20 | 23.40 | 18.40 | |
Average | 14.10 | 3.26 | 13.90 | 14.30 | 18.50 | 14.10 | |
Loznovskaya | Magaleb, st | 11.30 | 4.76 | 18.50 | 20.30 | 25.00 | 21.30 |
RVL-9 | 11.10 | 5.99 | 15.20 | 18.80 | 15.90 | 16.60 | |
RVL-2 | 10.10 | 5.34 | 13.70 | 14.50 | 16.70 | 15.00 | |
VSL-2 (K5) | 12.10 | 1.66 | 12.80 | 12.20 | 24.10 | 16.40 | |
VSL-1 | 11.30 | 6.58 | 11.70 | 13.20 | 12.90 | 12.60 | |
LC-52 (K6) | 11.90 | 4.90 | 12.70 | 14.90 | 13.50 | 13.70 | |
Average | 12.10 | 5.07 | 14.10 | 15.70 | 17.70 | 15.80 | |
HCP05 | - | 0.70 | - | 0.70 | 0.70 | 0.80 | 0.70 |
Variety | Rootstock | Loss of Water Leaves after 6 h of Tuning, % | |||
---|---|---|---|---|---|
2019 Year | 2020 Year | 2021 Year | Average for 3 Years | ||
Toy | Magaleb, st | 12.7 | 13.3 | 12.6 | 12.9 |
VSL-1 | 13.4 | 14.9 | 14.0 | 14.1 | |
RVL-2 | 11.3 | 12.9 | 12.8 | 12.3 | |
VSL-2 (K5) | 10.8 | 11.9 | 12.3 | 11.7 | |
RVL-9 | 11.9 | 12.1 | 13.8 | 12.6 | |
LC-52 (K6); | 14.2 | 15.1 | 14.9 | 14.7 | |
HCP05 | 0.62 | 0.67 | 0.67 | 0.65 | |
Memory of Zhukova | Magaleb, st | 17.3 | 15.8 | 33.0 | 22.0 |
VSL-1 | 11.5 | 11.7 | 23.1 | 15.4 | |
VSL-2 (K5) | 12.1 | 14.6 | 4.5 | 10.4 | |
RVL-2 | 12.2 | 15.1 | 11.4 | 12.9 | |
RVL-9 | 16.8 | 14.0 | 20.2 | 17.0 | |
LC-52 (K6) | 15.5 | 16.2 | 23.4 | 18.4 | |
HCP05 | 0.71 | 0.73 | 0.96 | 0.8 | |
Loznovskaya | Magaleb, st | 18.5 | 20.3 | 25.0 | 21.3 |
RVL-9 | 15.2 | 18.8 | 15.9 | 16.6 | |
RVL-2 | 13.7 | 14.5 | 16.7 | 15.0 | |
VSL-2 (K5) | 12.8 | 12.2 | 24.1 | 16.4 | |
VSL-1 | 11.7 | 13.2 | 12.9 | 12.6 | |
LC-52 (K6); | 12.7 | 14.9 | 13.5 | 13.7 | |
HCP05 | 0.71 | 0.78 | 0.9 | 0.8 |
Variety | Rootstock | Tree Height, m | Crown Diameter, m | Diameter of the Stem, cm | Crown Projection Area, m2 | Crown Volume, m3 | Cross-Sectional Area of the Stem, cm2 |
---|---|---|---|---|---|---|---|
Loznovskaya | Magaleb, st | 2.24 | 2.54 | 7.44 | 5.06 | 3.78 | 43.45 |
LC-52 (K6) | 2.38 | 2.44 | 6.62 | 4.67 | 3.71 | 34.4 | |
VSL-1 | 2.22 | 2.14 | 5.23 | 3.59 | 2.66 | 21.47 | |
RVL-2 | 1.76 | 1.78 | 5.15 | 2.49 | 1.46 | 20.82 | |
RVL-9 | 1.82 | 2.08 | 5.74 | 3.39 | 2.06 | 25.86 | |
VSL-2 (K5) | 1.78 | 2.2 | 5.23 | 3.8 | 2.25 | 21.47 | |
Memory of Zhukova | Magaleb, st | 2.34 | 2.66 | 10.24 | 5.55 | 4.33 | 82.31 |
LC-52 (K6) | 2.3 | 2.62 | 8.03 | 5.39 | 4.13 | 50.62 | |
RVL-2 | 2.16 | 1.96 | 7.93 | 3.01 | 2.17 | 49.36 | |
RVL-9 | 2.06 | 2.08 | 6.49 | 3.39 | 2.33 | 33.06 | |
VSL-1 | 2.16 | 2.3 | 5.99 | 4.15 | 2.99 | 28.16 | |
VSL-2 (K5) | 2.16 | 2.36 | 8.74 | 4.37 | 3.15 | 59.96 | |
Toy | Magaleb, st | 2.22 | 2.34 | 8.99 | 4.3 | 3.18 | 63.44 |
LC-52 (K6) | 2.2 | 2.44 | 7.82 | 4.67 | 3.43 | 48.00 | |
VSL-1 | 1.84 | 2.12 | 5.80 | 3.53 | 2.16 | 26.41 | |
RVL-2 | 1.74 | 1.94 | 6.51 | 2.95 | 1.71 | 33.27 | |
RVL-9 | 1.66 | 1.9 | 6.86 | 2.83 | 1.57 | 36.94 | |
VSL-2 (K5) | 1.98 | 2.18 | 6.40 | 3.73 | 2.46 | 32.15 | |
HCP05 | 0.10 | 0.11 | 0.35 | 0.20 | 0.14 | 1.98 |
Variety | Rootstock | Yield, 2021 | Average Fetal Weight, g. | |||
---|---|---|---|---|---|---|
kg/Tree | kg/S Crown Projection | kg/V Crown | kg/S of the Cross-Section of the Stem | |||
Loznovskaya | Magaleb, st | - | - | - | - | - |
LC-52 (K6) | 1.5 | 0.32 | 0.4 | 0.043 | 5.9 | |
VSL-1 | 1.5 | 0.42 | 0.56 | 0.07 | 6.0 | |
VSL-2 (K5) | 2.0 | 0.53 | 0.89 | 0.93 | 6.1 | |
RVL-2 | 1.0 | 0.40 | 0.68 | 0.048 | 5.7 | |
RVL-9 | 1.1 | 0.32 | 0.53 | 0.042 | 5.4 | |
Memory of Zhukova | Magaleb, st | - | - | - | - | - |
LC-52 (K6) | 1.1 | 0.2 | 0.27 | 0.022 | 5.2 | |
VSL-1 | 6.4 | 1.42 | 2.14 | 0.23 | 5.2 | |
VSL-2 (K5) | 8.1 | 1.85 | 2.57 | 0.14 | 5.1 | |
RVL-2 | 1.02 | 0.34 | 0.47 | 0.021 | 4.9 | |
RVL-9 | 1.0 | 0.29 | 0.43 | 0.03 | 5.3 | |
Toy | Magaleb, st | - | - | - | - | - |
LC-52 (K6) | 2.5 | 0.53 | 0.73 | 0.052 | 9.7 | |
VSL-1 | 5.8 | 1.65 | 2.68 | 0.22 | 8.9 | |
VSL-2 (K5) | 3.9 | 1.05 | 1.58 | 0.12 | 8.7 | |
RVL-2 | 1.3 | 0.44 | 0.76 | 0.039 | 8.6 | |
RVL-9 | 1.05 | 0.37 | 0.67 | 0.028 | 8.9 | |
HCP05 | - | 0.44 | - | - | - | 0.53 |
Variety | Rootstock | Min | Max | Average | Q1 | Median | Q3 | Coef. Variations | Standard Deviation | Accuracy of Experience, % |
---|---|---|---|---|---|---|---|---|---|---|
Loznovskaya | Magaleb, st | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
LC-52 (K6) | 5.70 | 6.30 | 5.89 | 5.80 | 5.90 | 6.00 | 0.03 | 0.04 | 0.68 ± 0.11 | |
VSL-1 | 5.50 | 6.70 | 6.07 | 5.90 | 6.10 | 6.20 | 0.05 | 0.08 | 1.3 ± 0.22 | |
VSL-2 (K5) | 5.80 | 6.40 | 6.09 | 5.95 | 6.00 | 6.25 | 0.03 | 0.05 | 0.82 ± 0.14 | |
RVL-2 | 5.40 | 6.40 | 5.90 | 5.90 | 6.0 | 6.20 | 0.04 | 0.06 | 1.02 ± 0.17 | |
RVL-9 | 5.50 | 6.10 | 5.70 | 5.50 | 5.60 | 5.85 | 0.04 | 0.09 | 1.58 ± 0.17 | |
Memory of Zhukova | Magaleb, st | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
LC-52 (K6) | 4.90 | 5.40 | 5.13 | 5.00 | 5.10 | 5.30 | 0.03 | 0.05 | 0.97 ± 0.17 | |
VSL-1 | 4.90 | 5.30 | 5.12 | 5.00 | 5.10 | 5.25 | 0.03 | 0.04 | 0.78 ± 0.13 | |
VSL-2 (K5) | 4.60 | 5.40 | 5.04 | 4.95 | 5.00 | 5.15 | 0.04 | 0.06 | 1.19 ± 0.20 | |
RVL-2 | 4.80 | 6.00 | 5.20 | 4.90 | 5.20 | 5.35 | 0.06 | 0.09 | 1.73 ± 0.17 | |
RVL-9 | 4.80 | 6.00 | 5.20 | 4.90 | 5.20 | 5.35 | 0.06 | 0.09 | 1.73 ± 0.17 | |
Toy | Magaleb, st | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
LC-52 (K6) | 9.30 | 10.20 | 9.65 | 9.50 | 9.50 | 9.75 | 0.03 | 0.07 | 0.73 ± 0.13 | |
VSL-1 | 8.50 | 9.30 | 8.97 | 8.85 | 9.00 | 9.15 | 0.03 | 0.06 | 0.67 ± 0.11 | |
VSL-2 (K5) | 8.10 | 9.10 | 8.65 | 8.50 | 8.70 | 8.85 | 0.03 | 0.07 | 0.80 ± 0.14 | |
RVL-2 | 8.40 | 9.10 | 8.70 | 8.55 | 8.80 | 8.85 | 0.02 | 0.05 | 0.57 ± 0.17 | |
RVL-9 | 8.80 | 9.40 | 9.10 | 8.90 | 9.10 | 9.30 | 0.02 | 0.06 | 0.66 ± 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solonkin, A.; Nikolskaya, O.; Seminchenko, E. The Effect of Low-Growing Rootstocks on the Adaptability and Productivity of Sour Cherry Varieties (Prunus cerasus L.) in Arid Conditions. Horticulturae 2022, 8, 400. https://doi.org/10.3390/horticulturae8050400
Solonkin A, Nikolskaya O, Seminchenko E. The Effect of Low-Growing Rootstocks on the Adaptability and Productivity of Sour Cherry Varieties (Prunus cerasus L.) in Arid Conditions. Horticulturae. 2022; 8(5):400. https://doi.org/10.3390/horticulturae8050400
Chicago/Turabian StyleSolonkin, Andrey, Olga Nikolskaya, and Elena Seminchenko. 2022. "The Effect of Low-Growing Rootstocks on the Adaptability and Productivity of Sour Cherry Varieties (Prunus cerasus L.) in Arid Conditions" Horticulturae 8, no. 5: 400. https://doi.org/10.3390/horticulturae8050400