Mortiño (Vaccinium floribundum Kunth): An Underutilized Superplant from the Andes
Abstract
:1. Introduction
2. Literature Search and Systematic Analysis
3. Origin, History, and Botany of Mortiño
4. Ecology and Genetic Diversity
5. Domestication Attempts
6. Chemical Composition of Mortiño
7. Factors Influencing the Chemical Composition and Genotype of Mortiño
8. Biological Activities of Mortiño
9. Other Uses of Mortiño
10. Future Prospect of Mortiño
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ortiz, J.; Marín-Arroyo, M.-R.; Noriega-Domínguez, M.-J.; Navarro, M.; Arozarena, I. Color, Phenolics, and Antioxidant Activity of Blackberry (Rubus Glaucus Benth.), Blueberry (Vaccinium Floribundum Kunth.), and Apple Wines from Ecuador. J. Food Sci. 2013, 78, C985–C993. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Sun, Z.; Zeng, Y.; Luo, M.; Yang, J. Molecular Mechanism and Health Role of Functional Ingredients in Blueberry for Chronic Disease in Human Beings. Int. J. Mol. Sci. 2018, 19, 2785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llivisaca, S.; Manzano, P.; Ruales, J.; Flores, J.; Mendoza, J.; Peralta, E.; Cevallos-Cevallos, J.M. Chemical, Antimicrobial, and Molecular Characterization of Mortiño (Vaccinium floribundum Kunth) Fruits and Leaves. Food Sci. Nutr. 2018, 6, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Alasalvar, C.; Shahidi, F. Superfruits: Phytochemicals, Antioxidant Efficacies, and Health Effects—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1580–1604. [Google Scholar] [CrossRef] [PubMed]
- Prencipe, F.P.; Bruni, R.; Guerrini, A.; Rossi, D.; Benvenuti, S.; Pellati, F. Metabolite Profiling of Polyphenols in Vaccinium Berries and Determination of Their Chemopreventive Properties. J. Pharm. Biomed. Anal. 2014, 89, 257–267. [Google Scholar] [CrossRef]
- Coba, P.; Coronel, D.; Verdugo, K.; Paredes, M.; Yugsi, E.; Huachi, L. Ethnobotanical Study of the Mortiño (Vaccinium fLoribundum) as Ancestral and Potentially Functional Meal. La Granja 2012, 16, 5. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. Available online: http://www.fao.org/faostat/es/#home (accessed on 19 August 2019).
- Abreu, O.A.; Barreto, G.; Prieto, S. Vaccinium (Ericaceae): Ethnobotany and Pharmacological Potentials. Emir. J. Food Agric. 2014, 26, 577–591. [Google Scholar] [CrossRef]
- Schreckinger, M.; Lila, M.; Yousef, G.; Gonzalez, E. Inhibition of α-Glucosidase and α-Amylase by Vaccinium floribundum and Aristotelia Chilensis Proanthocyanidins. ACS Symp. Ser. 2012, 1109, 71–82. [Google Scholar]
- Schreckinger, M.; Wang, J.; Yousef, G.; Lila, M.; Gonzalez, E. Antioxidant Capacity and in Vitro Inhibition of Adipogenesis and Inflammation by Phenolic Extracts of Vaccinium floribundum and Aristotelia Chilensis. J. Agric. Food Chem. 2010, 58, 8966–8976. [Google Scholar] [CrossRef]
- Schreckinger, M.; Lotton, J.; Lila, M.; Gonzalez, E. Berries from South America: A Comprehensive Review on Chemistry, Health Potential, and Commercialization. J. Med. Food 2010, 13, 233–246. [Google Scholar] [CrossRef]
- Cobo, M.; Gutiérrez, B.; Torres, A.; Torres, M. Preliminary Analysis of the Genetic Diversity and Population Structure of Mortiño (Vaccinium floribundum Kunth). Biochem. Syst. Ecol. 2016, 64, 14–21. [Google Scholar] [CrossRef]
- Pedraza, P. Vaccinium floribundum. Available online: http://tropical.theferns.info/viewtropical.php?id=Vaccinium+floribundum (accessed on 15 January 2021).
- Ramsay, P.; Oxley, E. Fire Temperatures and Postfire Plant Community Dynamics in Ecuadorian Grass Páramo. Vegetatio 1996, 124, 129–144. [Google Scholar] [CrossRef]
- Pedraza, P. Taxon Details—Vaccinium floribundum Kunth. Available online: http://sweetgum.nybg.org/science/projects/ericaceae/taxon-details/?irn=113261 (accessed on 22 January 2021).
- Arteaga Dalgo, M.; Andrade Cuvi, M.J.; Moreno Guerrero, C. Relación Del Desarrollo Del Color Con El Contenido de Antocianinas y Clorofila En Diferentes Grados de Madurez de Mortiño (Vaccinium floribundum). Enfoque UTE 2014, 5, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, F. Fenología Floral Del Mortiño (Vaccinium floribundum Kunth) Acorde a La Escala BBCH En El Páramo Andino Del Atacazo, Ecuador. Available online: https://rraae.cedia.edu.ec/Record/UDLA_1155233eaaba390cb211e874da1511b6 (accessed on 19 March 2022).
- Magnitskiy, S.; Ligarreto, G.; Lancheros, H. Rooting of Two Types of Cuttings of Fruit Crops Vaccinium floribundum Kunth and Disterigma alaternoides (Kunth) Niedenzu (Ericaceae). Agron. Colomb. 2011, 29, 197–203. [Google Scholar]
- Kron, K.A.; Powell, E.A.; Luteyn, J.L. Phylogenetic Relationships within the Blueberry Tribe (Vaccinieae, Ericaceae) Based on Sequence Data from MatK and Nuclear Ribosomal ITS Regions, with Comments on the Placement of Satyria. Am. J. Bot. 2002, 89, 327–336. [Google Scholar] [CrossRef]
- Popenoe, W. Economic Fruit-Bearing Plants of Ecuador; Smithsonian Institution: Washington, DC, USA, 1924. [Google Scholar]
- Hidalgo, M.; Vásquez, W. Caracterización Morfológica de Microorganismos, Físico-Química Del Suelo y Arvenses Presentes En El Hábitat de Crecimiento Del Mortiño (Vaccinium floribundum Kunth) En El Páramo Del Volcán Rumiñahui, Pichincha; Universidad de las Américas: Quito, Ecuador, 2016. [Google Scholar]
- Pelayo, R.; Soriano, P.; Márquez, N.; Navarro, L. Phenological Patterns and Pollination Network Structure in a Venezuelan Páramo: A Community-Scale Perspective on Plant-Animal Interactions. Plant Ecol. Divers. 2019, 12, 607–618. [Google Scholar] [CrossRef]
- Torres, M.; Pinos, A. Exploring the Microbiome Composition of the Rhizosphere Associated with the Wild Andean Blueberry (Vaccinium floribundum, Kunth) in the Highlands of Ecuador. Master’s Thesis, Universidad San Francisco de Quito, Colegio de Posgrados, Quito, Ecuador, 2020. [Google Scholar]
- Setaro, S.; Kottke, I.; Oberwinkler, F. Anatomy and Ultrastructure of Mycorrhizal Associations of Neotropical Ericaceae. Mycol. Prog. 2006, 5, 243–254. [Google Scholar] [CrossRef]
- Vega, P.; Cobo, M.; Argudo, A.; Gutierrez, B.; Rowntree, J.; Torres, M. Characterizing the Genetic Diversity of the Andean Blueberry (Vaccinium floribundum Kunth.) Across the Ecuadorian Highlands. PLoS ONE 2020, 15, e0243420. [Google Scholar] [CrossRef]
- Vásquez, P.; Osejo, J. Análisis Histórico Comparativo de La Forma de Preparación de Los Platos Más Destacados de La Gastronomía Ecuatoriana; Universidad de las Américas: Quito, Ecuador, 2016. [Google Scholar]
- Muñoz, V.; Caviedes, M. Determinación de Métodos Para Producción de Mortiño (Vaccinium floribundum Kunth), Con Fines de Propagación y Producción Comercial; Universidad San Francisco de Quito—USFQ: Quito, Ecuador, 2011. [Google Scholar]
- Llivisaca, S.; Juan, C.; Mendoza, J.; Piña, F.; Peralta, E.; Sanchez, E.; Flores, J. Issue Disinfection Evaluation and In-Vitro Propagation Protocol for the Estabishment Of Mortiño (Vaccinium floribundum Kunth.). Plant Tissue Cult. Biotechnol. 2020, 30, 167–177. [Google Scholar] [CrossRef]
- Cardozo, H.; González, D.; Guzmán, R.; Lancheros, O.; Mesa, I.; Pacheco, A.; Pérez, A.; Ramos, A.; Torres, E.; Zúñiga, T. Especies Útiles En La Región Andina de Colombia; Pérez, A., Córdoba, L., Eds.; Imprenta Nacional de Colombia: Bogotá, Colombia, 2009; Volume 2, ISBN 978-958-97749-2-2. [Google Scholar]
- Barney, D. Effects of Light, Surface Sterilization, and Fungicides on the Germination of Black Huckleberry Seeds. Small Fruits Rev. 2010, 2, 73–80. [Google Scholar] [CrossRef]
- Torres, M.; Trujillo, D.; Arahana, V. Cultivo In Vitro del Mortiño (Vaccinium floribundum Kunth). ACI Av. en Ciencias e Ing. 2010, 2, B9–B15. [Google Scholar] [CrossRef]
- Lukešová, T.; Kohout, P.; Větrovský, T.; Vohník, M. The Potential of Dark Septate Endophytes to Form Root Symbioses with Ectomycorrhizal and Ericoid Mycorrhizal Middle European Forest Plants. PLoS ONE 2015, 10, e0124752. [Google Scholar] [CrossRef] [Green Version]
- Casarrubia, S.; Martino, E.; Daghino, S.; Kohler, A.; Morin, E.; Khouja, H.R.; Murat, C.; Barry, K.W.; Lindquist, E.A.; Martin, F.M.; et al. Modulation of Plant and Fungal Gene Expression Upon Cd Exposure and Symbiosis in Ericoid Mycorrhizal Vaccinium myrtillus. Front. Microbiol. 2020, 11, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyrene, P.; Vorsa, N.; Ballington, J. Polyploidy and Sexual Polyploidization in the Genus Vaccinium. Euphytica 2003, 133, 27–36. [Google Scholar] [CrossRef]
- Cobo, M.; Gutiérrez, B.; Torres, M. Regeneration of Mortiño (Vaccinium floribundum Kunth) Plants Through Axillary Bud Culture. Vitr. Cell. Dev. Biol.—Plant 2018, 54, 112–116. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, X.; Liu, C.; Bai, L.; Zhao, M.; Li, L. Diversity and Characteristics of Colonization of Root-Associated Fungi of Vaccinium uliginosum. Sci. Rep. 2018, 8, 15283. [Google Scholar] [CrossRef]
- Kühdorf, K.; Münzenberger, B.; Begerow, D.; Gómez, J.; Hüttl, R. Leotia Cf. Lubrica Forms Arbutoid Mycorrhiza with Comarostaphylis Arbutoides (Ericaceae). Mycorrhiza 2015, 25, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Kosola, K.R.; Workmaster, B.A.A.; Spada, P.A. Inoculation of Cranberry (Vaccinium macrocarpon) with the Ericoid Mycorrhizal Fungus Rhizoscyphus Ericae Increases Nitrate Influx. New Phytol. 2007, 176, 184–196. [Google Scholar] [CrossRef]
- Efferth, T.; Banerjee, M.; Paul, N.; Abdelfatah, S.; Arend, J.; Elhassan, G.; Hamdoun, S.; Hamm, R.; Hong, C.; Kadioglu, O.; et al. Biopiracy of Natural Products and Good Bioprospecting Practice. Phytomedicine 2016, 23, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Torrenegra Alarcón, M.E.; Villalobos Lagares, O.L.; Castellar Abello, E.A.; León Méndez, G.; Granados Conde, C.; Pajaro, N.P.; Caro Soto, M.S. Evaluation of the Antioxidant Activity of Pulps from Rubus glaucus B., Vaccinium floribundum K. and Beta Vulgaris L. Rev. Cuba. Plantas Med. 2016, 21, 1–8. [Google Scholar]
- Vasco, C.; Riihinen, K.; Ruales, J.; Kamal-Eldin, A. Chemical Composition and Phenolic Compound Profile of Mortiño (Vaccinium floribundum Kunth). J. Agric. Food Chem. 2009, 57, 8274–8281. [Google Scholar] [CrossRef] [PubMed]
- Estrella, E. El Pan de America: Etnohistoria de Los Alimentos Aborigenes En El Ecuador. Publicaciones del C.S.I.C 1988, 29, 390. [Google Scholar]
- Murgueitio, E.; Debut, A.; Landivar, J.; Cumbal, L. Synthesis of Iron Nanoparticles Through Extracts of Native Fruits of Ecuador, as Capuli (Prunus serotina) and Mortiño (Vaccinium floribundum). Biol. Med. 2016, 8, 1. [Google Scholar] [CrossRef]
- Llerena, W.; Samaniego, I.; Angós, I.; Brito, B.; Ortiz, B.; Carrillo, W. Biocompounds Content Prediction in Ecuadorian Fruits Using a Mathematical Model. Foods 2019, 8, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarcón-Barrera, K.S.; Armijos-Montesinos, D.S.; García-Tenesaca, M.; Iturralde, G.; Jaramilo-Vivanco, T.; Granda-Albuja, M.G.; Giampieri, F.; Alvarez-Suarez, J.M. Wild Andean Blackberry (Rubus glaucus Benth) and Andean Blueberry (Vaccinium floribundum Kunth) from the Highlands of Ecuador: Nutritional Composition and Protective Effect on Human Dermal Fibroblasts Against Cytotoxic Oxidative Damage. J. Berry Res. 2018, 8, 223–236. [Google Scholar] [CrossRef]
- Reyes, I.; Villacres, C.; Santacruz, S.; Castro, M.; Chávez, M.; Armas, A. Antibacterial and Antioxidant Effect of Ecuadorian Red Fruits on Streptococcus Mutans: In Vitro Study. Available online: https://www.scielo.sa.cr/scielo.php?pid=S1659-07752019000200023&script=sci_arttext (accessed on 28 November 2019).
- Correia, S.; Gonçalves, B.; Aires, A.; Silva, A.; Ferreira, L.; Carvalho, R.; Fernandes, H.; Freitas, C.; Carnide, V.; Silva, A.P. Effect of Harvest Year and Altitude on Nutritional and Biometric Characteristics of Blueberry Cultivars. J. Chem. 2016, 2016, 8648609. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G.; et al. Antioxidant Capacity As Influenced by Total Phenolic and Anthocyanin Content, Maturity, and Variety of Vaccinium Species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant Genotype Affects Total Antioxidant Capacity and Phenolic Contents in Fruit. Nutrition 2005, 21, 207–213. [Google Scholar] [CrossRef]
- Pervin, M.; Hasnat, M.A.; Lim, B.O. Antibacterial and Antioxidant Activities of Vaccinium corymbosum L. Leaf Extract. Asian Pac. J. Trop. Dis. 2013, 3, 444–453. [Google Scholar] [CrossRef]
- Shen, X.; Sun, X.; Xie, Q.; Liu, H.; Zhao, Y.; Pan, Y.; Hwang, C.-A.; Wu, V.C.H. Antimicrobial Effect of Blueberry (Vaccinium corymbosum L.) Extracts Against the Growth of Listeria monocytogenes and Salmonella enteritidis. Food Control 2014, 35, 159–165. [Google Scholar] [CrossRef]
- Viskelis, P.; Rubinskiene, M.; Jasutiene, I.; Šarkinas, A.; Daubaras, R.; Česoniene, L. Anthocyanins, Antioxidative, and Antimicrobial Properties of American Cranberry (Vaccinium macrocarpon Ait) and Their Press Cakes. J. Food Sci. 2009, 74, C157–C161. [Google Scholar] [CrossRef] [PubMed]
- Vizuete, K.S.; Kumar, B.; Vaca, A.V.; Debut, A.; Cumbal, L. Mortiño (Vaccinium floribundum Kunth) Berry Assisted Green Synthesis and Photocatalytic Performance of Silver–Graphene Nanocomposite. J. Photochem. Photobiol. A Chem. 2016, 329, 273–279. [Google Scholar] [CrossRef]
- Abril, M.; Ruiz, H.; Cumbal, L.H. Biosynthesis of Multicomponent Nanoparticles with Extract of Mortiño (Vaccinium floribundum Kunth) Berry: Application on Heavy Metals Removal from Water and Immobilization in Soils. J. Nanotechnol. 2018, 2018, 9504807. [Google Scholar] [CrossRef] [Green Version]
- Murgueitio, E.; Cumbal, L.; Abril, M.; Izquierdo, A.; Debut, A.; Tinoco, O. Green Synthesis of Iron Nanoparticles: Application on the Removal of Petroleum Oil from Contaminated Water and Soils. J. Nanotechnol. 2018, 2018, 4184769. [Google Scholar] [CrossRef] [Green Version]
- Taco-Ugsha, M.A.; Santacruz, C.P.; Espinoza-Montero, P.J. Natural Dyes from Mortiño (Vaccinium floribundum) as Sensitizers in Solar Cells. Energies 2020, 13, 785. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.; Vizuete, K.S.; Sharma, V.; Debut, A.; Cumbal, L. Ecofriendly Synthesis of Monodispersed Silver Nanoparticles Using Andean Mortiño Berry as Reductant and Its Photocatalytic Activity. Vacuum 2019, 160, 272–278. [Google Scholar] [CrossRef]
- Ramirez-Perez, J.; Maria, C.; Santacruz, C.P. Impact of Solvents on the Extraction and Purification of Vegetable Dyes onto the Efficiency for Dye-Sensitized Solar Cells. Renew. Wind. Water Sol. 2019, 6, 1–15. [Google Scholar] [CrossRef]
- Albán Martínez, D.P.; Marcalla Montaguano, W.R. Estudio de Pre-Factibilidad Para La Producción Tecnificada de Vino de Mortiño (Vaccinium floribundum Kunth) En El Cantón Sigchos Comunidad Quinticusig Asociacion de Vinicultores Período 2012–2013. Bachelor’s Thesis, Universidad Técnica de Cotopaxi/UTE, Latacunga, Ecuador, 2013. [Google Scholar]
- Pastuña, G. Estudio de Factibilidad Para La Creación de Una Microempresa Dedicada a La Producción y Comercialización de Vino a Base de Mortiño, Ubicada En La Provincia de Cotopaxi, Cantón Sigchos, Año 2019. 2019. Available online: http://www.dspace.cordillera.edu.ec:8080/xmlui/handle/123456789/5166 (accessed on 24 November 2021).
- Ceron, J. Determinación de La Vida Útil Del Pan de Mortiño. 2018. Available online: http://repositorio.ute.edu.ec/xmlui/handle/123456789/18131 (accessed on 24 November 2021).
- Vicente, S.; Argüello, Y. Elaboración de Gomitas de Mortiño (Vaccinium floribundum). Bachelor’s Thesis, Universidad Técnica de Cotopaxi/UTE, Latacunga, Ecuador, 2016. [Google Scholar]
- Andrade-Cuvi, M.J.; Moreno, C.; Zaro, M.J.; Vicente, A.R.; Concellón, A. Improvement of the Antioxidant Properties and Postharvest Life of Three Exotic Andean Fruits by UV-C Treatment. J. Food Qual. 2017, 2017, 4278795. [Google Scholar] [CrossRef] [Green Version]
- García, A.; Ruales, J. Study the Effect of Pre-Treatment of Drying ‘Mortiño’ (Vaccinium floribundum Kunth) with Reference to Drying Rate and Total Content of Soluble Polyphenols and Anthocyanins. Rev. Politécnica 2018, 40, 47–57. [Google Scholar]
- Yue, X.; Xu, Z. Changes of Anthocyanins, Anthocyanidins, and Antioxidant Activity in Bilberry Extract During Dry Heating. J. Food Sci. 2008, 73, C494–C499. [Google Scholar] [CrossRef]
- Guijarro, M.; Andrade, M.; Bravo, J.; Ramos, L.; Vernaza, M. Andean Blueberry (Vaccinium floribundum) Bread: Physicochemical Properties and Bioaccessibility of Antioxidants. Food Sci. Technol. 2019, 39, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Assessment of Cytotoxicity and Antioxidant Properties of Berry Leaves as By-Products with Potential Application in Cosmetic and Pharmaceutical Products. Sci. Rep. 2021, 11, 3240. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Hancock, J. Vaccinium. In Wild Crop Relatives: Genomic and Breeding Resources: Temperate Fruits; Springer: Berlin/Heidelberg, Germany, 2011; pp. 197–221. ISBN 9783642143878. [Google Scholar]
Parameter/Units | Value | Reference |
---|---|---|
Soluble solids g/100 g | 10.9 | [40] |
Ash g/100 g | 0.4 | [40] |
0.4 | [41] | |
Protein g/100 g | 0.6 | [40] |
0.7 | [41] | |
Carbohydrates g/100 g | 14.5 | [40] |
16.9 | [41] | |
18.1 | [42] | |
Fat g/100 g | 0.6 | [40] |
1 | [41] | |
Calories kcal/100 g FW * | 84 | |
75 | [42] | |
Water % | 80 | [41] |
Fiber % | 7.6 | [41] |
2.9 | [42] | |
pH | 3.8 | [42] |
Fe (mg/100 g FW) | 0.64 ± 0.2 | [41] |
K (mg/100 g FW) | 607 ± 73 | [41] |
Ca (mg/100 g FW) | 17.0 ± 2.3 | [41] |
Mg (mg/100 g FW) | 10.2 ± 1.1 | [41] |
Cu (mg/100 g FW) | 0.12 ± 0.02 | [41] |
Zn (mg/100 g FW) | 0.13 ± 0.02 | [41] |
Compounds/Analysis Technique/Units * | Reference | ||
---|---|---|---|
Total polyphenols By the Folin-Ciocalteu method (mg GAE/100 g) | Fresh: | Powder: | [10] |
524.4 ± 4.5 | 495.6 ± 9.1 | ||
204.01 ± 12.50 | [3] | ||
882 ± 38 | [40] | ||
2167 ± 835 | [43] | ||
7254.62 ± 1209.17 | [44] | ||
Chimborazo Province: | Pichincha Province: | [3] | |
107.4 ± 6.7 | 146.1 ± 13.4 | ||
Total phenols By spectrophotometry: | |||
Total phenols (mg GAE/100 mg) | 608.05 | [41] | |
Total phenols (mgPgEq/g) | 1.9 ± 0.7 | [45] | |
Total phenols (mg GAE/g) | 9.3 ± 1.4 | [45] | |
Anthocyanins | Chimborazo Province: | Pichincha Province: | |
Total anthocyanin (pH differential) mg/100 g | 89.9 ± 0.6 | 1095.4 ± 19.2 | [3] |
Anthocyanin mg/g; (C3G equivalent) | 10.6 | [46] | |
Total anthocyanin (%) | Fresh: | Powder: | [43] |
11.1 ± 0.5 | 2.3 ± 0.6 | ||
Anthocyanin (mg cyanidin/100 g) | 345 | [40] | |
Anthocyanin mg/100 g | 376.2 ± 49.9 | [5] | |
Proanthocyanidin mg/g dry weight (epicatechin equivalent) | 5.2 | [9] | |
Proanthocyanidin (%) | Fresh: | Powder: | [10] |
5.3 ± 0.5 | 4.6 ± 0.3 | ||
Flavonoids (Spectrophotometry): | [45] | ||
Total flavonoids (mg EC/g) | 6.5 ± 0.7 | ||
Flavonols total content mg/100 g | 41.6 ± 10.2 | [5] | |
Flavonols glycosides | 38 | [41] | |
Other compounds (By spectrophotometry) | [45] | ||
Total tannins (mg TAEq/g) | 4.2 ± 0.8 | ||
Vit C mg/100 g | 45.9 ± 6.7 | ||
Carotenes (μg/100 g): | |||
-Β-carotene | 70.6 ± 2.0 | ||
-Lutein | 866.6 ± 7.5 | ||
Neochlorogenic acid | 1.5 ± 0.5 | [5] | |
Chlorogenic acid | 9.5 ± 2.9 | ||
Quercetin and myricetin | -3-O-hexosides, -3-0pentosides and -3-0-deoxyhexosides | [41] | |
Hydroxycinnamic acids | Predominance of acids: chlorogenic, neochlorogenic and derivatives of caffeic/ferulic acid |
Biological Activity | Main Findings | References |
---|---|---|
Modulatory capacity of adipogenesis |
| [10] |
Anti-inflammatory capacity |
| |
Diabetes therapy potential |
| [9] |
Chemopreventive activity |
| [5] |
Protection against oxidative stress |
| [45] |
Antimicrobial capacity |
| [3] |
| [46] |
Applications | Main Findings | Reference |
---|---|---|
Synthesis of zero-valent iron nanoparticles (nZVIs) for environmental remediation |
| [43] |
| [55] | |
Production of multicomponent nanoparticles (MCNPs) for removal/immobilization of heavy metals from water and in soils |
| [54] |
Synthesis of silver–graphene nanocomposites with photocatalytic activity |
| [53] |
Biosynthesis of silver nanoparticles with photocatalytic activity |
| [57] |
Elaboration of dye-sensitized solar cells (DSSCs) |
| [58] |
| [56] |
Application | Main Findings | References |
---|---|---|
UV-C treatments for quality preservation of V. floribundum berries |
| [63] |
Drying pretreatment for V. floribundum |
| [64] |
Winemaking |
| [1] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llivisaca-Contreras, S.A.; León-Tamariz, F.; Manzano-Santana, P.; Ruales, J.; Naranjo-Morán, J.; Serrano-Mena, L.; Chica-Martínez, E.; Cevallos-Cevallos, J.M. Mortiño (Vaccinium floribundum Kunth): An Underutilized Superplant from the Andes. Horticulturae 2022, 8, 358. https://doi.org/10.3390/horticulturae8050358
Llivisaca-Contreras SA, León-Tamariz F, Manzano-Santana P, Ruales J, Naranjo-Morán J, Serrano-Mena L, Chica-Martínez E, Cevallos-Cevallos JM. Mortiño (Vaccinium floribundum Kunth): An Underutilized Superplant from the Andes. Horticulturae. 2022; 8(5):358. https://doi.org/10.3390/horticulturae8050358
Chicago/Turabian StyleLlivisaca-Contreras, Susana A., Fabián León-Tamariz, Patricia Manzano-Santana, Jenny Ruales, Jaime Naranjo-Morán, Lizette Serrano-Mena, Eduardo Chica-Martínez, and Juan M. Cevallos-Cevallos. 2022. "Mortiño (Vaccinium floribundum Kunth): An Underutilized Superplant from the Andes" Horticulturae 8, no. 5: 358. https://doi.org/10.3390/horticulturae8050358
APA StyleLlivisaca-Contreras, S. A., León-Tamariz, F., Manzano-Santana, P., Ruales, J., Naranjo-Morán, J., Serrano-Mena, L., Chica-Martínez, E., & Cevallos-Cevallos, J. M. (2022). Mortiño (Vaccinium floribundum Kunth): An Underutilized Superplant from the Andes. Horticulturae, 8(5), 358. https://doi.org/10.3390/horticulturae8050358