Callogenesis and Plant Regeneration in Peony (Paeonia × suffruticosa) Using Flower Petal Explants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Callus Induction and Proliferation
2.3. Shoot Differentiation
2.4. Root Formation and Transplantation
2.5. Observation of Callus Morphology
2.6. Data Analysis
3. Results
3.1. Effects of Plant Growth Regulators (PGRs) on Callus Induction
3.2. Effects of PGRs on Callus Proliferation and Shoot Formation
3.3. Rooting Induction in Peony Plants
3.4. Scanning Electron Microscope Observations of Peony Calluses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, E.Q.; Wang, Z.Y.; Pang, J.J.; Ji, H.L.; Han, H. Thoughts on the development of my country’s peony industry. Jiangsu Agric. Sci. 2020, 48, 24–28. [Google Scholar]
- Li, T. The application status and development prospects of peony. Mod. Hortic. 2017, 16, 11. [Google Scholar]
- Zhu, X.T.; Wang, Y.; Wu, Q.; Zhang, J.L.; Zhu, K.Y. Efficient induction of callus and plant regeneration from Paeonia sufruticosa Andr. J. Nuclear Agric. Sci. 2015, 29, 56–62. [Google Scholar]
- Zhang, J.J.; Wang, L.S.; Shu, Q.Y.; Liu, Z.A.; Li, C.H.; Zhang, J.; Wei, X.L.; Tian, D.K. Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony. Sci. Hortic. 2007, 114, 104–111. [Google Scholar] [CrossRef]
- Han, X.Y.; Wang, L.S.; Liu, Z.A.; Jan, D.R.; Shu, Q.Y. Characterization of sequence-related amplified polymorphism markers analysis of tree peony bud sports. Sci. Hortic. 2008, 115, 261–267. [Google Scholar] [CrossRef]
- Li, S.S.; Yuan, R.Y.; Chen, L.G.; Wang, L.S.; Hao, X.H.; Wang, L.J. Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony (Paeonia section Moutan DC.) cultivars by GC-MS. Food Chem. 2015, 173, 133–140. [Google Scholar] [CrossRef]
- Picerno, P.; Mencherini, T.; Sansone, F.; Del Gaudio, P.; Granata, I.; Porta, A. Screening of a polar extract of Paeonia rockii: Composition and antioxidant and antifungal activities. J. Ethnopharmacol. 2011, 138, 705–712. [Google Scholar] [CrossRef]
- Hall, A.J.; Catley, J.L.; Walton, E.F. The effect of forcing temperature on peony shoot and flower development. Sci. Hortic. 2007, 113, 188–195. [Google Scholar] [CrossRef]
- Silva Jaime, A.; Teixeira, D.A.; Shen, M.; Yu, X.N. Tissue culture and micropropagation of tree peony (Paeonia suffruticosa Andr.). J. Crop. Sci. Biotechnol. 2012, 15, 159–168. [Google Scholar] [CrossRef]
- Zhu, X.T.; Li, X.Q.; Ding, W.J.; Jin, S.H.; Wang, Y. Callus induction and plant regeneration from leaves of peony. Hortic. Environ. Biotechnol. 2018, 59, 575–582. [Google Scholar] [CrossRef]
- Gabryszewska, E. Regeneration and growth of peony (Paeonia spp.) in vitro. Acta Agrobot. 2013, 57, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; He, S.; Silva, J.A.T.D.; Li, G.; Tanaka, M. Effects of a new light source (cold cathode fluorescent lamps) on the growth of tree peony plantlets in vitro. Sci. Hortic. 2010, 125, 167–169. [Google Scholar] [CrossRef]
- Zhao, D.Q.; Xue, Y.F.; Shi, M.; Tao, J. Rescue and in vitro, culture of herbaceous peony immature embryos by organogenesis. Sci. Hortic. 2017, 217, 123–129. [Google Scholar] [CrossRef]
- He, G.M.; Cheng, F.Y.; Li, P. Preliminary studies on culture in vitro of ovule and immature embryo of two tree-peony cultivars. Acta Hortic. Sin. 2006, 33, 185. [Google Scholar]
- Xu, L.; Cheng, F.Y.; Zhong, Y. Study on rapid seedling-raising technology of tree peony embryo culture. Bull. Bot. Res. 2017, 37, 690–699. [Google Scholar]
- Wang, J.E.; Gong, Z.H.; Li, X.F. Optimization on techniques of callus induction and differentiation of Paeonia suffruticosa. Acta Agric. Boreali-Occident. Sin. 2008, 17, 282–286. [Google Scholar]
- Wei, M.M.; Wang, J.M.; Muhammad, I.; Hong, B. In vitro culture and plant regeneration of chimeric petals of chrysanthemum flower color. J. Beijing For. Univ. 2014, 36, 107–112. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- McCown, B.H. From gene manipulation to forest establishment: Shoot cultures of woody plants can be a central tool. Tappi J. 1985, 68, 116–119. [Google Scholar]
- Guan, Z.J.; Guo, B.; Huo, Y.L.; Guan, Z.P.; Dai, J.K.; Wei, Y.H. Short communication: Organogenesis and somatic embryogenesis in callus derived from hbsag-transgenic tomato mutant. Can. J. Plant Sci. 2012, 92, 747–756. [Google Scholar] [CrossRef]
- Yin, L.Q.; Tian, L.; Chen, M.M.; Zhang, Y.C.; Sun, Y.; Cai, Y.M. Research advance of Paeonia suffruticosa embryo culture. Mol. Plant Breed. 2019, 17, 3016–3023. [Google Scholar]
- Lian, X.F.; Li, Y.Y.; Zhang, W.Q.; Guo, L.L.; Zhang, Y.F.; Hou, X.G. Establishment of embryo culture system of Fengdan peony and analysis of methylation variation of first generation malformed seedlings. Henan Agric. Sci. 2020, 550, 116–125. [Google Scholar]
- Jia, W.Q.; Liu, H. Micropropagation of dwarf tree peony from lateral buds. J. Appl. Sci. 2014, 14, 2189–2193. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.P.; Ding, L.; Zhao, M.G. Induction of healing with different explants of purple spotted tree Paeonia research on wounded tissue. J. Northwest Norm. Univ. 2001, 37, 66–69. [Google Scholar]
- Zhu, X.T.; Wang, Y.; Peng, Z.H. Effect of flower buds size of Paeonia suffruticosa on induction rate of anther tissue culture. Hunan Agric. Sci. 2010, 6, 102–104. [Google Scholar]
- Liu, H.C.; Jia, W.Q.; Xu, X.B. Adventitious bud regeneration of 6 peony varieties research on force difference. Guangdong Agric. Sci. 2011, 38, 35–36. [Google Scholar]
- Li, B.P.; Liu, X.L.; Fan, X.F. Peony “Yujiyanli” stem tip culture. J. For. Sci. Technol. 2017, 4, 63–67. [Google Scholar]
- Wen, S.S.; Chen, L.; Tian, R.N. Micropropagation of tree peony (Paeonia sect. Moutan): A review. Plant Cell Tissue Organ Cult. 2020, 141, 1–14. [Google Scholar] [CrossRef]
- Shi, X.L.; He, S.L.; Jia, W.Q. Preliminary study on rapid propagation technique of terminal bud of Peony “Dahuhong”. J. Henan Inst. Sci. Technol. 2021, 49, 1–5. [Google Scholar]
- Mao, H.Y.; Li, X.H.; Liu, Z.G. Tissue culture of young petals of ground cover chrysanthemum. J. Shenyang Agric. Univ. 2005, 1, 68–71. [Google Scholar]
- George, E.F.; Hall, M.A.; De Klerk, G.J. Plant Propagation by Tissue Culture: Vol. 1. The Background Hardcover; Springer: Dordecht, The Netherlands, 2007. [Google Scholar]
- Du, Y.M.; Zhong, Y.; Shang, H.Q.; Cheng, F.Y. Callus induction and differentiation from the filament of Paeonia ostii “Fengdan”. Plant Res. 2020, 40, 514–522. [Google Scholar]
- Wu, Y.Y.; Mao, J.P.; Zhou, Q.Q. Callus induction and bud differentiation in Louisiana iris tissue culture. Zhejiang Agric. Sci. 2009, 1, 86–89. [Google Scholar]
- Du, Y.M.; Cheng, F.Y.; Zhong, Y. Induction of direct somatic embryogenesis and shoot organogenesis and histological study in tree peony (Paeonia sect. Moutan). Plant Cell Tissue Organ Cult. 2020, 141, 557–570. [Google Scholar] [CrossRef]
- Zhu, X.T.; Wang, Y.; Peng, Z.H. Observation of peony callus by scanning electron microscope. For. Sci. Res. 2011, 24, 609–612. [Google Scholar]
- Jing, R.Y.; Huo, K.; Li, Z.H. Study on the difference between embryogenic and non-embryogenic callus of Cinnamomum camphora. J. Cent. South Univ. For. Technol. 2020, 40, 70–78. [Google Scholar]
- Zhao, D.C.; Liu, B.H.; Shu, X.G. Scanning electron microscope observation of budding callus formation in early-fruiting walnut. Econ. For. Res. 2019, 37, 52–56. [Google Scholar]
- Nakamura, T.; Maeda, E. A scanning electron microscope study on Japonica type rice callus cultures, with emphasis on plantlet initiation. Jpn. J. Crop. Sci. 2008, 58, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Cui, K.R.; Dai, R.L. Molecular Biology of Plant Somatic Embryogenesis; Science Press: Beijing, China, 2000; pp. 48–57. [Google Scholar]
- Liu, B.J.; Liu, G.F. Studies on Embryogenic Callus Induction and Plant Regeneration of Anthurium andreanum. J. Trop. Subtrop. Bot. 2018, 26, 407–414. [Google Scholar]
Treatment | 2,4-Dichlorophenoxyacetic Acid (2,4-D) (mg/L) | N-(Phenylmethyl)-9H-purin-6-amine (6-BA) (mg/L) | 1-Naphthylacetic Acid (NAA) (mg/L) | Callus Induction Rate (%) | Characteristics of the Calluses |
---|---|---|---|---|---|
1 | 1.0 | 1.0 | 0.1 | 80.0 ± 1.11 e | White, compact, granular |
2 | 1.0 | 1.5 | 0.2 | 84.4 ± 1.11 d | White, compact, granular |
3 | 1.0 | 2.0 | 0.3 | 86. 7 ± 1.11 d | White, compact, clumpy |
4 | 2.0 | 1.0 | 0.2 | 94.4 ± 1.11 b | Light-yellow, loose, granular |
5 | 2.0 | 1.5 | 0.3 | 98.5 ± 0.64 a | Light-yellow, loose, granular |
6 | 2.0 | 2.0 | 0.1 | 94.4 ± 1.11 b | Light-yellow, loose, granular |
7 | 3.0 | 1.0 | 0.3 | 88.9 ± 1.11 c | Yellow, compact, granular |
8 | 3.0 | 1.5 | 0.1 | 92.6 ± 0.64 c | Yellow, compact, granular |
9 | 3.0 | 2.0 | 0.2 | 93.7 ± 0.64 c | Yellow, loose, clumpy |
Control | 0 | 0 | 0 | 0.0 ± 0.00 f | / |
Treatment | NAA (mg/L) | BA (mg/L) | Callus Increment (g) | Callus Proliferation Rate (%) |
---|---|---|---|---|
1 | 0.1 | 1.0 | 0.95 ± 0.02 c | 180 ± 6.7 c |
2 | 0.1 | 2.0 | 1.03 ± 0.04 bc | 185 ± 11.7 bc |
3 | 0.1 | 3.0 | 1.07 ± 0.01 b | 203 ± 4.0 b |
4 | 0.2 | 1.0 | 1.09 ± 0.04 b | 207 ± 13.0 b |
5 | 0.2 | 2.0 | 1.13 ± 0.03 b | 205 ± 10.6 b |
6 | 0.2 | 3.0 | 1.21 ± 0.03 a | 234 ± 10.2 a |
7 | 0.3 | 1.0 | 1.07 ± 0.04 bc | 189 ± 11.2 bc |
8 | 0.3 | 2.0 | 0.96 ± 0.02 c | 177 ± 7.8 c |
9 | 0.3 | 3.0 | 0.96 ± 0.01 c | 165 ± 1.5 c |
Control | 0 | 0 | 0.67 ± 0.02 d | 126 ± 10.7 d |
Treatment | ZT (mg/L) | 6-BA (mg/L) | Shoot Differentiation Rate (%) |
---|---|---|---|
1 | 0 | 1.0 | 10.4 ± 0.64 e |
2 | 0 | 2.0 | 10.7 ± 2.31 e |
3 | 0 | 3.0 | 12.6 ± 0.64 de |
4 | 0.1 | 0 | 14.4 ± 1.11 d |
5 | 0.5 | 0 | 17.8 ± 1.11 c |
6 | 1.0 | 0 | 20.7 ± 0.64 c |
7 | 0.1 | 2.0 | 22.6 ± 0.64 c |
8 | 0.5 | 2.0 | 34.8 ± 1.70 a |
9 | 1.0 | 2.0 | 25.6 ± 1.11 b |
control | 0 | 0 | 1.05 ± 0.33 f |
Treatment | Medium | Sucrose (g/L) | NAA (mg/L) | 3-Indolebutyric Acid (IBA) (mg/L) | Rooting Rate (%) |
---|---|---|---|---|---|
1 | Woody plant medium (WPM) | 10 | 0 | 0 | 8.9 ± 3.35 b |
2 | WPM | 15 | 0.05 | 0.05 | 14.4 ± 1.92 b |
3 | WPM | 20 | 0.1 | 0.1 | 21.1 ± 5.09 ab |
4 | WPM | 30 | 0.2 | 0.2 | 22.2 ± 1.92 ab |
5 | 1/2 MS | 10 | 0.05 | 0.1 | 17.8 ± 1.92 ab |
6 | 1/2 MS | 15 | 0 | 0.2 | 18.9 ± 5.09 ab |
7 | 1/2 MS | 20 | 0.2 | 0 | 15.6 ± 5.09 ab |
8 | 1/2 MS | 30 | 0.1 | 0.05 | 23.3 ± 3.33 a |
9 | 1/4 MS | 10 | 0.1 | 0.2 | 14.4 ± 5.09 b |
10 | 1/4 MS | 15 | 0.2 | 0.1 | 11.1 ± 1.92 b |
11 | 1/4 MS | 20 | 0 | 0.05 | 10.0 ± 3.33 b |
12 | 1/4 MS | 30 | 0.05 | 0 | 7.8 ± 1.92 b |
13 | MS | 10 | 0.2 | 0.05 | 12.2 ± 5.09 b |
14 | MS | 15 | 0.1 | 0 | 8.9 ± 3.85 b |
15 | MS | 20 | 0.05 | 0.2 | 10.0 ± 3.33 b |
16 | MS | 30 | 0 | 0.1 | 7.8 ± 1.92 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ye, C.; Yang, H.; Ji, W.; Xu, Z.; Ye, S.; Wang, H.; Jin, S.; Yu, C.; Zhu, X. Callogenesis and Plant Regeneration in Peony (Paeonia × suffruticosa) Using Flower Petal Explants. Horticulturae 2022, 8, 357. https://doi.org/10.3390/horticulturae8050357
Chen X, Ye C, Yang H, Ji W, Xu Z, Ye S, Wang H, Jin S, Yu C, Zhu X. Callogenesis and Plant Regeneration in Peony (Paeonia × suffruticosa) Using Flower Petal Explants. Horticulturae. 2022; 8(5):357. https://doi.org/10.3390/horticulturae8050357
Chicago/Turabian StyleChen, Xia, Chengyang Ye, Hongmin Yang, Wen Ji, Zhen Xu, Sanchun Ye, Huasen Wang, Songheng Jin, Chao Yu, and Xiangtao Zhu. 2022. "Callogenesis and Plant Regeneration in Peony (Paeonia × suffruticosa) Using Flower Petal Explants" Horticulturae 8, no. 5: 357. https://doi.org/10.3390/horticulturae8050357
APA StyleChen, X., Ye, C., Yang, H., Ji, W., Xu, Z., Ye, S., Wang, H., Jin, S., Yu, C., & Zhu, X. (2022). Callogenesis and Plant Regeneration in Peony (Paeonia × suffruticosa) Using Flower Petal Explants. Horticulturae, 8(5), 357. https://doi.org/10.3390/horticulturae8050357