Effects of Plastic Shed Cultivation System on the Properties of Red Paddy Soil and Its Management by Reductive Soil Disinfestation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site Description and Soil Collection
2.2. Field Experiment Design
2.3. Physicochemical Properties Analysis
2.4. DNA Extraction and Microbial Properties Measurement
2.5. Data Analysis
3. Results
3.1. Differences in Physicochemical and Microbial Properties between PS-Soil and OA-Soil and Their Contributors
3.2. Relationships between Physicochemical and Microbial Properties in the PS-Soil and OA-Soil
3.3. Effects of Different Treatments on Soil Physicochemical Properties
3.4. Effects of Different Treatments on Soil Microbial Abundances
3.5. Effects of Different Treatments on Soil Microbial Activity and Metabolic Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, S.J.; Zhang, R.G.; Cao, W.D.; Fan, Y.Y.; Gao, J.S.; Huang, J.; Bai, J.S.; Zeng, N.H.; Chang, D.N.; Shimizu, K.Y.; et al. Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in south china. J. Integr. Agric. 2015, 14, 2512–2520. [Google Scholar]
- Huang, B.; Li, Z.W.; Li, D.Q.; Yuan, Z.J.; Nie, X.D.; Huang, J.Q.; Zhou, Y.Y. Effect of moisture condition on the immobilization of cd in red paddy soil using passivators. Environ. Technol. 2018, 40, 2705–2714. [Google Scholar] [PubMed]
- Chen, X.M.; Zhang, Q.; Zeng, S.M.; Chen, Y.; Guo, Y.Y.; Huang, X.Z. Rain-shelter cultivation affects fruit quality of pear, and the chemical properties and microbial diversity of rhizosphere soil. Can. J. Plant Sci. 2020, 100, 683–691. [Google Scholar]
- Runia, W.T.; Molendijk, L.P.G. Physical methods for soil disinfestation in intensive agriculture: Old methods and new approaches. Acta Hortic. 2010, 883, 249–258. [Google Scholar]
- Meng, T.Z.; Ren, G.D.; Wang, G.F.; Ma, Y. Impacts on soil microbial characteristics and their restorability with different soil disinfestation approaches in intensively cropped greenhouse soils. Appl. Microbiol. Biotechnol. 2019, 103, 6369–6383. [Google Scholar]
- Zhao, J.; Li, Y.L.; Wang, B.Y.; Huang, X.Q.; Yang, L.; Lan, T.; Zhang, J.B.; Cai, Z.C. Comparative soil microbial communities and activities in adjacent sanqi ginseng monoculture and maize-sanqi ginseng systems. Appl. Soil Ecol. 2017, 120, 89–96. [Google Scholar]
- Liu, L.L.; Yan, Y.Y.; Ding, H.X.; Zhao, J.; Cai, Z.C.; Dai, C.C.; Huang, X.Q. The fungal community outperforms the bacterial community in predicting plant health status. Appl. Microbiol. Biotechnol. 2021, 105, 6499–6513. [Google Scholar]
- Liu, L.L.; Huang, X.Q.; Zhao, J.; Zhang, J.B.; Cai, Z.C. Characterizing the key agents in a disease-suppressed soil managed by reductive soil disinfestation. Appl. Environ. Microb. 2019, 85, e02992-18. [Google Scholar]
- Li, S.L.; Liu, Y.Q.; Wang, J.; Yang, L.; Zhang, S.T.; Xu, C.; Ding, W. Soil Acidification Aggravates the Occurrence of Bacterial Wilt in South China. Front. Microbiol. 2017, 8, 703. [Google Scholar]
- Xun, W.B.; Huang, T.; Zhao, J.; Ran, W.; Wang, B.R.; Shen, Q.R.; Zhang, R.F. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biol. Biochem. 2015, 90, 10–18. [Google Scholar]
- Coventry, E.; Noble, R.; Mead, A.; Whipps, J.M. Suppression of allium white rot (Sclerotium cepivorum) in different soils using vegetable wastes. Eur. J. Plant Pathol. 2005, 111, 101–112. [Google Scholar]
- Tilston, E.L.; Pitt, D.; Groenhof, A.C. Composted recycled organic matter suppresses soil-borne diseases of field crops. New Phytol. 2002, 154, 731–740. [Google Scholar] [PubMed]
- Bonanomi, G.; Antignani, V.; Capodilupo, M.; Scala, F. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol. Biochem. 2010, 42, 136–144. [Google Scholar]
- Mazzola, M.; Granatstein, D.M.; Elfving, D.C.; Mullinix, K. Suppression of specific apple root pathogens by brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology 2007, 91, 673–679. [Google Scholar]
- Blok, W.J.; Lamers, J.G.; Termorshuizen, A.J.; Bollen, G.J. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 2000, 90, 253–259. [Google Scholar]
- Momma, N.; Momma, M.; Kobara, Y. Biological soil disinfestation using ethanol: Effect on Fusarium oxysporum f. sp. lycopersici and soil microorganisms. J. Gen. Plant Pathol. 2010, 76, 336–344. [Google Scholar]
- Butler, D.M.; Kokalis-Burelle, N.; Muramoto, J.; Shennan, C.; McCollum, T.G.; Rosskopf, E.N. Impact of anaerobic soil disinfestation combined with soil solarization on plant–parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Prot. 2012, 39, 33–40. [Google Scholar]
- Momma, N. Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jpn. Agr. Res. Q. 2008, 42, 7–12. [Google Scholar]
- Zhu, R.; Huang, X.Q.; Zhang, J.B.; Cai, Z.C.; Li, X.; Wen, T. Efficiency of Reductive Soil Disinfestation Affected by Soil Water Content and Organic Amendment Rate. Horticulturae 2021, 7, 559. [Google Scholar]
- IUSS Working Group. World Reference Base for Soil Resources 2006; World Soil Resources Reports; FAO: Rome, Italy, 2007; First Update 2007; NO. 103. [Google Scholar]
- Huang, X.Q.; Zhou, X.; Zhang, J.B.; Cai, Z.C. Highly connected taxa located in the microbial network are prevalent in the rhizosphere soil of healthy plant. Biol. Fert. Soils 2019, 55, 299–312. [Google Scholar]
- Bremner, J.M.; Jenkinson, D.S. Determination of organic carbon in soil. I. Oxidation by dichromate of organic matter in soil and plant materials. Eur. J. Soil Sci. 1960, 11, 394–402. [Google Scholar]
- Robertson, J.A. Comparison of an acid and an alkaline extracting solution for measuring available phosphorus in alberta soils. Can. J. Soil Sci. 1962, 42, 115–121. [Google Scholar]
- Peck, N.H.; Macdonald, G.E. Table beet responses to residual and band-applied phosphorus and potassium. Agron. J. 1981, 73, 1037–1041. [Google Scholar]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar]
- Garland, J.L.; Mills, A.L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 1991, 57, 2351–2359. [Google Scholar]
- Garland, J.L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 1996, 28, 213–221. [Google Scholar]
- McMurdie, P.J.; Holmes, S.; Michael, W. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friednly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5–7. The R Journal. Published 28 November 2020. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 28 February 2022).
- Janvier, C.; Villeneuve, F.; Alabouvette, C.; Edel-Hermann, V.; Mateille, T.; Steinberg, C. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 2007, 39, 1–23. [Google Scholar]
- Raaijmakers, J.M.; Paulitz, T.C.; Steinberg, C.; Alabouvette, C.; Moenneloccoz, Y. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 2009, 321, 341–361. [Google Scholar]
- Liu, L.L.; Huang, X.Q.; Zhang, J.B.; Cai, Z.C.; Jiang, K.; Chang, Y.Y. Deciphering the relative importance of soil and plant traits on the development of rhizosphere microbial communities. Soil Biol. Biochem. 2020, 148, 107909. [Google Scholar]
- Preem, J.K.; Truu, J.; Truu, M.; Mander, Ü.; Oopkaup, K.; Lõhmus, K.; Helmisaari, H.S.; Uri, V.; Zobel, M. Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories. Ecol. Eng. 2012, 49, 10–17. [Google Scholar]
- Stres, B.; Danevcic, T.; Pal, L.; Fuka, M.M.; Resman, L.; Leskovec, S.; Hacin, J.; Stopar, D.; Mahne, I.; Mandic-Mulec, I. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 2010, 66, 110–122. [Google Scholar]
- Watanabe, K.; Matsui, M.; Honjo, H.; Becker, J.O.; Fukui, R. Effects of soil pH on rhizoctonia damping-off of sugar beet and disease suppression induced by soil amendment with crop residues. Plant Soil 2011, 347, 255–268. [Google Scholar]
- Nachmias, A.; Kaufman, Z.; Livescu, L.; Tsror, L.; Meiri, A.; Caligari, P.D.S. Effects of salinity and its interactions with disease incidence on potatoes grown in hot climates. Phytoparasitica 1993, 21, 245–255. [Google Scholar]
- Meng, T.Z.; Zhu, T.B.; Zhang, J.B.; Cai, Z.C. Effect of liming on sulfate transformation and sulfur gas emissions in degraded vegetable soil treated by reductive soil disinfestation. J. Environ. Sci. 2015, 36, 112–120. [Google Scholar]
- Zhong, W.H.; Cai, Z.C.; Zhang, H. Effects of Long-Term Application of Inorganic Fertilizers on Biochemical Properties of a Rice-Planting Red Soil. Pedosphere 2007, 17, 419–428. [Google Scholar]
- Dong, W.; Zhang, X.; Wang, H.; Dai, X.; Sun, X.; Qiu, W.; Yang, F. Effect of Different Fertilizer Application on the Soil Fertility of Paddy Soils in Red Soil Region of Suothern China. PLoS ONE 2012, 7, e44504. [Google Scholar]
- Wang, T.T.; Hao, Y.W.; Zhu, M.Z.; Yu, S.T.; Ran, W.; Xue, C.; Ling, N.; Shen, Q.R. Characterizing differences in microbial community composition and function between fusarium wilt diseased and healthy soils under watermelon cultivation. Plant Soil 2019, 438, 421–433. [Google Scholar]
- Wei, Z.; Gu, Y.A.; Friman, V.; Kowalchuk, G.; Xu, Y.C.; Shen, Q.R.; Jousset, A. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 2019, 5, eaaw0759. [Google Scholar]
- Huang, X.Q.; Liu, S.Z.; Liu, X.; Zhang, S.R.; Li, L.; Zhao, H.T.; Zhao, J.; Zhang, J.B.; Cai, Z.C. Plant pathological condition is associated with fungal community succession triggered by root exudates in the plant-soil system. Soil Biol. Biochem. 2020, 151, 108046. [Google Scholar]
- Li, B.Y.; Zhou, D.M.; Cang, L.; Zhang, H.L.; Fan, X.H.; Qin, S.W. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Tillage Res. 2007, 96, 166–173. [Google Scholar]
- Zhu, T.B.; Dang, Q.; Zhang, J.B.; Müller, C.; Cai, Z.C. Reductive soil disinfestation (RSD) alters gross N transformation rates and reduces NO and N2O emissions in degraded vegetable soils. Plant Soil 2014, 382, 269–280. [Google Scholar]
- Huang, X.Q.; Liu, L.L.; Zhao, J.; Zhang, J.B.; Cai, Z.C. The families Ruminococcaceae, Lachnospiraceae, and Clostridiaceae are the dominant bacterial groups during reductive soil disinfestation with incorporated plant residues. Appl. Soil Ecol. 2019, 135, 65–72. [Google Scholar]
- Huang, X.Q.; Zhao, J.; Zhou, X.; Zhang, J.B.; Cai, Z.C. Differential responses of soil bacterial community and functional diversity to reductive soil disinfestation and chemical soil disinfestation. Geoderma 2019, 348, 124–134. [Google Scholar]
- Liu, L.L.; Kong, J.J.; Cui, H.L.; Zhang, J.B.; Wang, F.H.; Cai, Z.C.; Huang, X.Q. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. Biol. Control 2016, 101, 103–113. [Google Scholar]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, 2nd ed.; Stackenbrandt, E., Goodfellow, M., Eds.; John Wiley and Sons, Inc.: Chichester, UK, 1991; pp. 115–175. [Google Scholar]
- Muyzer, G.; de Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microb. 1993, 59, 695–700. [Google Scholar]
- Schonfeld, J.; Heuer, H.; van Elsas, J.D.; Smalla, K. Specific and Sensitive Detection of Ralstonia solanacearum in Soil on the Basis of PCR Amplification of fliC Fragments. Appl. Environ. Microb. 2003, 69, 7248–7256. [Google Scholar]
- Gardes, M.; Bruns, T.D. TS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar]
- Lievens, B.; Brouwer, M.; Vanachter, A.C.R.C.; Cammue, B.P.A.; Thomma, B.P.H.J. Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci. 2006, 171, 155–165. [Google Scholar]
- Lievens, B.; Brouwer, M.; Vanachter, A.C.R.C.; Lévesque, C.A.; Cammue, B.P.A.; Thomma, B.P.H.J. Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environ. Microbiol. 2005, 7, 1698–1710. [Google Scholar] [PubMed]
Soil Properties | PS-Soil | OA-Soil |
---|---|---|
pH | 5.11 ± 1.30 a | 5.30 ± 0.41 a |
EC (μS cm−1) | 476.6 ± 202.3 a | 51.02 ± 29.07 b |
NH4+-N (mg kg−1) | 13.00 ± 11.89 a | 2.67 ± 0.47 b |
NO3−-N (mg kg−1) | 148.7 ± 85.33 a | 5.61 ± 6.50 b |
TOC (g kg−1) | 34.41 ± 4.83 a | 36.62 ± 6.90 a |
AK (mg kg−1) | 410.7 ± 103.10 a | 132.0 ± 40.37 b |
AP (mg kg−1) | 85.14 ± 32.49 a | 15.49 ± 7.42 b |
Moisture (%) | 19.88 ± 2.77 b | 27.32 ± 2.52 a |
Bacterial abundance (log10 16S rDNA copies g−1 soil) | 9.51 ± 0.23 b | 9.74 ± 0.09 a |
Fungal abundance (log10 ITS copies g−1 soil) | 8.34 ± 0.21 a | 7.84 ± 0.35 b |
F. oxysporum abundance (log10 ITS copies g−1 soil) | 6.96 ± 0.28 a | 5.66 ± 0.68 b |
F. solani abundance (log10 ITS copies g−1 soil) | 7.24 ± 0.48 a | 5.19 ± 0.92 b |
R. solanacearum abundance (log10 flic copies g−1 soil) | 5.78 ± 0.31 a | 5.97 ± 0.17 a |
Fungi/bacteria (%) | 8.95 ± 6.37 a | 1.57 ± 1.23 b |
R. solanacearum/bacteria (%) | 0.02 ± 0.01 a | 0.02 ± 0.01 a |
F. oxysporum/fungi (%) | 4.88 ± 2.66 a | 1.33 ± 1.40 b |
F. solani/fungi (%) | 18.72 ± 30.47 a | 0.77 ± 0.82 a |
Treatments | pH | EC (μS cm−1) | NO3−-N (mg kg−1) |
---|---|---|---|
CK | 4.11 ± 0.11 c | 406.30 ± 33.06 b | 135.00 ± 2.25 a |
OF | 4.65 ± 0.14 b | 536.13 ± 42.90 a | 154.37 ± 32.48 a |
RSD | 5.23 ± 0.02 a | 97.34 ± 6.60 c | 0.71 ± 0.37 b |
Microbial Abundance | CK | OF | RSD |
---|---|---|---|
Bacteria (log10 16S rDNA copies g−1 soil) | 10.39 ± 0.00 c | 10.51 ± 0.03 b | 10.64 ± 0.04 a |
Fungi (log10 ITS copies g−1 soil) | 8.16 ± 0.14 b | 9.06 ± 0.09 a | 7.57 ± 0.19 c |
Fungi/bacteria (%) | 0.61 ± 0.20 b | 3.63 ± 0.67 a | 0.09 ± 0.05 c |
F. oxysporum (log10 ITS copies g−1 soil) | 6.67 ± 0.26 b | 7.24 ± 0.11 a | 4.33 ± 0.11 c |
F. solani (log10 ITS copies g−1 soil) | 6.51 ± 0.07 b | 7.11 ± 0.12 a | 4.82 ± 0.03 c |
F. oxysporum/fungi | 4.02 ± 2.88 a | 1.54 ± 0.23 ab | 0.06 ± 0.03 b |
F. solani/fungi (%) | 2.38 ± 1.15 a | 1.13 ± 0.35 ab | 0.19 ± 0.08 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Long, S.; Deng, B.; Kuang, J.; Wen, K.; Li, T.; Bai, Z.; Shao, Q. Effects of Plastic Shed Cultivation System on the Properties of Red Paddy Soil and Its Management by Reductive Soil Disinfestation. Horticulturae 2022, 8, 279. https://doi.org/10.3390/horticulturae8040279
Liu L, Long S, Deng B, Kuang J, Wen K, Li T, Bai Z, Shao Q. Effects of Plastic Shed Cultivation System on the Properties of Red Paddy Soil and Its Management by Reductive Soil Disinfestation. Horticulturae. 2022; 8(4):279. https://doi.org/10.3390/horticulturae8040279
Chicago/Turabian StyleLiu, Liangliang, Sha Long, Baoping Deng, Jiali Kuang, Kexin Wen, Tao Li, Zurong Bai, and Qin Shao. 2022. "Effects of Plastic Shed Cultivation System on the Properties of Red Paddy Soil and Its Management by Reductive Soil Disinfestation" Horticulturae 8, no. 4: 279. https://doi.org/10.3390/horticulturae8040279
APA StyleLiu, L., Long, S., Deng, B., Kuang, J., Wen, K., Li, T., Bai, Z., & Shao, Q. (2022). Effects of Plastic Shed Cultivation System on the Properties of Red Paddy Soil and Its Management by Reductive Soil Disinfestation. Horticulturae, 8(4), 279. https://doi.org/10.3390/horticulturae8040279