Insight into the Aroma Profile and Sensory Characteristics of ‘Prokupac’ Red Wine Aromatised with Medicinal Herbs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Preparation
2.2. Extraction of Volatile Compounds in Wines by Headspace-Solid Phase Microextraction (HS-SPME)
2.3. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis and Gas Chromatography-Flame Ionization Detection (GC/FID) of Volatile Compounds in Wines
2.4. Quantitative HS–SPME Analysis
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results
3.1. Aroma Composition of Wine Samples
3.2. PCA Analysis
3.3. Sensory Evaluation of Wines
4. Discussion
4.1. Aroma Profile of Studied Wines
4.2. Sensory Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am. J. Enol. Vitic. 2014, 65, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Palomo, E.; Diaz-Maroto, H.M.C.; Gonzales-Vinas, M.A.; Perez-Coelo, M.S. Aroma enchacement in wines from different grape varieties usin exogenous glucosidases. Food Chem. 2005, 92, 627–635. [Google Scholar] [CrossRef]
- Prosen, H.; Janeš, L.; Strlič, M.; Rusjan, D.; Kočar, D. Analysisi of free and bound aroma compounds in grape berries using headspace solid-phase microextraction with GC-MS and a preliminary study of solid-phase extraction with LC-MS. Acta. Chim. Slov. 2007, 54, 25–32. [Google Scholar]
- Miklosy, E.I.; Kereny, Z. Comparison of the volatile aroma components in noble rotted grape berries from two different locations of the Tokaj wine district in Hungary. Anal. Chim. Acta 2004, 513, 177–181. [Google Scholar] [CrossRef]
- Bureau, S.M.; Baumes, R.L.; Razungles, A.J. Effects of vine or bunch shading on the glycosiladed flavour precursors in grapes of Vitis vinifera L. cv. Syrah. J. Agric. Food Chem. 2000, 48, 1290–1297. [Google Scholar] [CrossRef]
- Darriet, P.; Bouchilloux, P.; Poupot, C.; Bugatet, Y.; Clerjeau, M.; Sauris, P.; Medina, B.; Dubourdieu, D. Effects of copper fungicide sprying on volatile thiols of the varietal aroma of Sauvignon blanc, Cabernet sauvignon and Merlot wines. Vitis 2001, 40, 93–99. [Google Scholar]
- Gachons, C.P.; Leuwen, C.; Tominaga, T.; Soyer, J.P.; Gaudillere, J.P.; Dubourdieu, D. Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L. cv Sauvignon blanc in field conditiona. J. Sci. Food. Agric. 2005, 85, 73–85. [Google Scholar] [CrossRef]
- Lutskova, V.; Martirosyan, I. Influence of harvest date and grape variety on sensory attributes and aroma compounds in experimental ice wines of Ukraine. Fermentation 2021, 7, 7. [Google Scholar] [CrossRef]
- Karabegović, I.T.; Malićanin, M.; Danilović, B.; Stanojević, J.; Stamenković Stojanović, S. Potential of non-Saccharomyces yeast for improving the aroma and sensory profile of Prokupac red wine. OENO ONE 2021, 2, 181–195. [Google Scholar] [CrossRef]
- Spillman, P.J.; Sefton, M.A.; Gawel, R. The contributiom of volatile compounds derived during oak barrel maturation to the aroma of a Chardonay and Cabernet sauvignon wine. Aust. J. Grape Wine Res. 2004, 10, 227–235. [Google Scholar] [CrossRef]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape. Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Chalier, P.; Angot, B.; Delteil, D.; Doco, T.; Gunata, Z. Interactions between aroma compounds and whole mannoprotein isolation from Saccharomyces cerevisae strains. Food Chem. 2007, 100, 22–30. [Google Scholar] [CrossRef]
- Košmerl, T.; Jakončič, M.; Kralj-Cigić, I.; Strlič, M.; Prosen, H. Aroma compound in “sur lies” produced and aged Chardonay wines. In Proceedings of the 31th Congesso Mondiale Della Vigna E Del Vino, 6a Assemblea Generale Dell OIV, Verona, Italy, 15–20 June 2008. [Google Scholar]
- Rusjan, D. Aromas in grape and wine. In Methodologies and Results in Grapevine Research; Delrot, S., Medrano, H., Or, E., Bavaresco, L., Grando, S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 411–442. [Google Scholar]
- Pereira, A.G.; Fraga, M.; Garcia-Oliveira, P.; Carpena, M.; Jimenez-Lopez, C.; Lourenço-Lopes, C.; Barros, L.; Ferreira, I.C.F.R.; Prieto, M.A.; Simal-Gandara, J. Management of wine aroma compounds: Principal basis and future perspectives. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; Cosme, F., Nunes, F.M., Filipe-Ribeir, L., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape. Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Ubeda, C.; Kania-Zelada, I.; del Barrio-Galán, R.; Medel-Marabolí, M.; Gil, M.; Peña-Neira, Á. Study of the changes in volatile compounds, aroma and sensory attributes during the production process of sparkling wine by traditional method. Food Res. Int. 2019, 119, 554–563. [Google Scholar] [CrossRef]
- Castro-Vasquez, L.; Perez-Coello, M.S.; Cabezudo, M.D. Effects of enzyme treatments and skin extraction on varietal volatile in Spanish wines made from Chardonay, Muscat, Airen and Macabeo grapes. Anal. Chim. Acta 2002, 458, 39–44. [Google Scholar] [CrossRef]
- Schneider, R.; Razungles, A.; Augier, C.; Baumes, R. Monoterpenic and norisoprenoidic glycoconjugates of Vitis vinifera L. cv MerlotB as precursors of odorant in Muscated wines. J. Chromatogr. A 2001, 936, 145–157. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Varietal aroma. In Handbook of Enology: The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2006; pp. 205–230. [Google Scholar]
- Martínez-Francés, V.; Rivera, D.; Obon, C.; Alcaraz, F.; Ríos, S. Medicinal plants in traditional herbal wines and liquors in the East of Spain and the Balearic Islands. Front. Pharmacol. 2021, 12, 713414. [Google Scholar] [CrossRef]
- Lakićević, S.H.; Popović Djordjević, J.B.; Pejin, B.; Djordjević, A.S.; Matijašević, S.M.; Lazić, M.L. An insight into chemical composition and bioactivity of ‘Prokupac’ red wine. Nat. Prod. Res. 2020, 34, 1542–1546. [Google Scholar] [CrossRef]
- Karabegović, I.T.; Vukosavljević, P.V.; Novaković, M.M.; Gorjanović, S.Z.; Džamić, A.M.; Lazić, M.L. Influence of the storage on bioactive compounds and sensory attributes of herbal liqueur. Dig. J. Nanomater. Biostruct. 2012, 7, 1587–1598. [Google Scholar]
- International Code of Oenological Practices (OIV), International Organisation of Vine and Wine, OIV Code Sheet—Issue 2021/01. Available online: https://www.oiv.int/public/medias/7713/en-oiv-code-2021.pdf (accessed on 14 March 2022).
- Marković, N.; Atanacković, Z. Fertility variation of Prokupac cultivar under influence of different rootstocks. Agro-Knowl. J. 2013, 14, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Co.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Sparkman, D.O.; Penton, Z.E.; Fulton, K.G. Gas Chromatography and Mass Spectrometry: A Practical Guide, 2nd ed.; Elsevier Inc.: Oxford, MS, USA, 2011. [Google Scholar]
- ISO 6658; Sensory Analysis—Methodology—General Guidance. International Organization for Standardization: Geneva, Switzerland, 2017.
- RULEBOOK on the Procedure and Methods of Sensory Evaluation of Wine, the Method of Training and Checking the Professional Competence of Sensory Evaluators. Official Gazette of RS: 2015; No. 93. Available online: https://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/sgrs/ministarstva/pravilnik/2015/93/6/reg (accessed on 15 March 2022).
- Guidelines for the Characterization of Wine Yeasts of the Genus Saccharomyces Isolated from Vitivinicultural Environments; International Organisation of Vine and Wine: Paris, France, 2012.
- Acree, T.; Arn, H. Flavornet and Human Odor Space. Available online: http://www.flavornet.org/flavornet.html (accessed on 20 January 2022).
- Odor & Flavor Detection Thresholds in Water (In Parts per Billion). Available online: http://www.leffingwell.com/odorthre.htm (accessed on 28 January 2022).
- Farenzena, S.; Tombesi, N. Volatile profile of Malbec wine from Buenos Aires province (Argentina). Int. Food Res. J. 2015, 22, 2691–2696. [Google Scholar]
- Jagatić Korenika, A.-M.; Preiner, D.; Tomaz, I.; Jeromel, A. Volatile profile characterization of Croatian commercial sparkling wines. Molecules 2020, 25, 4349. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Xi, Z.; Luo, M.; Zhang, Z. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Comuzzo, P.; Tat, L.; Tonizzo, A.; Battistutta, F. Yeast derivatives (extracts and autolysates) in winemaking: Release of volatile compounds and effects on wine aroma volatility. Food Chem. 2006, 99, 217–230. [Google Scholar] [CrossRef]
- Tufariello, M.; Capone, S.; Siciliano, P. Volatile components of Negroamaro red wines produced in Apulian Salento area. Food Chem. 2012, 132, 2155–2164. [Google Scholar] [CrossRef]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary aroma: Influence of wine microorganisms in their aroma profile. Foods 2021, 10, 51. [Google Scholar] [CrossRef]
- Abreu, T.; Perestrelo, R.; Bordiga, M.; Locatelli, M.; Daniel Coïsson, J.; Câmara, J.S. The flavor chemistry of fortified wines—A comprehensive approach. Foods 2021, 10, 1239. [Google Scholar] [CrossRef]
- Callejon, R.M.; Clavijo, A.; Ortigueira, P.; Troncoso, A.M.; Paneque, P.; Morales, M.L. Volatile and sensory profile of organic red wines produced by different selected autochthonous and commercial Saccharomyces cerevisiae strains. Anal. Chim. Acta 2010, 660, 68–75. [Google Scholar] [CrossRef]
- De-La-Fuente-Blanco, A.; Sáenz-Navajas, M.P.; Ferreira, V. On the effects of higher alcohols on red wine aroma. Food Chem. 2016, 210, 107–114. [Google Scholar] [CrossRef]
- Pérez-Coello, M.S.; Briones Pérez, A.I.; Ubeda Iranzo, J.F.; Martin Alvarez, P.J. Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from the La Mancha region. Food Microbiol. 1999, 16, 563–573. [Google Scholar] [CrossRef]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J. Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef] [PubMed]
- García-Carpintero, E.G.; Sánchez-Palomo, E.; Gallego, M.A.G.; González-Viñas, M.A. Volatile and sensory characterization of red wines from cv. Moravia Agria minority grape variety cultivated in La Mancha region over five consecutive vintages. Food Res. Int. 2011, 44, 1549–1560. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Luan, Y.; Duan, C.Q.; Yan, G.L. Use of Torulaspora delbrueckii co-fermentation with two Saccharomyces cerevisiae strains with different aromatic characteristic to improve the diversity of red wine aroma profile. Front. Microbiol. 2018, 9, 606. [Google Scholar] [CrossRef]
- Renault, P.E.; Albertin, W.; Bely, M. An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions. Appl. Microbiol. Biotechnol. 2013, 97, 4105–4119. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Jin, G.J.; Mei, W.C.; Lim, T.; Tao, Y.S. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chem. 2018, 15, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Bayonove, C.L.; Baumes, R.L.; Crouzet, J.; Günata, Z. Aromas. In Enología: Fundamentos Científicos y Tecnológicos, 1st ed.; Flanzy, C., Ed.; Mundi-Prensa: Madrid, Spain, 2003; pp. 137–176. [Google Scholar]
- Matijašević, S.; Popović-Djordjević, J.; Ristić, R.; Ćirković, D.; Ćirković, B.; Popović, T. Volatile aroma compounds of brandy ‘Lozovača’ produced from Muscat table grapevine cultivars (Vitis vinifera L.). Molecules 2019, 24, 2485. [Google Scholar] [CrossRef] [Green Version]
- Cheynier, V.; Schneider, R.; Salmon, J.M.; Fulcrand, H. Chemistry of wine. In Comprehensive Natural Products II, 1st ed.; Liu, H.W., Mander, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1119–1172. [Google Scholar]
- de Freitas, V.A.P.; Fernandes, A.; Oliveira, J.; Teixeira, N.; Mateus, N. A review of the current knowledge of red wine colour. OENO One 2017, 51, 1–15. [Google Scholar] [CrossRef]
- Glories, Y. La coleur des vins rouges. 2. Partie: Mesure, origine et interpretation. Conn. Vigne Vin. 1984, 18, 253–273. [Google Scholar]
Compound | Aroma Descriptor | Odor Detection Threshold, μg/L | PW * | PAW | PCW | PWW | PLW |
---|---|---|---|---|---|---|---|
ALCOHOLS | |||||||
1-Propanol | alcohol, pungent [32] | 9000 [33] | tr ** | 189.83 ± 3.79 a | 56.55 ± 1.69 b | tr | 83.53 ± 1.67 c |
Isobutanol | fusel, alcohol [34] | 40 [35] | 28.82 ± 0.59 a | nd *** | 19.63 ± 0.59 b | 21.66 ± 0.43 c | 44.37 ± 0.88 d |
2-Butanol | - | nd | 3.52 ± 0.08 a | nd | 4.23 ± 0.08 b | 4.15 ± 0.08 b | |
3-Methyl-1-butanol | cheese [36] | 250–300 [33] | 168.48 ± 3.36 a | 196.62 ± 3.93 b | 253.22 ± 4.59 c | 206.77 ± 4.13 b | 180.72 ± 3.61 d |
2-Methyl-1-butanol | whiskey, burnt | 30 [35] | 87.65 ± 1.75 a | 103.34 ± 2.06 b | 109.00 ± 3.27 c | 89.52 ± 1.78 a | 111.66 ± 2.23 c |
1-Pentanol | fruity, balsamic [34] | 64 [35] | 56.07 ± 1.12 a | 20.09 ± 0.49 b | 55.18 ± 1.65 a | 62.64 ± 1.25 c | 47.26 ± 0.94 d |
(S)-(-)-2-Methyl-1-butanol | 21.78 ± 0.43 a | 10.75 ± 0.21 b | 17.84 ± 0.53 c | 19.72 ± 0.39 d | 16.47 ± 0.32 e | ||
2,3-Butanediol | butter, creamy [34] | 668 [35] | tr | 2.45 ± 0.49 a | tr | tr | 2.50 ± 0.05 a |
3-Methyl-1-pentanol | - | 50 [35] | 3.03 ± 0.06 a | 4.24 ± 0.08 b | 4.33 ± 0.12 c | 4.62 ± 0.09 b | 2.99 ± 0.06 a |
n-Hexanol | herbaceous, resinous [37] | 2500 [35] | 4.72 ± 0.09 a | 2.11 ± 0.09 b | 4.26 ± 0.13 c | 5.86 ± 0.12 d | 5.49 ± 0.11 e |
n-Octanol | chemical, metal, burnt [32] | 110–130 [35] | nd | nd | 6.98 ± 0.21 a | 5.38 ± 0.11 b | 4.70 ± 0.09 c |
Hydrocinnamyl alcohol | - | nd | 5.40 ± 0.11 a | 144.44 ± 4.33 b | 9.44 ± 0.19 c | 3.20 ± 0.06 d | |
n-Nonanol | fat, green [32] | 50 [33] | 12.62 ± 0.25 a | 15.73 ± 0.31 b | nd | tr | 14.58 ± 0.29 c |
Phenylethyl alcohol | floral, rose, honey [35] | 14 [35] | 124.53 ± 2.49 a | 65.03 ± 1.30 b | 83.81 ± 2.51 c | 113.25 ± 2.26 d | 130.33 ± 2.61 a |
CARBONYL COMPOUNDS (aldehydes and ketones) | |||||||
Acetaldehyde | fruity | 15–120 [33] | 6.26 ± 0.12 a | 7.75 ± 0.15 b | 10.20 ± 0.36 c | 5.31 ± 0.10 d | 7.62 ± 0.15 b |
Benzaldehyde | almond [34] | 350 [35] | nd | 2.86 ± 0.06 a | 1.98 ± 0.06 b | 2.71 ± 0.05 c | tr |
Methylolacetone | - | 6.86 ± 0.14 a | nd | nd | 3.59 ± 0.07 b | 1.70 ± 0.03 c | |
ACIDS | |||||||
Acetic acid | vinegar-like | 200,000 [38] | 7.05 ± 0.14 | tr | tr | tr | tr |
Hexanoic acid | cheese, rancid, fatty [34] | 420 [35] | 5.74 ± 0.11 a | tr | 5.19 ± 0.16 b | 6.71 ± 0.14 c | 4.27 ± 0.09 d |
Octanoic acid | rancid, harsh, cheese, fatty acid [34] | 500 [35] | 19.05 ± 0.38 a | 6.37 ± 0.13 b | 9.12 ± 0.27 c | 13.96 ± 0.28 d | 31.66 ± 0.64 e |
Decanoic acid | rancid, waxy [35] | 1000 [35] | 6.70 ± 0.13 a | 5.27 ± 0.11 b | 3.92 ± 0.12 c | 3.76 ± 0.07 c | 8.51 ± 0.17 d |
ESTERS | |||||||
Ethyl acetate | fruity, sweet [36] | 5000 [33] | 36.17 ± 0.72 a | tr | 16.62 ± 0.49 b | 24.49 ± 0.48 c | nd |
Ethyl hexanoate | fruity, green apple, banana [34] | 14 [35] | 14.99 ± 0.30 a | 4.80 ± 0.11 b | 13.54 ± 0.45 c | 13.20 ± 0.26 c | 4.55 ± 0.09 b |
Ethyl 3-methyl pentanoate | - | nd | 2.28 ± 0.05a | nd | nd | 9.17 ± 0.18 b | |
Ethyl octanoate | pineapple, pear, floral [34] | 580 [35] | 76.84 ± 1.54 a | 37.11 ± 0.74 b | 76.77 ± 2.30 a | 46.69 ± 0.93 c | 38.91 ± 0.77 b |
2-Phenylethyl acetate | rose, honey, tobacco [35] | 2.53 ± 0.05 a | 22.77 ± 0.45 b | 6.41 ± 0.19 c | 2.78 ± 0.05 a | tr | |
Anisyl formate | - | nd | 3.74 ± 0.07 | nd | nd | nd | |
2-Phenylethyl propanoate | floral | nd | nd | 41.43 ± 1.24 a | 5.32 ± 0.11 b | 3.71 ± 0.07 c | |
Hydrocinnamyl acetate | nd | nd | 2.29 ± 0.07 | nd | nd | ||
Ethyl decanoate | floral, grape, fruty [35] | 200 [35] | 33.40 ± 0.67 a | 33.64 ± 0.67 a | 17.06 ± 0.51 b | 11.96 ± 0.24 c | 10.49 ± 0.21 d |
Methyl p-tert-butylphenyl acetate | - | 6.79 ± 0.14 a | 7.54 ± 0.15 b | 5.51 ± 0.17 c | 6.66 ± 0.13 a | 6.60 ± 0.13 a | |
Ethyl dodecanoate | flowery, fruity [34] | 200 [35] | 2.68 ± 0.06 a | 4.55 ± 0.09 b | nd | nd | 3.28 ± 0.06 c |
TERPENES | |||||||
Myrcene | balsamic, must, spice [32] | 13–15 [33] | nd | nd | nd | 4.40 ± 0.09 | nd |
p-Cymene | solvent, citrus [32] | 5 [33] | nd | 5.00 ± 0.02 a | nd | 4.01 ± 0.08 b | nd |
1,8-Cineole | mint, sweet [32] | 12 [33] | nd | 9.48 ± 0.19 a | 5.04 ± 0.15 b | nd | nd |
Limonene | lemon, orange [32] | 10 [33] | nd | nd | nd | 2.80 ± 0.56 | nd |
Linalool | citrus, floral, lavender [32,35] | 25 [35] | nd | 6.43 ± 0.13 a | 4.77 ± 0.14 b | 21.14 ± 0.43 c | nd |
trans-Thujone | - | nd | nd | nd | 45.13 ± 0.91 | nd | |
iso-3-Thujanol | - | nd | nd | nd | 5.71 ± 0.11 | nd | |
Nerol oxide | oil, flower [32] | nd | nd | nd | 10.12 ± 0.21 | nd | |
Lavandulol | herb | nd | nd | nd | 37.79 ± 0.76 | nd | |
Borneol | camphor-like, pine, woody | nd | nd | 30.86 ± 0.92 | nd | nd | |
Terpinene-4-ol | turpentine, nutmeg, must [32] | nd | 15.82 ± 0.31 a | 17.09 ± 0.51 b | 53.47 ± 1.07 c | nd | |
Methyl chavicol | licorice, anise [32] | nd | 137.12 ± 2.74 a | nd | 3.73 ± 0.07 b | nd | |
β-Citronellol | rose [32] | 40 [33] | nd | nd | nd | 25.10 ± 0.52 | nd |
Nerol | rose, fruity, floral [35] | 300 [35] | nd | nd | nd | 5.99 ± 0.12 | nd |
(Z)-Anethole | nd | 22.78 ± 0.45 | nd | nd | nd | ||
(E)-Anethole | - | nd | 671.30 ± 9.42 a | 57.58 ± 1.72 b | 34.01 ± 0.68 c | 16.48 ± 0.33 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakićević, S.H.; Karabegović, I.T.; Cvetković, D.J.; Lazić, M.L.; Jančić, R.; Popović-Djordjević, J.B. Insight into the Aroma Profile and Sensory Characteristics of ‘Prokupac’ Red Wine Aromatised with Medicinal Herbs. Horticulturae 2022, 8, 277. https://doi.org/10.3390/horticulturae8040277
Lakićević SH, Karabegović IT, Cvetković DJ, Lazić ML, Jančić R, Popović-Djordjević JB. Insight into the Aroma Profile and Sensory Characteristics of ‘Prokupac’ Red Wine Aromatised with Medicinal Herbs. Horticulturae. 2022; 8(4):277. https://doi.org/10.3390/horticulturae8040277
Chicago/Turabian StyleLakićević, Svetlana H., Ivana T. Karabegović, Dragan J. Cvetković, Miodrag L. Lazić, Rade Jančić, and Jelena B. Popović-Djordjević. 2022. "Insight into the Aroma Profile and Sensory Characteristics of ‘Prokupac’ Red Wine Aromatised with Medicinal Herbs" Horticulturae 8, no. 4: 277. https://doi.org/10.3390/horticulturae8040277
APA StyleLakićević, S. H., Karabegović, I. T., Cvetković, D. J., Lazić, M. L., Jančić, R., & Popović-Djordjević, J. B. (2022). Insight into the Aroma Profile and Sensory Characteristics of ‘Prokupac’ Red Wine Aromatised with Medicinal Herbs. Horticulturae, 8(4), 277. https://doi.org/10.3390/horticulturae8040277