Comparison between Germinated Seed and Isolated Microspore EMS Mutagenesis in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Microspore EMS Mutagenesis
2.3. Seed EMS Mutagenesis
3. Results
3.1. Microspore EMS Mutagenesis
3.2. Seed EMS Mutagenesis
3.3. Comparison of the Two Mutagenesis Approaches
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Alonso, J.M.; Stepanova, A.N.; Leisse, T.J.; Kim, C.J.; Chen, H.M.; Shinn, P.; Stevenson, D.K.; Zimmerman, J.; Barajas, P.; Cheuk, R.; et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 2003, 301, 653–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, A.; Guiderdoni, E.; An, G.; Hsing, Y.C.; Han, C.D.; Lee, M.C.; Yu, S.M.; Upadhyaya, N.; Ramachandran, S.; Zhang, Q.; et al. Mutant resources in rice for functional genomics of the grasses. Plant Physiol. 2009, 149, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magneschi, L.; Catalanotti, C.; Subramanian, V.; Dubini, A.; Yang, W.Q.; Mus, F.; Posewitz, M.C.; Seibert, M.; Perata, P.; Grossman, A.R. A mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis. Plant Physiol. 2012, 158, 1293–1305. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.L.; Long, T.; Yao, W.; Xiong, L.Z.; Zhang, Q.F.; Wu, C.Y. Mutant resources for the functional analysis of the rice genome. Mol. Plant 2013, 6, 596–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Cui, Q.Z.; Huang, S.W.; Wang, S.H.; Liu, X.H.; Lu, X.Y.; Chen, H.M.; Tian, Y. An EMS mutant library for cucumber. J. Integr. Agric. 2018, 17, 1612–1619. [Google Scholar] [CrossRef]
- Li, X.; Huang, S.N.; Liu, Z.Y.; Hou, L.; Feng, H. Mutation in EMB1923 gene promoter is associated with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). Physiol. Plant 2019, 166, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Schumaker, K.S.; Zhu, J.K. EMS mutagenesis of Arabidopsis. Methods Mol. Biol. 2006, 323, 101–103. [Google Scholar] [PubMed]
- Zhang, Z.C.; Dai, S.; Cheng, D.G.; Peng, Q.; Xing, Y.X.; Song, J.M. Effect of EMS mutagenesis on physico-chemical properties of wheat starch. J. South. Agric. 2011, 42, 479–482. [Google Scholar]
- Bridges, B.A. Mechanisms of radiation mutagenesis incellular and subcellular systems. Annu. Rev. Nucl. Sci. 1969, 19, 139–178. [Google Scholar] [CrossRef] [PubMed]
- Sargentini, N.J.; Smith, K.C. Mutational spectrum analysis of umuC-independent and umuC-dependent gamma-radiation mutagenesis in Escherichia coli. Mutat. Res. 1989, 211, 193–203. [Google Scholar] [CrossRef]
- Feldmann, K.A. T-DNA insertion mutagenesis in Arabidopsis: Mutational spectrum. Plant J. 1991, 1, 71–82. [Google Scholar] [CrossRef]
- Shiwa, Y.; Tanaka, S.F.; Kasahara, K.; Horiuchi, T.; Yoshikawa, H. Whole-genome profiling of a novel mutagenesis technique using proofreading-deficient DNA polymerase δ. Int. J. Evol. Biol. 2012, 2012, 860797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, L.J.; Qin, G.J. Generation and characterization of arabidopsis T-DNA insertion mutants. Methods Mol. Biol. 2014, 1062, 241–258. [Google Scholar] [PubMed]
- An, X.L.; Cai, L.; Wang, J.G.; Wang, G.Q.; Sun, H.Y. Chemical mutation and its application in plant breeding. Acta. Agric. Nucl. Sin. 2003, 17, 239–242. [Google Scholar]
- Li, X.J.; Huang, L.P.; Yu, C.X.; Wang, Y.Y.; Li, Z.L. Chemical mutation and its application in flower breeding. North Hortic. 2007, 2, 60–63. [Google Scholar]
- Greene, E.A.; Codomo, C.A.; Taylor, N.E.; Henikoff, J.G.; Till, B.J.; Reynolds, S.H.; Enns, L.C.; Burtner, C.; Johnson, J.E.; Odden, A.R.; et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 2003, 164, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.Q.; Zhang, Z.Q.; Zhou, Y.; Xi, Y.X.; Zhang, J.J. Screening and Identification of Mutants Induced from Rice Zhonghua 11 (Oryza sativa L. subsp. Japonica) by EMS. Acta Agric. Shanghai 2005, 21, 7–11. [Google Scholar]
- Wang, Q.S.; Sang, X.C.; Ling, Y.H.; Zhao, F.M.; Yang, Z.L.; Li, Y.; He, G.H. Genetic analysis and molecular mapping of a novel gene for zebra mutation in rice (Oryza sativa L.). J. Genet. Genom. 2009, 36, 679–684. [Google Scholar] [CrossRef]
- McCallum, C.M.; Comai, L.; Greene, E.A.; Henikoff, S. Targeted screening for induced mutations. Nat. Biotechnol. 2000, 18, 455–457. [Google Scholar] [CrossRef]
- Du, L.E.; Yu, X.P.; Wei, Y.C. Screening high protein mutant by EMS mutagenesis in wheat zygote. J. Agric. Univ. Hebei 1990, 13, 94–96. [Google Scholar]
- Slade, A.J.; Fuerstenberg, S.I.; Loeffler, D.; Steine, M.N.; Facciotti, D. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat. Biotechnol. 2005, 23, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.J.; Kumar, R.; Singh, K.; Dhaliwal, H.S. Characterization and molecular mapping of EMS-induced brittle culm mutants of diploid wheat (Triticum monococcum L.). Euphytica 2012, 186, 165–176. [Google Scholar] [CrossRef]
- Tian, F.X.; Gong, J.F.; Wang, G.P.; Wang, G.K.; Fan, Z.Y.; Wang, W. Improved drought resistance in a wheat stay-green mutant tasg1 under field conditions. Biol. Plant. 2012, 56, 509–515. [Google Scholar] [CrossRef]
- Menda, N.; Semel, Y.; Peled, D.; Eshed, Y.; Zamir, D. In silico screening of a saturated mutation library of tomato. Plant J. 2004, 38, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Minoia, S.; Petrozza, A.; Onofrio, O.D.; Piron, F.; Mosca, G.; Sozio, G.; Cellini, F.; Bendahmane, A.; Carriero, F. A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res. Notes 2010, 3, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.Y.; Wang, L.Z.; Piao, D.W. Induction of genetic variation of oil composition in soybean by EMS. Acta Agric. Nucl. Sin. 1993, 7, 81–87. [Google Scholar]
- Cooper, J.L.; Till, B.J.; Laport, R.G.; Darlow, M.C.; Kleffner, J.M.; Jamai, A.; El-Mellouki, T.; Liu, S.; Ritchie, R.; Nielsen, N.; et al. TILLING to detect induced mutations in soybean. BMC Plant Biol. 2008, 8, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, M.; Kaga, A.; Anai, T.; Shimizu, T.; Sayama, T.; Takagi, K.; Machita, K.; Watanabe, S.; Nishimura, M.; Yamada, N.; et al. Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genom. 2015, 16, 1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.F.; Jiang, L.X.; Ma, Y.S.; Wei, Z.Y.; Hong, H.L.; Liu, Z.X.; Lei, J.H.; Liu, Y.; Guan, R.X.; Guo, Y.; et al. Development and utilization of a new chemically-induced soybean library with a high mutation density. J. Integr. Plant Biol. 2017, 59, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Neuffer, M.G. Paraffin oil technique for treating mature corn pollen whit mutagens. Maydica 1978, 23, 21–28. [Google Scholar]
- Zhu, B.G.; Lu, Z.X.; Geng, Y.X.; Deng, X.D.; Gu, A.Q. Effects of peanut character variations induced by EMS and breeding of high yielding mutant strains. Sci. Agric. Sin. 1997, 30, 87–89. [Google Scholar]
- Wang, N.; Wang, Y.J.; Tian, F.; King, G.J.; Zhang, C.; Long, Y.; Shi, L.; Meng, J.L. A functional genomics resource for Brassica napus: Development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol. 2008, 180, 751–765. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Huang, Y.J.; Yang, T.T.; Chen, J.M.; Guan, R.Z.; Zhang, H.S. Research on Phenotypic Mutations in M2 Population Derived from EMS Treatment in Brassica napus L. J. Plant Genet. Resour. 2010, 11, 760–765. [Google Scholar]
- Lu, Y.; Liu, M.Y.; Zhao, J.J.; Wang, Y.H.; Luo, S.X.; Xuan, S.X.; Dai, S.Y.; Wang, C.S.; Shen, S.X. Construction of one mutant library and research on phenotypic variation of M2 population leaves in Chinese Cabbage. Acta Hortic. Sin. 2014, 41, 1609–1619. [Google Scholar]
- Lu, Y.; Dai, S.Y.; Gu, A.X.; Liu, M.Y.; Wang, Y.H.; Luo, S.X.; Zhao, Y.J.; Wang, S.; Xuan, S.X.; Chen, X.P.; et al. Microspore Induced Doubled Haploids Production from Ethyl Methanesulfonate (EMS) Soaked flower buds is an efficient strategy for mutagenesis in Chinese Cabbage. Front. Plant Sci. 2016, 7, 1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.N.; Liu, Z.Y.; Li, D.Y.; Yao, R.P.; Feng, H. A new method for generation and screening of Chinese cabbage mutants using isolated microspore culturing and EMS mutagenesis. Euphytica 2016, 207, 23–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, A.J.; Liu, Y.; Wang, Y.S.; Feng, H. Effects of the antiauxin PCIB on microspore embryogenesis and plant regeneration in Brassica rapa. Sci. Hortic. 2011, 130, 32–37. [Google Scholar] [CrossRef]
- Barro, F.; Fernández-Escobar, J.; Vega, M.D.L.; Martin, A. Doubled haploid lines of Brassica carinata with modified erucic acid content through mutagenesis by EMS treatment of isolated microspores. Plant Breed. 2001, 120, 262–264. [Google Scholar] [CrossRef]
- Ferrie, A.M.R.; Taylor, D.C.; MacKenzie, S.L.; Rakow, G.; Raney, J.P.; Keller, W.A. Microspore mutagenesis of Brassica species for fatty acid modifications: A preliminary evaluation. Plant Breed. 2008, 127, 501–506. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.L.; Huang, T.D.; Wang, F.; Yuan, F.; Cheng, X.M.; Zhang, Y.; Shi, S.W.; Wu, J.S.; Liu, K.D. A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theor. Appl. Genet. 2010, 21, 249–258. [Google Scholar] [CrossRef]
Trait | Variant Characteristics | No. of Mutant Plants (M0) | Mutation Frequency (%) |
---|---|---|---|
Leaf shape | Crinkled leaf | 4 | 0.32 |
Leaf color | Leaf etiolation | 5 | 0.40 |
Partial leaf etiolation | 5 | 0.40 | |
Leafy head | Small leafy head | 6 | 0.48 |
Vertical leafy head | 7 | 0.56 | |
Non-heading | 2 | 0.16 | |
Fertility | Male sterile | 1 | 0.08 |
Total | 30 | 2.40 |
Trait | Variant Characteristics | No. of Mutant Plants (M1) | Mutation Frequency (%) |
---|---|---|---|
Leaf shape | Crinkled leaf | 2 | 0.16 |
Leaf color | Leaf etiolation | 4 | 0.32 |
Partial leaf etiolation | 4 | 0.32 | |
Leafy head | Small leafy head | 3 | 0.24 |
Vertical leafy head | 2 | 0.16 | |
Total | 15 | 1.20 |
Trait | Variant Characteristics | No. of Mutant Lines (M1) | Mutation Frequency (%) |
---|---|---|---|
Leaf color | Leaf etiolation | 386 | 10.34 |
Partial leaf etiolation | 73 | 1.95 | |
Leaf gloss variation | 15 | 0.40 | |
Dark-green leaf | 15 | 0.40 | |
Light-green leaf | 10 | 0.26 | |
Anthocyanin accumulation | 15 | 0.4 | |
Stay-green leaf | 23 | 0.62 | |
Leaf shape | Crinkled leaf | 189 | 5.06 |
Leaf thickness variation | 12 | 0.32 | |
Petiole length variation | 22 | 0.59 | |
No mesophyll | 7 | 0.19 | |
Leaf margin variation | 22 | 0.59 | |
Cracked leaf | 16 | 0.43 | |
Slender leaf | 17 | 0.46 | |
Leaf senescence | 16 | 0.43 | |
Entire leaf | 20 | 0.54 | |
Abnormal leaf | 36 | 0.96 | |
Leafy head | Non-heading | 61 | 1.63 |
Vertical leafy head | 32 | 0.86 | |
Earlier leafy head formation | 5 | 0.13 | |
Later leafy head formation | 4 | 0.11 | |
Small leafy head | 13 | 0.34 | |
Large leafy head | 3 | 0.08 | |
Abnormal leafy head | 4 | 0.11 | |
Bolting | Early bolting | 44 | 1.18 |
Fertility | Male sterile | 58 | 1.55 |
Female sterile | 3 | 0.08 | |
Total | 1121 | 30.04 |
Trait | Variant Characteristics | No. of Mutants (M2) | Mutation Frequency (%) |
---|---|---|---|
Leaf color | Leaf etiolation | 221 | 5.92 |
Partial leaf etiolation | 65 | 1.74 | |
Leaf gloss variation | 8 | 0.21 | |
Dark-green leaf | 8 | 0.21 | |
Light-green leaf | 5 | 0.13 | |
Anthocyanin accumulation | 8 | 0.21 | |
Stay-green leaf | 8 | 0.21 | |
Leaf shape | Crinkled leaf | 143 | 3.83 |
Leaf thickness variation | 9 | 0.24 | |
Petiole length variation | 18 | 0.48 | |
No mesophyll | 2 | 0.05 | |
Leaf margin variation | 18 | 0.48 | |
Leaf crack | 10 | 0.26 | |
Slender leaf | 10 | 0.26 | |
Leaf senescence | 10 | 0.26 | |
Entire leaf | 12 | 0.32 | |
Abnormal leaf | 18 | 0.48 | |
Leafy head | Non-heading | 46 | 1.23 |
Vertical leafy head | 20 | 0.54 | |
Earlier leafy head formation | 3 | 0.08 | |
Later leafy head formation | 3 | 0.08 | |
Small leafy head | 7 | 0.18 | |
Large leafy head | 2 | 0.05 | |
Abnormal leafy head | 4 | 0.11 | |
Bolting | Early bolting | 16 | 0.43 |
Fertility | Male sterile | 25 | 0.67 |
Female sterile | 2 | 0.05 | |
Total | 701 | 18.78 |
Mutagenesis Approach | No. of Mutants | Mutation Frequency (%) | Homozygous Generation | Technical Operation |
---|---|---|---|---|
Seed mutagenesis | 701 | 18.78 | M2 | Easy |
Microspore mutagenesis | 15 | 1.2 | M1 | Complicated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Qu, G.; Huang, S.; Liu, Z.; Zhang, M.; Fu, W.; Ren, J.; Feng, H. Comparison between Germinated Seed and Isolated Microspore EMS Mutagenesis in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Horticulturae 2022, 8, 232. https://doi.org/10.3390/horticulturae8030232
Gao Y, Qu G, Huang S, Liu Z, Zhang M, Fu W, Ren J, Feng H. Comparison between Germinated Seed and Isolated Microspore EMS Mutagenesis in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Horticulturae. 2022; 8(3):232. https://doi.org/10.3390/horticulturae8030232
Chicago/Turabian StyleGao, Yue, Gaoyang Qu, Shengnan Huang, Zhiyong Liu, Meidi Zhang, Wei Fu, Jie Ren, and Hui Feng. 2022. "Comparison between Germinated Seed and Isolated Microspore EMS Mutagenesis in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)" Horticulturae 8, no. 3: 232. https://doi.org/10.3390/horticulturae8030232
APA StyleGao, Y., Qu, G., Huang, S., Liu, Z., Zhang, M., Fu, W., Ren, J., & Feng, H. (2022). Comparison between Germinated Seed and Isolated Microspore EMS Mutagenesis in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Horticulturae, 8(3), 232. https://doi.org/10.3390/horticulturae8030232