Development Status and Perspectives of Crop Protection Machinery and Techniques for Vegetables
Abstract
:1. Introduction
2. Chemical Control Techniques and Equipment
2.1. Greenhouse Vegetables
2.1.1. Handheld Sprayer
2.1.2. Self-Propelled or Ground Track Sprayers
2.1.3. Aerial Track or Fixed-Pipe Spray Systems
2.2. Open-Field Vegetables
2.3. Vegetable Seed Treatment
3. Physical Control Techniques and Equipment
3.1. Physical Soil Disinfection
3.2. Pest Trapping Technologies
3.3. Ozone Sterilizers
3.4. Physical Weed Control
4. Problems in Vegetable Disease and Pest Control
5. Conclusions and Future Prospects
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, S.S.; Dwivedi, S.K. Evaluation of different newer chemical pesticides through on farm testing (OFTs) against major pests and diseases of vegetable crops. Progress. Hortic. 2020, 52, 193–198. [Google Scholar] [CrossRef]
- Ngosong, N.T.; Boamah, E.D.; Fening, K.O.; Kotey, D.A.; Afresh-Nuamah, K. The efficacy of two bio-rational pesticides on insect pests complex of two varieties of white cabbage (Brassica oleracea var. capitata L.) in the coastal savanna region of Ghana. Phytoparasitica 2021, 49, 397–406. [Google Scholar] [CrossRef]
- Özdemir, E.; Inak, E.; Evlice, E.; Laznik, Z. Compatibility of entomopathogenic nematodes with pesticides registered in vegetable crops under laboratory conditions. J. Plant Dis. Prot. 2020, 127, 529–535. [Google Scholar] [CrossRef]
- Ramasamy, S.; Sotelo, P.; Lin, M.; Heng, C.H.; Kang, S.; Sarika, S. Validation of a bio-based integrated pest management package for the control of major insect pests on Chinese mustard in Cambodia. Crop Prot. 2020, 135, 104728. [Google Scholar] [CrossRef]
- Li, X.; Lu, D.; Wang, S.; Fan, D.; Zhou, H.; Lv, X. Simulation and test on droplet distribution and deposition of fixed-pipe cold fogging system in greenhouse. Trans. CSAM 2020, 51 (Suppl. S2), 261–267. [Google Scholar] [CrossRef]
- Sánchez-Hermosilla, J.; Páez, F.; Rincón, V.J.; Carvajal, F. Evaluation of the effect of spray pressure in hand-held sprayers in a greenhouse tomato crop. Crop Prot. 2013, 54, 121–125. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Le, N.T.T.; Havukainen, J.; Hannaway, D.B. Pesticide use in vegetable production: A survey of Vietnamese farmers’ knowledge. Plant Protect. Sci. 2018, 54, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.P.; Li, F.J.; Lu, G.C.; Li, C. Green Prevention and Control Technology against Main Diseases and Insect Pests of Facility Tomato. Plant Dis. Pests 2021, 12, 28–29. [Google Scholar] [CrossRef]
- Wise, J.C.; Miles, L.A.; Acimovic, D.; Vandervoort, C.; Isaacs, R.; Miles, T.D. Sprayer Type and Water Volume Influence Spatial Patterns of Pesticide Deposition and Control of Diseases and Insect Pests of Highbush Blueberries. Int. J. Fruit Sci. 2020, 20 (Suppl. S3), S1805–S1818. [Google Scholar] [CrossRef]
- Chen, L.M.; Wallhead, M.; Reding, M.; Horst, L.; Zhu, H.P. Control of Insect Pests and Diseases in an Ohio Fruit Farm with a Laser-guided Intelligent Sprayer. HortTechnology 2020, 30, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Yang, L.; Li, L.; Du, R.S.; Dong, H. Integrated Prevention and Control Technology of Major Diseases and Insect Pests of Strawberry. Plant Dis. Pests 2020, 11, 31–34. [Google Scholar] [CrossRef]
- Lai, T.K.; Deng, Y.X.; Ge, S.B.; Wang, X.M.; Li, C.Y.; Yang, J.J. Effects of Silicon Fertilizer on Rice Blast (Magnaporthe oryzae) Green Control, Rice Growth and Yield. Plant Dis. Pests 2020, 11, 3–5. [Google Scholar] [CrossRef]
- Kang, D.; Park, S.K.; Beane-Freeman, L.; Lynch, C.F.; Knott, C.E.; Sandler, D.P.; Hoppin Jane, A.; Dosemeci, M.; Coble, J.; Lubin, J. Cancer incidence among pesticide applicators exposed to trifluralin in the Agricultural Health Study. Environ. Res. 2008, 107, 271–276. [Google Scholar] [CrossRef]
- Gushchin, N.V.; Haidarova, D.S.; Kugusheva, L.I.; Rozengart, V.I.; Korneva, E.A. Acetylcholinesterase activity of rat lymphosides during pesticide poisoning. Bull. Exp. Biol. Med. 1991, 111, 165–167. [Google Scholar] [CrossRef]
- Helena, S.I.; Chiu, Y.H.; Lee, D.H.; Wang, S.; Hart, J.E.; Lidia, M.A.; Laden, F.; Ardisson Korat, A.V.; Birmann, B.; Heather Eliassen, A.; et al. Intake of fruits and vegetables by pesticide residue status in relation to cancer risk. Environ. Int. 2021, 156, 106744. [Google Scholar] [CrossRef]
- Consalter, A.; Guzzo, V. Multiresidue analytical method for organophosphate pesticides in vegetables. Fresenius J. Anal. Chem. 1991, 339, 390–394. [Google Scholar] [CrossRef]
- Sayed, A.; Chys, M.; De, R.J.; Goeteyn, L.; Spanoghe, P.; Sampers, I. Pesticide residues in (treated) wastewater and products of Belgian vegetable- and potato processing companies. Chemosphere 2021, 280, 130619. [Google Scholar] [CrossRef]
- Yi, Y.J.; Joung, H.J.; Kum, J.Y.; Hwang, I.S.; Mu, S.K. Pesticide residues in vegetables and risk assessment for consumers in Korea during 2010–2014. Food additives & contaminants. Food Addit. Contam. Part A 2020, 37, 1300–1313. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z.M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–21. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Liu, Y.; Lv, X.; Zheng, W. Comparison of a new knapsack mist sprayer and three traditional sprayers for pesticide application in plastic tunnel greenhouse. Phytoparasitica 2022, 50, 177–190. [Google Scholar] [CrossRef]
- Rincon, V.J.; Sanchez-Hermosilla, J.; Paez, F.; Perez-Alonso, J.; Callejon, A.J. Assessment of the influence of working pressure and application rate on pesticide spray application with a hand-held spray gun on greenhouse pepper crops. Crop Prot. 2017, 96, 7–13. [Google Scholar] [CrossRef]
- Wang, S.; Song, J.; He, X.; Li, Y.; Ling, Y. Design of air-assisted electric knapsack sprayer and experiment of its operation performance. Trans. CSAE 2016, 32, 67–73. [Google Scholar] [CrossRef]
- Li, Y.J.; Li, Y.F.; Pan, X.; Li, Q.X.; Chen, R.; Li, X.; Pan, C.; Song, J. Comparison of spray deposition, loss and residue of azoxystrobin and tebuconazole in sunlit greenhouse tomato and field cucumber of a new air-assisted sprayer and two conventional sprayers. Pest Manag. Sci. 2017, 74, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.W.; Miller, P.C.H.; Power, J.D. The application of pesticide sprays to tomato crops. Asp. Appl. Biol. 2000, 57, 383–390. [Google Scholar]
- Ebert, T.A.; Derksen, R.C.; Downer, R.A.; Krause, C.R. Comparing greenhouse sprayers: The dose-transfer process. Pest Manag. Sci. 2004, 60, 507–513. [Google Scholar] [CrossRef]
- Law, S.E. Agricultural electrostatic spray application: A review of significant research and development during the 20th century. J. Electrostat. 2001, 51–52, 25–42. [Google Scholar] [CrossRef]
- Tavares, R.M.; Cunha, J.P.; Alves, T.C.; Bueno, M.R.; Silva, S.M.; Zandonadi, C.H. Electrostatic spraying in the chemical control of Triozoida limbata (Enderlein) (Hemiptera: Triozidae) in guava trees (Psidium guajava L.). Pest Manag. Sci. 2017, 73, 1148–1153. [Google Scholar] [CrossRef]
- Shen, C.; Jia, S.; Tang, Z.; Zhou, Y.; Meng, X.; Yuan, L. Research actuality and application prospects of pesticide electrostatic spraying. J. Agric. Mech. Res. 2010, 32, 10–13. [Google Scholar] [CrossRef]
- Law, S.E. Embedded-electrode electrostatic-induction spray-charging nozzle: Theoretical and engineering design. Trans. ASAE 1978, 21, 1096–1104. [Google Scholar] [CrossRef]
- Mamidi, V.R.; Ghanshyam, C.; Kumar, P.M.; Kapur, P. Electrostatic hand pressure knapsack spray system with enhanced performance for small scale farms. J. Electrost. 2013, 71, 785–790. [Google Scholar] [CrossRef]
- Gonzalez, R.; Rodriguez, F.; Sanchez-Hermosilla, J.; Donaire, J.G. Navigation techniques for mobile robots in greenhouses. Appl. Eng. Agric. 2009, 25, 153–165. [Google Scholar] [CrossRef]
- Balsari, P.; Oggero, G.; Bozzer, C.; Marucco, P. An autonomous self-propelled sprayer for safer pesticide application in glasshouse. Asp. Appl. Biol. 2012, 114, 197–204. [Google Scholar]
- Lee, I.; Lee, K.; Lee, J.; You, K. Autonomous greenhouse sprayer navigation using automatic tracking algorithm. Appl. Eng. Agric. 2015, 31, 17–21. [Google Scholar] [CrossRef]
- Sanchez-Hermosilla, J.; Rincon, V.J.; Paez, F.; Fernandez, M. Comparative spray deposits by manually pulled trolley sprayer and a spray gun in greenhouse tomato crops. Crop Prot. 2012, 31, 119–124. [Google Scholar] [CrossRef]
- Sanchez-Hermosilla, J.; Rincon, V.J.; Paez, F.; Agueera, F.; Carvajal, F. Field evaluation of a self-propelled sprayer and effects of the application rate on spray deposition and losses to the ground in greenhouse tomato crops. Pest Manag. Sci. 2011, 67, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Foqué, D.; Pieters, J.G.; Nuyttens, D. Spray deposition and distribution in a bay laurel crop as affected by nozzle type, air assistance and spray direction when using vertical spray booms. Crop Prot. 2012, 41, 77–87. [Google Scholar] [CrossRef]
- Braekman, P.; Foque, D.; Van Labeke, M.; Pieters, J.G.; Nuyttens, D. Influence of Spray Application Technique on Spray Deposition in Greenhouse Ivy Pot Plants Grown on Hanging Shelves. Hortscience 2009, 44, 1921–1927. [Google Scholar] [CrossRef] [Green Version]
- Nuyttens, D.; Windey, S.; Sonck, B. Optimisation of a vertical spray boom for greenhouse spraying applications. Biosyst. Eng. 2004, 89, 417–423. [Google Scholar] [CrossRef]
- Llop, J.; Gil, E.; Gallart, M.; Contador, F.; Ercilla, M. Spray distribution evaluation of different settings of a hand-held-trolley sprayer used in greenhouse tomato crops. Pest Manag. Sci. 2016, 72, 505–516. [Google Scholar] [CrossRef]
- Llop, J.; Gil, E.; Llorens, J.; Gallart, M.; Balsari, P. Influence of air-assistance on spray application for tomato plants in greenhouses. Crop Prot. 2015, 78, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Qi, L.; Zhang, Y.; Ji, R.; Cheng, Z.; Cheng, Y. Research and development of the mist sprayer control system in Greenhouse. J. China Agric. Univ. 2018, 23, 79–87. [Google Scholar] [CrossRef]
- Musiu, E.M.; Qi, L.; Wu, Y. Spray deposition and distribution on the targets and losses to the ground as affected by application volume rate, airflow rate and target position. Crop Prot. 2019, 116, 170–180. [Google Scholar] [CrossRef]
- Li, Y.J.; Li, Y.F.; Chen, R.H.; Li, X.S.; Pan, C.P.; Song, J.L. Evaluation of self-propelled high-energy ultrasonic atomizer on azoxystrobin and tebuconazole application in sunlit greenhouse tomatoes. Int. J. Environ. Res. Public Health 2018, 15, 1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuyttens, D.; Braekman, P.; Windey, S.; Sonck, B. Potential dermal pesticide exposure affected by greenhouse spray application technique. Pest Manag. Sci. 2009, 65, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Nuyttens, D.; Windey, S.; Sonck, B. Comparison of operator exposure for five different greenhouse spraying applications. J. Agric. Saf. Health 2004, 10, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Failla, S.; Romano, E. Effect of spray application technique on spray deposition and losses in a greenhouse vegetable nursery. Sustainability 2020, 12, 7052. [Google Scholar] [CrossRef]
- Sánchez-Hermosilla, J.; Páez, F.; Rincón, V.J.; Callejón, Á.J. Evaluation of a fog cooling system for applying plant-protection products in a greenhouse tomato crop. Crop Prot. 2013, 48, 76–81. [Google Scholar] [CrossRef]
- Li, X.; Lv, X.; Zhang, M.; Lei, X. Droplet Distribution and Deposition of Fixed Pipes Cold Fogging System in Greenhouse. Trans. CSAM 2018, 49 (Suppl. S1), 199–204. [Google Scholar] [CrossRef]
- Olivet, J.J.; Val, L.; Usera, G. Distribution and effectiveness of pesticide application with a cold fogger on pepper plants cultured in a greenhouse. Crop Prot. 2011, 30, 977–985. [Google Scholar] [CrossRef]
- Li, H.; Qi, L.; Wang, P. 3-D simulation for airflow field and droplets deposition of hanging cold sprayer. Trans. CSAM 2014, 45, 103–109. [Google Scholar] [CrossRef]
- Lin, J.; Ma, J.; Liu, K.; Huang, X.; Xiao, L.; Ahmed, S.; Dong, X.; Qiu, B. Development and test of an autonomous air-assisted sprayer based on single hanging track for solar greenhouse. Crop Prot. 2020, 142, 105502. [Google Scholar] [CrossRef]
- Zhuang, T.F.; Yang, X.J.; Dong, X.; Zhang, T.; Sun, X. Research status and development trend of large self-propelled sprayer booms. Trans. CSAM 2018, 49 (Suppl. S1), 196–205. [Google Scholar] [CrossRef]
- Anthonis, J.; Ramon, H. Design of an active suspension to suppress the horizontal vibrations of a spray boom. J. Sound Vib. 2003, 266, 573–583. [Google Scholar] [CrossRef]
- Ramon, H.; Anthonis, J.; Moshou, D.; Baerdemaeker, J.D. Evaluation of a cascade compensator for horizontal vibrations of a flexible spray boom. J. Agric. Eng. Res. 1998, 71, 81–92. [Google Scholar] [CrossRef]
- Dou, H.; Zhai, C.; Chen, L.; Wang, S.; Wang, X. Field Variation Characteristics of Sprayer Boom Height Using a Newly Designed Boom Height Detection System. IEEE Access 2021, 9, 17148–17160. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Womac, A.R.; Wilkerson, J.B.; Hart, W.E. Sprayer boom instrumentation for field use. Trans. ASAE 2004, 47, 659. [Google Scholar] [CrossRef]
- Hislop, E. Experimental air-assisted spraying of young cereal plants under controlled conditions. Crop Prot. 1993, 12, 193–200. [Google Scholar] [CrossRef]
- Jia, W.; Hu, H.; Chen, L.; Wei, Z.; Wei, X. Performance experiment on spray atomization and droplets deposition of wind-curtain electrostatic boom spray. Trans. CSAE 2015, 31, 53–59. [Google Scholar] [CrossRef]
- Teske, M.E.; Thistle, H.W.; Lawton, T.C.R.; Petersen, R.L. Evaluation of the Flow Downwind of an Agricultural Ground Sprayer Boom. Trans. ASABE 2016, 59, 839–846. [Google Scholar] [CrossRef]
- Tsay, J.R.; Liang, L.S.; Lu, L.H. Evaluation of an air-assisted boom spraying system under a no-canopy condition using CFD simulation. Trans. ASABE 2004, 47, 1887–1897. [Google Scholar] [CrossRef]
- Baetens, K.; Nuyttens, D.; Verboven, P.; De Schampheleire, M.; Nicolaï, B.; Ramon, H. Predicting drift from field spraying by means of a 3D computational fluid dynamics model. Comput. Electron. Agric. 2007, 56, 161–173. [Google Scholar] [CrossRef]
- Yasin, M. Air assisted sleeve boom sprayer. Ama-Agric. Mech. Asia Afr. Lat. Am. 2012, 43, 61–66. [Google Scholar]
- Thakare, S.K.; Saraf, V.V.; Mrudulata, D. Field evaluation of air assisted sleeve boom sprayer. Madras Agric. J. 2015, 102, 273–276. [Google Scholar]
- Ozkan, H.E.; Miralles, A.; Sinfort, C.; Zhu, H.; Fox, R.D. Shields to reduce spray drift. J. Agric. Engng Res. 1997, 67, 311–322. [Google Scholar] [CrossRef]
- Wang, S.L.; Li, X.; Lei, X.H.; Gu, Y.; Herbst, A.; Bonds, J.; Lv, X. Influence of baffled shield boom sprayer on drift and deposition characteristics of droplet. Plant Prot. 2021, 47, 68–73. [Google Scholar] [CrossRef]
- Furness, G.O. A comparison of simple bluff plate and axial fans for air-assisted, high-speed, low-volume spray application to wheat and sunflower plants. J. Agric. Eng. Res. 1991, 48, 57–75. [Google Scholar] [CrossRef]
- He, X.; Bonds, J.; Herbst, A.; Langenakens, J. Recent development of unmanned aerial vehicle for plant protection in East Asia. Int. J. Agric. Biol. Eng. 2017, 10, 18–30. [Google Scholar] [CrossRef]
- Huang, Y.; Hoffmann, W.C.; Lan, Y.; Wu, W.; Fritz, B.K. Development of a spray system for an unmanned aerial vehicle platform. Appl. Eng. Agric. 2009, 25, 803–809. [Google Scholar] [CrossRef]
- Wang, L.; Lan, Y.B.; Hoffmann, W.C.; KFritz, B.; Chen, D.; Wang, S. Design of Variable Spraying System and Influencing Factors on Droplets Deposition of Small UAV. Trans. CSAM 2016, 47, 15–22. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Zhou, H.; Lv, X.; Shen, W. Design and Experiment of an Aerial Electrostatic Spraying System for Unmanned Agricultural Aircraft Systems. Appl. Eng. Agric. 2020, 36, 955–962. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.; Xue, X.; Chen, C. Research progress and application status of electrostatic pesticide spraytechnology. Trans. CSAE 2018, 34, 1–11. [Google Scholar] [CrossRef]
- Wang, D.S.; Zhang, J.X.; Zhang, S.L.; Xiong, B.; Qu, F.; Li, X.; Li, W.; Yuan, T. Spraying parameters and droplet deposition distribution analysis of CD-15 unmanned helicopter. Int. Agric. Eng. J. 2017, 26, 41–50. [Google Scholar]
- Qiu, B.J.; Wang, L.W.; Cai, D.L.; Wu, J.H.; Ding, G.R.; Guan, X.P. Effect of flight altitude and speed of unmanned helicopter on spray deposition uniform. Trans. CSAE 2013, 29, 25–32. (In Chinese) [Google Scholar] [CrossRef]
- Qin, W.C.; Xue, X.Y.; Zhou, L.X.; Zhang, S.C.; Sun, Z.; Kong, W.; Wang, B. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies. Trans. CSAE 2014, 30, 50–56. (In Chinese) [Google Scholar] [CrossRef]
- Qin, W.C.; Qiu, B.J.; Xue, X.Y.; Chen, C.; Xu, Z.F.; Zhou, Q.Q. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Wang, G.; Yubin, L.; Qi, H.; Chen, P.; Hewitt, A.J.; Han, Y. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat. Pest Manag. Sci. 2019, 75, 1546–1555. [Google Scholar] [CrossRef]
- Li, X.; Giles, D.K.; Niederholzer, F.J.; Andaloro, J.T.; Lang, E.B.; Watson, L.J. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Pest Manag. Sci. 2021, 77, 527–537. [Google Scholar] [CrossRef]
- Taylor, A.G.; Harman, G.E. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 1990, 28, 321–339. [Google Scholar] [CrossRef]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern Seed Technology: Seed Coating Delivery Systems for Enhancing Seed and Crop Performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, Z.; Hou, Z.; Song, T.; Mi, L.; Shao, Z. Numerical simulation and experiment on improving pelleted coating of forage grass seeds by vibration force field. Trans. CSAE 2017, 33, 86–93. [Google Scholar] [CrossRef]
- Kangsopa, J.; Hynes, R.K.; Siri, B. Lettuce seeds pelleting: A new bilayer matrix for lettuce (Lactuca sativa) seeds. Seed Sci. Technol. 2018, 46, 521–531. [Google Scholar] [CrossRef]
- Javed, T.; Afzal, I. Impact of seed pelleting on germination potential, seedling growth and storage of tomato seed. Acta Hortic. 2020, 1273, 417–424. [Google Scholar] [CrossRef]
- Amirkhani, M.; Netravali, A.; Huang, W.; Taylor, A.G. Investigation of soy protein–based biostimulant seed coating for broccoli seedling and plant growth enhancement. Hortic. Sci. 2016, 51, 1121–1126. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Amirkhani, M.; Mayton, H.; Chen, Z.; Taylor, A.G. Biostimulant seed coating treatments to improve cover crop germination and seedling growth. Agronomy 2020, 10, 154. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Nie, L.; Zhu, Q.; Gou, L. Seed coating and its Application in China. Chin. Agric. Sci. Bull. 2009, 25, 126–131. [Google Scholar]
- Fanti, A.; Spanu, M.; Lodi, M.B.; Desogus, F.; Mazzarella, G. Nonlinear analysis of soil microwave heating: Application to agricultural soils disinfection. IEEE 2017, 2, 105–114. [Google Scholar] [CrossRef]
- Wang, X.; Cao, A.; Yan, D.; Wang, Q.; Huang, B.; Zhu, J.; Wang, Q.; Li, Y.; Ouyang, C.; Guo, M. Evaluation of soil flame disinfestation (SFD) for controlling weeds, nematodes and fungi. J. Integr. Agric. 2020, 19, 164–172. [Google Scholar] [CrossRef]
- Beauvais, M.; Thomas, G.; Cheftel, H. A new method for heat-processing canned foods. Food Technol. 1975, 15, 5–20. [Google Scholar]
- Öhlinger, R. Soil Sampling and Sample Preparation. Methods in Soil Biology; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Leonard, S.; Merson, R.L.; Marsh, G.L. Flame sterilization of canned foods: An overview. J. Food Sci. 2010, 40, 246–249. [Google Scholar] [CrossRef]
- Yang, Z.J.; Wang, X.C.; Ameen, M. Changes in soil temperature and water content under mobile soil steam disinfection. Int. J. Agric. Biol. Eng. 2021, 14, 140–147. [Google Scholar] [CrossRef]
- Mao, L.G.; Wang, Q.X.; Yan, D.D.; Li, Y.; Ouyang, C.B.; Guo, M.X.; Cao, A.C. Flame soil disinfestation: A novel, promising, non-chemical method to control soilborne nematodes, fungal and bacterial pathogens in China. Crop Prot. 2016, 83, 90–94. [Google Scholar] [CrossRef]
- Grinstein, A.; Kritzman, G.; Riven, Y.; Peretz-Alon, I.; & Bar, Z. Chemical and physical disinfection of peanut pods for improved seed quality. Crop Prot. 1997, 16, 353–357. [Google Scholar] [CrossRef]
- Yang, Z.; Abbas, A.; Wang, X.; Ameen, M.; Yang, H.; Ahmed Soomro, S. Influence of Soil Particle Size on the Temperature Field and Energy Consumption of Injected Steam Soil Disinfection. Processes 2020, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Sabry, A.; Allam, A.; Abdel-Rahman, A.B.; El-Ansary, D. A novel microwave applicator for sandy soil disinfection. In Proceedings of the 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 636–641. [Google Scholar] [CrossRef]
- Spanu, M.; Fanti, A.; Bruno Lodi, M.; Casu, S.; Desogus, F.; Bisceglia, B.; Mazzarella, G. Microwaves disinfection of farmland. J. Electromagn. Waves Appl. 2016, 30, 2165–2173. [Google Scholar] [CrossRef]
- Casu, S.; Fanti, A.; Lodi, M.B.; Spanu, M.; Desogus, F.; Mazzarella, G. Numerical estimation of agricultural raised bed microwave disinfection. Radio Sci. 2018, 53, 1176–1186. [Google Scholar] [CrossRef]
- Sun, X.; Zhai, C.; Yang, S.; Ma, H.; Zhao, C. Simulations and Experiments of the Soil Temperature Distribution after 2.45-GHz Short-Time Term Microwave Treatment. Agriculture 2021, 11, 933. [Google Scholar] [CrossRef]
- Gay, P.; Piccarolo, P.; Aimonino, D.R.; Tortia, C. A high efficiency steam soil disinfestation system, part I: Physical background and steam supply optimisation. Biosyst. Eng. 2010, 107, 74–85. [Google Scholar] [CrossRef]
- Runia, W.T. A recent development in steam sterilisation. Acta Hort. 1983, 152, 195–200. [Google Scholar] [CrossRef]
- Runia, W.T.; Molendijk, L.P.G. Physical methods for soil disinfestation in intensive agriculturae: Old methods and new approaches. Acta Hort. 2009, 883, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Peruzzi, A.; Raffaelli, M.; Ginanni, M.; Fontanelli, M.; Frasconi, C. An innovative self-propelled machine for soil disinfection using steam and chemicals in an exothermic reaction. Biosyst. Eng. 2011, 110, 434–442. [Google Scholar] [CrossRef]
- Runia, W.T.; Molendijk, L.P.; Neophytou, G.; Greenberger, A. Soil treatment with hot air (Cultivit) as alternative to methyl bromide. Commun. Agric. Appl. Biol. Sci. 2006, 71 2 Pt A, 185–192. [Google Scholar]
- Wang, X.; Li, C.; Yang, Z.; Sun, G.; Shi, Y.; Zhao, B. Development of mobile soil rotary steam disinfection machine. Trans. CSAE 2018, 34, 18–24. [Google Scholar] [CrossRef]
- Gay, P.; Piccarolo, P.; Aimonino, D.R.; Tortia, C. A high efficacy steam soil disinfestation system, part II: Design and testing. Biosyst. Eng. 2010, 107, 194–201. [Google Scholar] [CrossRef]
- Gay, P.; Piccarolo, P.; Ricauda Aimonino, D.; Tortia, C. Soil parameter effects on steam disinfestation efficiency. In Proceedings of the AgEng 2008-International Conference on Agricultural Engineering Conference Proceedings CD, Crete, Greece, 23–25 June 2008; pp. 23–25. [Google Scholar]
- Melander, B.; Jørgensen, M.H. Soil steaming to reduce intra-row weed seedling emergence. Weed Res. 2005, 45, 202–211. [Google Scholar] [CrossRef]
- Dabbene, F.; Gay, P.; Tortia, C. Modeling and control of steam soil disinfestation processes. Biosyst. Eng. 2003, 84, 247–256. [Google Scholar] [CrossRef]
- Pallet, G.; Kelly, C. Environmentally friendly control of soil pests and diseases. Agric. Link 2000, 7, 14–15. [Google Scholar]
- Van Loenen, M.C.A.; Turbett, Y.; Mullins, C.E.; Feilden, N.E.H.; Wilson, M.J.; Leifert, C.; Seel, W.E. Low temperature–short duration steaming of soil kills soilborne pathogens, nematode pests and weeds. Eur. J. Plant Pathol. 2003, 109, 993–1002. [Google Scholar] [CrossRef]
- Gilardi, G.; Gullino, M.L.; Garibaldi, A.; Ricauda, A.D.; Luongo, I. Different steaming methods to control Fusarium wilt agents under simulated conditions. Acta Hort. ISHS 2014, 1044, 237–242. [Google Scholar] [CrossRef]
- Gullino, M.L.; Clini, C.; Garibaldi, A. Life without methyl bromide: The Italian experience in replacing the fumigant. Commun. Agric. Appl. Biol. Sci. 2005, 70, 13–25. [Google Scholar]
- Eugene, J.G. Pest Control Biological, Physical and Selected Chemical Methods. Bull. Entomol. Soc. Am. 1968, 14, 82–83. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, C.; Zhang, J.; Zhao, S. Discussion on Applicability of the Technology of Using Light to Trap in the Field of Pests and Diseases Control in Tea Plantation of China. Key Eng. Mater. 2013, 575–576, 487–493. [Google Scholar] [CrossRef]
- Nalepa, A. Coccinellidae captured in blacklight traps: Seasonal and diel pattern of the dominant species Harmonia axyridis (Coleoptera: Coccinellidae). Eur. J. Entomol. 2013, 110, 593–597. [Google Scholar] [CrossRef] [Green Version]
- Briscoe, A.D.; Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 2001, 46, 471–510. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Heisenberg, M. Photoreceptors and neuralcircuitry underlying phototaxis in insects. Fly 2011, 5, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Lei, C. Advances in research on phototaxis of insects and the mechanism. Entomol. Knowl. 2004, 41, 198–203. [Google Scholar]
- Anja Dieleman, J.; Marjolein Kruidhof, H.; Weerheim, K.; Leiss, K. LED Lighting Strategies Affect Physiology and Resilience to Pathogens and Pests in Eggplant (Solanum melongena L.). Front. Plant Sci. 2021, 11, 2087. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Tang, N.; Hu, X.; Wang, G.; Wei, H. LED multispectral circulation solar insecticidal lamp application in rice field. Trans. CSAE 2016, 32, 193–197. [Google Scholar] [CrossRef]
- Hesler, L.S.; Kieckhefer, R.W.; Catangui, M.A. Surveys and field observations of Harmonia axyridis and other Coccinellidae (Coleoptera) in Eastern and Central South Dakota. Trans. Am. Entomol. Soc. 2004, 130, 113–133. [Google Scholar] [CrossRef]
- Koch, R.L.; Hutghinson, W.D. Phenology and blacklight trapping of the multicolored Asian lady beetle (Coleoptera: Coccinellidae) in a Minnesota agricultural landscape. J. Entomol. Sci. 2003, 38, 477–480. [Google Scholar] [CrossRef]
- Foster, S.P.; Harris, M.O. Behavioral manipulation methods for insectpest-management. Annu. Rev. Entomol. 1997, l42, 123–146. [Google Scholar] [CrossRef] [Green Version]
- Krugner, R.; Gordon, S.D. Mating disruption of Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) by playbackof vibrational signals in vineyard trellis. Pest Manag. Sci. 2018, 74, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- McDonough, M.X.; Mason, L.J.; Woloshuk, C.P. Susceptibility of stored product insects to high concentrations of ozone at different exposure intervals. J. Stored Prod. Res. 2011, 47, 306–310. [Google Scholar] [CrossRef]
- Himanen, S.J.; Nerg, A.M.; Nissinen, A.; Stewart, C.N.; Poppy, G.M.; Holopainen, J.K. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent. Environ. Pollut. 2009, 157, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Pandiselvam, R.; Thirupathi, V.; Mohan, S.; Vennila, P.; Uma, D.; Shahir, S.; Anandakumar, S. Gaseous ozone: A potent pest management strategy to control Callosobruchus maculatus (Coleoptera: Bruchidae) infesting green gram. J. Appl. Entomol. 2019, 143, 451–459. [Google Scholar] [CrossRef]
- Oner, M.E.; Walker, P.N.; Dmirci, A. Effect of inpackage gaseous ozone treatment on shelf life of blanched potato strips during refrigerated storage. Int. J. Food Sci. Technol. 2011, 46, 406–412. [Google Scholar] [CrossRef]
- Fan, X.; Shang, D.; Lan, Y.; Bai, J.; Han, X. Application of Ozone Technology and Ozone Plant Protection Devices in Agriculture. J. Agric. Sci. Technol. 2020, 22, 71–77. [Google Scholar] [CrossRef]
- Mitsugi, F.; Abiru, T.; Ikegami, T.; Ebihara, K.; Nagahama, K. Treatment of nematode in soil using surface barrier discharge ozone generator. IEEE Trans. Plasma Sci. 2017, 45, 3076–3081. [Google Scholar] [CrossRef]
- Ebihara, K.; Mitsugi, F.; Ikegami, T.; Nakamura, N.; Hashimoto, Y.; Yamashita, Y.; Baba, S.; Stryczewska, H.D.; Pawlat, J.; Teli, S.; et al. Ozone-mist spray sterilization for pest control in agricultural management. Eur. Phys. J. Appl. Phys. 2013, 61, 24318. [Google Scholar] [CrossRef]
- Ebihara, K.; Mitsugi, F.; Ikegami, T.; Yamashita, Y.; Hashimoto, Y.; Yamashita, T.; Kanazawa, S.; Stryczewska, H.D.; Pawlat, J.; Teli, S.; et al. Sterilization characteristics of ozone-mist spray for chemical free agriculture. Int. J. Plasma Environ. Sci. Technol. 2016, 10, 11–15. [Google Scholar]
- Wang, Z.; Qiao, X.; Liu, Z.; Wang, Y.; LI, Y. Design and Experiment of Multi-functional Plant Protection Machine for Controlling Vegetable Diseases and Insect Pests in Greenhouses. Trans. CSAM 2021, 52, 293–300. [Google Scholar] [CrossRef]
- Qiao, X.; Jia, H.; Wang, C.; Wang, K.; Yan, B.; Guo, W. Design and Experiment of Ozone Sterilizer Device for Organic Matrix. Trans. CSAM 2020, 51, 138–145. [Google Scholar] [CrossRef]
- Wang, B. The Design and Experimental Research of Weeding Plant between Soybean Seedlings. Master’s Thesis, Harbin Northeast Agricultural University, Harbin, China, 2018. [Google Scholar]
- Home, M. An Investigation into the Design of Cultivation Systems for Inter-and Intra-Row Weed Control. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2003. [Google Scholar]
- O’dogherty, M.J.; Godwin, R.J.; Dedousis, A.P.; Brighton, J.L.; Tillett, N.D. A mathematical model of the kinematics of a rotating disc for inter-and intra-row hoeing. Biosyst. Eng. 2007, 96, 169–179. [Google Scholar] [CrossRef]
- Melander, B. Optimization of the adjustment of a vertical axis rotary brush weeder for intra-row weed control in row crops. J. Agric. Eng. Res. 1997, 68, 39–50. [Google Scholar] [CrossRef]
- Dedousis, A.P.; Godwin, R.J.; O’Dogherty, M.J.; Tillett, N.D.; Grundy, A.C. Inter and intra-row mechanical weed control with rotating discs. Precis. Agric. 2007, 7, 493–498. [Google Scholar]
- Tillett, N.D.; Hague, T.; Grundy, A.C.; Dedousis, A.P. Mechanical within-row weed control for transplanted crops using computer vision. Biosyst. Eng. 2008, 99, 171–178. [Google Scholar] [CrossRef]
- Melander, B. Intelligent versus non-intelligent mechanicalintra-row weed control in transplanted onion and cabbage. Crop Prot. 2015, 72, 1–8. [Google Scholar] [CrossRef]
- Lati, R.N.; Siemens, M.C.; Rachuy, J.S.; Fennimore, S.A. Intrarow weed removal in broccoli and transplanted lettuce with an intelligent cultivator. Weed Technol. 2016, 30, 655–663. [Google Scholar] [CrossRef]
- Sivesind, E.C.; Leblanc, M.L.; Cloutier, D.C.; Seguin, P.; Stewart, K.A. Weed response to flame weeding at different developmental stages. Weed Technol. 2009, 23, 438–443. [Google Scholar] [CrossRef]
- Wszelaki, A.L.; Doohan, D.J.; Alexandrou, A. Weed control and crop quality in cabbage (Brassica oleracea (capitata group)) and tomato (Lycopersicon lycopersicum) using a propane flamer. Crop Prot. 2007, 26, 134–144. [Google Scholar] [CrossRef]
- Raffaelli, M.; Martelloni, L.; Frasconi, C.; Fontanelli, M.; Carlesi, S.; Peruzzi, A. A prototype band-steaming machine: Design and field application. Biosyst. Eng. 2016, 144, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Melander, B.; Kristensen, J.K. Soil steaming effects on weed seedling emergence under the influence of soil type, soil moisture, soil structure and heat duration. Ann. Appl. Biol. 2010, 158, 194–203. [Google Scholar] [CrossRef]
- Liu, Y. Between Strains Weeding Machine Design, Simulation and Experimental Research. Master’s Thesis, Henan Agricultural University, Henan, China, 2017; pp. 1–20. [Google Scholar]
- Wang, S.; Song, J.; He, X.; Song, L.; Wang, X.; Wang, C.; Wang, Z.; Ling, Y. Performances evaluation of four typical unmanned aerial vehicles used for pesticide application in China. Int. J. Agric. Biol. Eng. 2017, 10, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; He, X.; Song, J.; Wang, Z.; Wang, C.; Wang, S.; Wu, R.; Meng, Y. Drift potential of UAV with adjuvants in aerial applications. Int J. Agric. Biol. Eng. 2018, 11, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.G.; Allen, P.S.; Bennett, M.A.; Bradford, K.J.; Burris, J.S.; Misra, M.K. Seed enhancements. Seed Sci. Res. 1998, 8, 245–256. [Google Scholar] [CrossRef]
- Sharma, K.K.; Singh, U.S.; Sharma, P.; Kumar, A.; Sharma, L. Seed treatments for sustainable agriculture-A review. J. Appl. Nat. Sci. 2015, 7, 521–539. [Google Scholar] [CrossRef]
- Bhandari, G. An overview of agrochemicals and their effects on environment in Nepal. Appl. Ecol. Environ. Sci. 2014, 2, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Hussey, N.W.; Stacey, D.L.; Parr, W.J. Control of the leaf-miner Liriomyza bryoniae within an integrated programme for the pests and diseases of tomato. In Proceedings of the Eighth British Insecticide and Fungicide Conference, Brighton, England, 17–20 November 1975; British Crop Protection Council: Farnham, UK, 1976; Volume 1–3, pp. 109–116. [Google Scholar]
- Van Lenteren, J.C. A greenhouse without pesticides: Fact or fantasy? Crop Prot. 2000, 19, 375–384. [Google Scholar] [CrossRef]
- Parsa, S.; Morse, S.; Bonifacio, A.; Chancellor, T.C.; Condori, B.; Crespo-Pérez, V.; Hobbs, S.; Kroschel, J.; Ba, M.N.; Rebaudo, F.; et al. Obstacles to integrated pest management adoption in developing countries. Proc. Natl. Acad. Sci. USA 2014, 111, 3889–3894. [Google Scholar] [CrossRef] [Green Version]
- Jayasooriya, H.J.C.; Aheeyar, M.M.M. Adoption and factors affecting on adoption of integrated pest management among vegetable farmers in Sri Lanka. Procedia Food Sci. 2016, 6, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Paudel, S.; Sah, L.P.; Devkota, M.; Poudyal, V.; Prasad, P.V.; Reyes, M.R. Conservation Agriculture and Integrated Pest Management Practices Improve Yield and Income while Reducing Labor, Pests, Diseases and Chemical Pesticide Use in Smallholder Vegetable Farms in Nepal. Sustainability 2020, 12, 6418. [Google Scholar] [CrossRef]
- Rezaei, R.; Safa, L.; Damalas, C.A.; Ganjkhanloo, M.M. Drivers of farmers’ intention to use integrated pest management: Integrating theory of planned behavior and norm activation model. J. Environ. Manag. 2019, 236, 328–339. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xu, T.; Li, X. Development Status and Perspectives of Crop Protection Machinery and Techniques for Vegetables. Horticulturae 2022, 8, 166. https://doi.org/10.3390/horticulturae8020166
Wang S, Xu T, Li X. Development Status and Perspectives of Crop Protection Machinery and Techniques for Vegetables. Horticulturae. 2022; 8(2):166. https://doi.org/10.3390/horticulturae8020166
Chicago/Turabian StyleWang, Shilin, Tao Xu, and Xue Li. 2022. "Development Status and Perspectives of Crop Protection Machinery and Techniques for Vegetables" Horticulturae 8, no. 2: 166. https://doi.org/10.3390/horticulturae8020166
APA StyleWang, S., Xu, T., & Li, X. (2022). Development Status and Perspectives of Crop Protection Machinery and Techniques for Vegetables. Horticulturae, 8(2), 166. https://doi.org/10.3390/horticulturae8020166