Evaluation of Reference Genes for Quantitative PCR in Eustoma grandiflorum under Different Experimental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Drought-Stress Treatment and Salinity-Stress Treatment
2.3. Total RNA Extraction and cDNA Synthesis
2.4. Primer Designing and Primer Efficiency Analysis
2.5. RT-qPCR
2.6. Reference Gene Stability Analysis
2.7. Validation of Reference Gene Stability
3. Results
3.1. Selection of Candidate Reference Genes and Primer Specificity and Efficiency Analysis
3.2. Analysis of Candidate Reference Genes Ct (Cycle Threshold) Values
3.3. Stability Ranking of Candidate Reference Genes
3.3.1. GeNorm Analysis
3.3.2. NormFinder Analysis
3.3.3. BestKeeper Analysis
3.3.4. RefFinder Analysis
3.4. Validation of Candidate Reference Gene Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ushio, A.; Shimaji, H.; Fukuta, N. Effects of CO2 enrichment on the cut flower quality and economic efficiency of Eustoma Grandiflorum (Raf.) Shinn. during the winter season production in a mild climate region with high sunshine in Japan. Shokubutsu Kankyo Kogaku 2018, 30, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Nakatsuka, T.; Saito, M.; Yamada, E.; Fujita, K.; Yamagishi, N.; Yoshikawa, N.; Nishihara, M. Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian. BMC Plant Biol. 2015, 15, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemura, Y.; Kuroki, K.; Katou, M.; Kishimoto, M.; Tsuji, W.; Nishihara, E.; Tamura, F. Gene expression changes triggered by end-of-day far-red light treatment on early developmental stages of Eustoma Grandiflorum (Raf.) Shinn. Sci. Rep. 2015, 5, 17864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gachon, C.; Mingam, A.; Charrier, B. Real-time PCR: What relevance to plant studies? J. Exp. Bot. 2004, 55, 1445–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huggett, J.; Dheda, K.; Bustin, S.; Zumla, A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005, 6, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udvardi, M.K.; Czechowski, T.; Scheible, W.-R. Eleven golden rules of quantitative RT-PCR. Plant Cell 2008, 20, 1736–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guénin, S.; Mauriat, M.; Pelloux, J.; Van Wuytswinkel, O.; Bellini, C.; Gutierrez, L. Normalization of qRT-PCR data: The necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 2009, 60, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Fleige, S.; Pfaffl, M.W. RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Aspects Med. 2006, 27, 126–139. [Google Scholar] [CrossRef]
- Klein, D. Quantification using real-time PCR technology: Applications and limitations. Trends Mol. Med. 2002, 8, 257–260. [Google Scholar] [CrossRef]
- Derveaux, S.; Vandesompele, J.; Hellemans, J. How to do successful gene expression analysis using real-time PCR. Methods 2010, 50, 227–230. [Google Scholar] [CrossRef]
- Huggett, J.; Bustin, S.A. Standardisation and reporting for nucleic acid quantification. Accredit. Qual. Assur. 2011, 16, 399–405. [Google Scholar] [CrossRef]
- Joseph, J.T.; Poolakkalody, N.J.; Shah, J.M. Plant reference genes for development and stress response studies. J. Biosci. 2018, 43, 173–187. [Google Scholar] [CrossRef]
- Li, Y.; Qu, Y.; Wang, Y.; Bai, X.; Tian, G.; Liu, Z.; Li, Y.; Zhang, K. Selection of suitable reference genes for qRT-PCR analysis of Begonia semperflorens under stress conditions. Mol. Biol. Rep. 2019, 46, 6027–6037. [Google Scholar] [CrossRef]
- Radonić, A.; Thulke, S.; Mackay, I.M.; Landt, O.; Siegert, W.; Nitsche, A. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2004, 313, 856–862. [Google Scholar] [CrossRef]
- Kim, B.-R.; Nam, H.-Y.; Kim, S.-U.; Kim, S.-I.; Chang, Y.-J. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol. Lett. 2003, 25, 1869–1872. [Google Scholar] [CrossRef]
- Jain, M.; Nijhawan, A.; Tyagi, A.K.; Khurana, J.P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2006, 345, 646–651. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Kim, M.; Gee, M.; Loh, A.; Rachatasumrit, N. Ref-Finder: A refactoring reconstruction tool based on logic query templates. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineering, Santa Fe, NM, USA, 7–11 November 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 371–372. [Google Scholar]
- Czechowski, T.; Stitt, M.; Altmann, T.; Udvardi, M.K.; Scheible, W.-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Narsai, R.; Ivanova, A.; Ng, S.; Whelan, J. Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biol. 2010, 10, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallona, I.; Lischewski, S.; Weiss, J.; Hause, B.; Egea-Cortines, M. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol. 2010, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, R.; Fan, C.; Li, H.; Zhang, Q.; Fu, Y.-F. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol. Biol. 2009, 10, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kou, X.; Zhang, L.; Yang, S.; Li, G.; Ye, J. Selection and validation of reference genes for quantitative RT-PCR analysis in peach fruit under different experimental conditions. Sci. Hortic. 2017, 225, 195–203. [Google Scholar] [CrossRef]
- Fan, C.; Ma, J.; Guo, Q.; Li, X.; Wang, H.; Lu, M. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS ONE 2013, 8, e56573. [Google Scholar] [CrossRef] [Green Version]
- Sang, J.; Wang, Z.; Li, M.; Cao, J.; Niu, G.; Xia, L.; Zou, D.; Wang, F.; Xu, X.; Han, X.; et al. ICG: A wiki-driven knowledgebase of internal control genes for RT-qPCR normalization. Nucleic Acids Res. 2018, 46, D121–D126. [Google Scholar] [CrossRef] [Green Version]
- Thiruvengadam, M.; Yang, C.-H. Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum. Plant Cell Rep. 2009, 28, 1463. [Google Scholar] [CrossRef]
- Nakano, Y.; Kawashima, H.; Kinoshita, T.; Yoshikawa, H.; Hisamatsu, T. Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: Effects of vernalization and post-vernalization conditions on flowering and gene expression. Physiol. Plant. 2011, 141, 383–393. [Google Scholar] [CrossRef]
- Tominaga, T.; Miura, C.; Takeda, N.; Kanno, Y.; Takemura, Y.; Seo, M.; Yamato, M.; Kaminaka, H. Gibberellin promotes fungal entry and colonization during Paris-type arbuscular mycorrhizal symbiosis in Eustoma grandiflorum. Plant Cell Physiol. 2020, 61, 565–575. [Google Scholar] [CrossRef]
- Ruijter, J.; Ramakers, C.; Hoogaars, W.; Karlen, Y.; Bakker, O.; Van den Hoff, M.; Moorman, A. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009, 37, e45. [Google Scholar] [CrossRef] [Green Version]
- Gertz, E.M.; Yu, Y.-K.; Agarwala, R.; Schäffer, A.A.; Altschul, S.F. Composition-based statistics and translated nucleotide searches: Improving the TBLASTN module of BLAST. BMC Biol. 2006, 4, 41. [Google Scholar] [CrossRef]
- Wang, L.; Xue, W.; Li, X.; Li, J.; Wu, J.; Xie, L.; Kawabata, S.; Li, Y.; Zhang, Y. EgMIXTA1, a MYB-type transcription factor, promotes cuticular wax formation in Eustoma grandiflorum leaves. Front. Plant Sci. 2020, 11, 524947. [Google Scholar] [CrossRef]
- Feng, X.J.; Li, J.R.; Qi, S.L.; Lin, Q.F.; Jin, J.B.; Hua, X.J. Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proc. Natl. Acad. Sci. USA 2016, 113, E8335–E8343. [Google Scholar] [CrossRef] [Green Version]
- Oshima, Y.; Shikata, M.; Koyama, T.; Ohtsubo, N.; Mitsuda, N.; Ohme-Takagi, M. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell 2013, 25, 1609–1624. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, M.K.; McKinney, E.C.; Meagher, R.B. A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. Plant Cell 2009, 21, 701–718. [Google Scholar] [CrossRef] [Green Version]
Gene | Homologous Gene Name and Accession Number | Definition | Gene ID | Primer Sequence (5′→3′) | Product Size (bp) | Amplification Efficiency (%) | R2 |
---|---|---|---|---|---|---|---|
EgCYP63 | NtCYP63 XM_009602865.3 | Nicotiana tomentosiformis peptidyl-prolyl cis-trans | c88166.graph | F: GCACTGGTGGAGAGAGTATTT R: TGGTGTTTGGACCGCTATT | 108 | 96.9 | 1 |
EgCYP20 | VvCYP20 XM_002277727.4 | Vitis vinifera peptidyl-prolyl cis-trans isomerase | c71397.graph | F: GGGAAGCCTCTTCACTACAAA R: GATTCTCCACCTCTGCCATC | 104 | 96.1 | 1 |
EgACT1 | NtACT7 XM_016658880.1 | Nicotiana tabacum actin-7 | c90884.graph_c1 | F: AGGCCGTGCTATCTCTCTAT R: GAGCATAACCCTCGTAGATTGG | 102 | 98.1 | 0.999 |
EgACT2 | NtACT7 XM_016658880.1 | Nicotiana tabacum actin-7 | c90884.graph_c2 | F: CTCGTCCCTTGAGAAGAACTATG R: CGATCATGCTAGGCTGGAAA | 104 | 99.1 | 0.996 |
EgUBQ | CeUBQ XM_027328677 | Coffea eugenioides ubiquitin-NEDD8-like protein RUB2 | c67028.graph | F: GGTGAAGACTCTTACTGGAAAGG R: CTCTTCCACCCGCTCTTTAAT | 85 | 95.3 | 0.997 |
EgTUA | CaTUA XM_027217029.1 | Coffea arabica tubulin alpha-3 chain | c90759.graph | F: CTGCAGGAGATCTCTGGATATTG R: CCATCAAACCGCAAAGAAGTG | 102 | 96.4 | 0.999 |
EgTUB1 | SiTUB XM_011077861.2 | Sesamum indicum tubulin beta-1 chain | c76703.graph | F: CGCTTCCCTGGTCAACTAAA R: GTGGAGCAAATCCAACCATAAAG | 129 | 95.0 | 0.999 |
Eg18S | Ca18S XM_027251242.1 | Coffea arabica 18S rRNA | c62153.graph | F: TCTCTGCTGTTCAGTGGTTATG R: GCTCCTCTTGCCAAACTTCTA | 106 | 95.6 | 0.998 |
EgeIF4A3 | CeEIF4A3 XM_027292256.1 | Coffea eugenioides eukaryotic initiation factor 4A-3 | c85413.graph | F: AGTTCGATACACTCTGCGATTT R: GTCAGCCAGTCAACCTTTCT | 91 | 94.2 | 0.999 |
EgEF1A | CaEF1A XM_027252439.1 | Coffea arabica elongation factor 1-alpha | c85993.graph | F: GGATATGCTCCAGTCCTTGATT R: GGTTCCTTCTCAAGCTCCTTAC | 107 | 98.6 | 0.995 |
EgGAPC | CeGAPC XM_027295750.1 | Coffea eugenioides glyceraldehyde-3-phosphate dehydrogenase 2 | c88087.graph | F: TAAGGAGGAGTCAGAGGGTAAG R: GATCTGCTATCACCGACAAAGT | 90 | 96 | 0.999 |
EgPP2A2 | SiPP2A XM_011095100.2 | Sesamum indicum serine/threonine-protein phosphatase PP2A-2 | c88536.graph | F: GTGGCAACATGGCATCTATTT R: GTAACATCAGGCTCTCCTCTTC | 97 | 93.7 | 1 |
EgTIP4 | CeTIP4 XM_027304349.1 | Coffea eugenioides TIP41-like protein | c77390.graph | F: CGGAGCAAGTGATTCTGGATTA R: CTGAACAGTCCTCCCAACATAC | 138 | 94.5 | 1 |
Eg50SRP1 | Ha50SRP XM_022173943.2 | Helianthus annuus 50S ribosomal protein L3 | c82916.graph | F: ATCCAGCAAGGGTTTCCTTTA R: CTTGGCCATCCTTTCCTAACT | 99 | 98.4 | 0.999 |
Eg50SRP2 | Ca50SRP XM_027265126.1 | Coffea arabica 50S ribosomal protein L3-2 | c85685.graph | F: CGGTTCAAGTTGGGTATAGGAG R: GAAGATGCCGAAGAGGGATTAT | 97 | 93.4 | 1 |
EgNRPB2 | CaNRPB XM_027311445.1 | Coffea arabica DNA-directed RNA polymerase II subunit RPB2 | c85245.graph | F: TGGGAAGACTACGCCAATTAC R: CTGGTGCTGTGATCCTTCTT | 90 | 98.05 | 0.997 |
EgNRPB3 | PaNRPB XM_035072035.1 | Populus alba DNA-directed RNA polymerases II, IV and V | c92646.graph | F: GACTTGGCTTGATTCCTCTCTT R: AATACTCGCACTGTCCATCAC | 112 | 97.49 | 0.995 |
EgPP | CePP XM_027312588.1 | Coffea eugenioides threonine-protein phosphatase | c86598.graph | F: ATGGTGGTCTCTCTCCAGAT R: TCCACATAAGGTCACAGAAAGG | 102 | 95.6 | 0.998 |
Rank | Different Organs | Double Flower Development | Drought Stress | Salt Stress | ||||
---|---|---|---|---|---|---|---|---|
Gene | CV ± SD | Gene | CV ± SD | Gene | CV ± SD | Gene | CV ± SD | |
18 | EgTUB1 | 4.13 ± 0.85 | EgCYP63 | 5.81 ± 1.37 | Eg50SRP1 | 2.80 ± 0.91 | Eg50SRP1 | 6.20 ± 1.21 |
17 | EgGAPC | 4.03 ± 0.82 | Eg18S | 7.14 ± 1.01 | EgCYP20 | 2.25 ± 0.99 | EgACT2 | 5.29 ± 0.94 |
16 | EgCYP20 | 3.89 ± 0.79 | EgTUB1 | 7.25 ± 0.89 | EgGAPC | 2.25 ± 0.96 | EgPP2A2 | 4.83 ± 0.87 |
15 | EgUBQ | 3.24 ± 0.65 | EgeIF4A3 | 5.79 ± 0.81 | EgACT1 | 2.17 ± 0.97 | EgGAPC | 4.22 ± 0.71 |
14 | EgACT2 | 3.14 ± 0.57 | Eg50SRP1 | 6.86 ± 0.72 | EgUBQ | 2.14 ± 0.85 | EgTUB1 | 4.22 ± 0.82 |
13 | Eg50SRP1 | 2.68 ± 0.67 | EgGAPC | 7.10 ± 0.62 | EgTIP4 | 2.03 ± 0.96 | EgEF1A | 4.20 ± 0.74 |
12 | EgACT1 | 2.50 ± 0.47 | EgACT2 | 8.04 ± 0.55 | EgNRPB3 | 1.92 ± 0.79 | EgCYP20 | 4.16 ± 0.79 |
11 | Eg18S | 2.42 ± 0.56 | Eg50SRP2 | 7.11±0.57 | EgACT2 | 1.79 ± 0.78 | EgTUA | 3.76 ± 0.73 |
10 | EgTIP4 | 2.38 ± 0.55 | EgTUA | 6.08 ± 0.72 | EgPP | 1.74 ± 0.86 | EgNRPB3 | 3.54 ± 0.73 |
9 | EgeIF4A3 | 2.04 ± 0.47 | EgUBQ | 5.41 ±0.56 | EgEF1A | 1.54 ± 0.76 | EgACT1 | 3.51 ± 0.62 |
8 | EgEF1A | 2.02 ± 0.37 | EgTIP4 | 6.08 ± 0.34 | Eg50SRP2 | 1.53 ± 0.80 | EgNRPB2 | 3.51 ± 0.71 |
7 | EgTUA | 2.00 ± 0.43 | EgEF1A | 5.91 ± 0.43 | EgeIF4A3 | 1.47 ± 0.77 | EgTIP4 | 3.24 ± 0.69 |
6 | EgNRPB2 | 1.96 ± 0.47 | EgCYP20 | 5.81 ± 0.44 | EgNRPB2 | 1.33 ± 0.82 | EgPP | 2.96 ± 0.62 |
5 | EgCYP63 | 1.81 ± 0.41 | EgNRPB3 | 5.72 ± 0.45 | EgTUB1 | 1.32 ± 0.79 | EgUBQ | 2.90 ± 0.55 |
4 | EgPP2A2 | 1.73 ± 0.37 | EgACT1 | 5.20 ± 0.46 | Eg18S | 1.27 ± 0.68 | Eg18S | 2.85 ± 0.62 |
3 | Eg50SRP2 | 1.69 ± 0.44 | EgPP2A2 | 5.20 ± 0.37 | EgTUA | 1.13 ± 0.48 | EgeIF4A3 | 2.78 ± 0.61 |
2 | EgPP | 1.53 ± 0.34 | EgPP | 3.91 ± 0.55 | EgPP2A2 | 0.76 ± 0.33 | Eg50SRP2 | 2.44 ± 0.52 |
1 | EgNRPB3 | 1.21 ± 0.28 | EgNRPB2 | 3.91 ± 0.44 | EgCYP63 | 0.74 ± 0.26 | EgCYP63 | 1.39 ± 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, W.; Wang, L.; Li, X.; Tang, M.; Li, J.; Ding, B.; Kawabata, S.; Li, Y.; Zhang, Y. Evaluation of Reference Genes for Quantitative PCR in Eustoma grandiflorum under Different Experimental Conditions. Horticulturae 2022, 8, 164. https://doi.org/10.3390/horticulturae8020164
Xue W, Wang L, Li X, Tang M, Li J, Ding B, Kawabata S, Li Y, Zhang Y. Evaluation of Reference Genes for Quantitative PCR in Eustoma grandiflorum under Different Experimental Conditions. Horticulturae. 2022; 8(2):164. https://doi.org/10.3390/horticulturae8020164
Chicago/Turabian StyleXue, Wanjie, Lishan Wang, Xueqi Li, Mingwei Tang, Jingyao Li, Bing Ding, Saneyuki Kawabata, Yuhua Li, and Yang Zhang. 2022. "Evaluation of Reference Genes for Quantitative PCR in Eustoma grandiflorum under Different Experimental Conditions" Horticulturae 8, no. 2: 164. https://doi.org/10.3390/horticulturae8020164
APA StyleXue, W., Wang, L., Li, X., Tang, M., Li, J., Ding, B., Kawabata, S., Li, Y., & Zhang, Y. (2022). Evaluation of Reference Genes for Quantitative PCR in Eustoma grandiflorum under Different Experimental Conditions. Horticulturae, 8(2), 164. https://doi.org/10.3390/horticulturae8020164