Membrane Fatty Acids and Physiological Disorders in Cold-Stored ‘Golden Delicious’ Apples Treated with 1-MCP and Calcium Chloride
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material and Treatments
2.2. Fatty Acid Identification and Quantification
2.3. Malondialdehyde (MDA) Content
- (1)
- [(Abs 532+TBA) − (Abs 600+TBA) − (Abs 532−TBA − Abs600−TBA)] = A;
- (2)
- [(Abs 440+TBA − Abs 600+TBA) × 0.0571] = B;
- (3)
- MDA equivalent (nmol g−1 FW) = [(A − B/157,000) × 106 × (adjusted sample FW) × (buffer volume)].
2.4. Physiological Disorders and Rots
2.5. Statistical Analysis
3. Results and Discussion
3.1. Changes in Fatty Acids Composition
3.2. Changes in the Ratio of Unsaturated/Saturated Fatty Acids
3.3. Changes in Malondialdehyde (MDA)
3.4. Physiological Disorders
3.5. Correlations among Fatty Acids, MDA and Physiological Disorders
Author Contributions
Funding
Conflicts of Interest
References
- Brackmann, A.; Schorr, M.R.W.; Pinto, J.A.V.; Venturi, T.L. Pre-harvest applications of calcium in post-harvest quality of ‘Fuji’ apples. Cienc. Rural 2010, 40, 1435–1438. [Google Scholar] [CrossRef]
- Gago, C.M.L.; Guerreiro, A.C.; Miguel, G.; Panagopoulos, T.; Sánchez, C.; Antunes, M.D.C. Effect of harvest date and 1-MCP (SmartFreshTM) treatment on ‘Golden Delicious’ apple cold storage physiological disorders. Postharvest Biol. Technol. 2015, 110, 77–85. [Google Scholar] [CrossRef]
- Pesis, E.; Ibanez, A.M.; Phu, M.L.; Mitcham, E.J.; Susan, E.; Ebeler, S.E.; Dandekar, A.M. Superficial scald and bitter pit development in cold-stored transgenic apples suppressed for ethylene biosynthesis. J. Agric. Food Chem. 2009, 57, 2786–2792. [Google Scholar] [CrossRef] [PubMed]
- Gago, C.M.L.; Guerreiro, A.C.; Miguel, G.; Panagopoulos, T.; Silva, M.M.; Antunes, M.D.C. Effect of calcium chloride and 1-MCP (SmartfreshTM) postharvest treatment on ‘Golden Delicious’ apple cold storage physiological disorders. Sci. Hortic. 2016, 211, 440–448. [Google Scholar] [CrossRef]
- Ferguson, I.B.; Watkins, C.B. Bitter-pit in apple fruit. Hortic. Rev. 1989, 11, 289–355. [Google Scholar]
- Freitas, S.T.; Amarante, C.V.T.; Labavitch, J.M.; Mitcham, E.J. Cellular approach to understand bitter pit development in apple fruit. Postharvest Biol. Technol. 2010, 57, 6–13. [Google Scholar] [CrossRef]
- Poovaiah, B.W.; Glenn, G.M.; Reddy, A.S.N. Calcium and fruit softening: Physiology and biochemistry. Hortic. Rev. 1988, 10, 107–152. [Google Scholar]
- Lurie, S.; Watkins, C.B. Superficial scald, its etiology and control. Postharvest Biol. Technol. 2012, 65, 44–60. [Google Scholar] [CrossRef]
- Gago, C.; Antão, R.; Dores, C.; Guerreiro, A.; Miguel, M.G.; Faleiro, M.L.; Figueiredo, A.C.; Antunes, M.D. The effect of nanocoatings enriched with essential oils on ‘Rocha’ pear long storage. Foods 2020, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- Marangoni, A.G.; Palma, T.; Stanley, D.W. Membrane effects in postharvest physiology. Postharvest Biol. Technol. 1996, 7, 193–217. [Google Scholar] [CrossRef]
- Saquet, A.A.; Streif, J.; Bangerth, F. Changes in ATP, ADP and pyridine nucleotide levels related to the incidence of physiological disorders in ‘Conference’ pears and ‘Jonagold’ apples during controlled atmosphere storage. J. Hortic. Sci. Biotechnol. 2000, 75, 243–249. [Google Scholar] [CrossRef]
- Imahori, Y.; Takemura, M.; Bai, J. Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biol. Technol. 2008, 49, 54–60. [Google Scholar] [CrossRef]
- Cheng, S.; Wei, B.; Zhou, Q.; Tan, D.; Ji, S. 1-Methylcyclopropene alleviates chilling injury by regulating energy metabolism and fatty acid content in ‘Nanguo’ pears. Postharvest Biol. Technol. 2015, 109, 130–136. [Google Scholar] [CrossRef]
- Cao, S.; Zheng, Y.; Wang, K.; Jin, P.; Rui, H. Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem. 2009, 115, 1458–1463. [Google Scholar] [CrossRef]
- Jiang, Y.; Joyce, D.C.; Jiang, W.; Lu, W. Effects of chilling temperatures on ethylene binding by banana fruit. Plant Growth Regul. 2004, 43, 109–115. [Google Scholar] [CrossRef]
- Li, P.; Zheng, X.; Liu, Y.; Zhu, Y. Pre-storage application of oxalic acid alleviates chilling injury in mango fruit by modulating proline metabolism and energy status under chilling stress. Food Chem. 2014, 142, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.E.; Findell, J.L.; Schaller, G.E.; Sisler, E.C.; Bleecker, A.B. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol. 2000, 123, 1449–1457. [Google Scholar] [CrossRef] [Green Version]
- Ambaw, A.; Beaudry, R.; Bulens, I.; Delele, M.A.; Ho, Q.T.; Schenk, A.; Nicolaï, B.M.; Verboven, P. Modeling the diffusion–adsorption kinetics of 1-methylcyclopropene (1-MCP) in apple fruit and non-target materials in storage rooms. J. Food Eng. 2011, 102, 257–265. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Murr, D.P.; Paliyath, G.; Skog, L. Inhibitory effect of 1-MCP on ripening and superficial scald development in ‘McIntosh’ and ‘Delicious’ apples. J. Hort. Sci. Biotechnol. 2000, 75, 271–276. [Google Scholar] [CrossRef]
- Calvo, G.; Candan, A.P. 1-Methylcyclopropene (1-MCP) affects physiological disorders in ‘Granny Smith’ apples depending on maturity stage. Acta Hort. 2010, 857, 63–69. [Google Scholar] [CrossRef]
- Larrigaudière, C.; Ubach, D.; Soria, Y.; Recaenses, I. Biochemical changes in 1-MCP treated skin tissue during cold storage and their relationship with physiological disorders. Acta Hort. 2008, 796, 119–123. [Google Scholar] [CrossRef]
- Larrigaudière, C.; Vilaplana, R.; Recasens, I.; Soria, Y.; Dupille, E. ‘Diffuse skin browning’ in 1-MCP-treated apples: Etiology and systems of control. J. Sci. Food Agric. 2010, 90, 2379–2385. [Google Scholar] [CrossRef] [PubMed]
- Gamrasni, D.; Nerya, O.; Tsvilling, A.; Gizis, A.; Maoz-Katz, M.; Ben-Arie, R. The complexity of preventing diffuse skin browning (DSB) on 1-MCP (Smartfresh) -treated ‘GoldenDelicious’ apples. Acta Hort. 2010, 877, 507–511. [Google Scholar] [CrossRef]
- Meyer, M.D.; Terry, L.A. Development of a rapid method for the sequential extraction and subsequent quantification of fatty acids and sugars from avocado mesocarp tissue. J. Agric. Food Chem. 2008, 56, 7439–7445. [Google Scholar] [CrossRef] [PubMed]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, L.; Rudell, D.R.; Watkins, C.B. Antioxidant metabolism of 1-methylcyclopropene (1-MCP) treated ‘Empire’ apples during controlled atmosphere storage. Postharvest Biol. Technol. 2012, 65, 79–91. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical compositional characterization of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Ge, W.; Kong, X.; Zhao, Y.; Wei, B.; Zhou, Q.; Ji, S. Insights into the metabolism of membrane lipid fatty acids associated with chilling injury in post-harvest bell peppers. Food Chem. 2019, 295, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.D.C.; Sfakiotakis, E.M. Changes in fatty acid composition and electrolyte leakage of ‘Hayward’ kiwifruit during storage at different temperatures. Food Chem. 2008, 110, 891–896. [Google Scholar] [CrossRef]
- Gao, H.; Lu, Z.M.; Yang, Y.; Wang, D.N.; Yang, T.; Cao, M.M.; Cao, W. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chem. 2018, 245, 659–666. [Google Scholar] [CrossRef]
- Nukuntornprakit, O.; Chanjirakul, K.; Doorn, K.G.; Siriphanich, J. Chilling injury in pineapple fruit: Fatty acid composition and antioxidant metabolism. Postharvest Biol. Technol. 2015, 99, 20–26. [Google Scholar] [CrossRef]
- Smirnoff, N. Antioxidant systems and plant response to the environment. In Environment and Plant Metabolism: Flexibility and Acclimation; Smirnoff, N., Ed.; Bios Scientific Publishers: Oxford, UK, 1995; pp. 243–317. [Google Scholar]
- Xu, F.; Liu, S. Control of postharvest quality in blueberry fruit by combined 1-methylcyclopropene (1-MCP) and UV-C irradiation. Food Bioproc. Technol. 2017, 10, 1695–1703. [Google Scholar] [CrossRef]
- Du, Z.; Bramlage, W.J. Peroxidative activity of apple peel in relation to development of poststorage disorders. HortScience 1995, 30, 205–209. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Jiang, L.-F.; Zeng, J.-H.; Huo, Y.-R.; Li, Y.-X. Combination of carnauba wax-based coating and 1-methylcyclopropene (1-MCP) maintains better “Fuji” apple qualities during storage at low temperature. J. Food Process. Preserv. 2020, 44, 1–8. [Google Scholar] [CrossRef]
- Lurie, S.; Lers, A.; Shacham, Z.; Sonego, L.; Burd, S.; Whitaker, B. Expression of α-farnesene synthase AFS1 and 3-hydroxy-3-methylglutaryl-coenzymea reductase HMG2 and HMG3 in relation to α-farnesene and conjugated trienolsin ‘Granny Smith’ apples heat or 1-MCP treated to prevent superficial scald. J. Am. Soc. Hortic. Sci. 2005, 130, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Magazin, N.; Gvozdenovic, D.; Keserovic, Z.; Milic, B. Fruit quality of Granny Smith apples picked at different harvest times and treated with 1-MCP. Fruits 2010, 65, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Baldwin, E.A.; Kevin, L.; Goodner, K.L.; Mattheis, J.P.; Brecht, J.K. Response of four apple cultivars to 1-methylcyclopropene treatment and controlled atmosphere storage. HortScience 2005, 40, 1534–1538. [Google Scholar] [CrossRef] [Green Version]
- Watkins, C.B.; Nock, J.F. Effects of delays between harvest and 1-methylcyclopropene treatment, and temperature during treatment, on ripening of air-stored and controlled atmosphere-stored Apples. HortScience 2005, 40, 2096–2101. [Google Scholar] [CrossRef] [Green Version]
- Miqueloto, A.; Amarante, C.V.T.; Steffens, C.A.; Santos, A.D.; Miqueloto, T.; Silveira, J.P.G. Physiological, physical, chemical and mineral attributes associated with the occurrence of “bitter pit” in apples. Pesqui. Agropecu. Bras. 2011, 46, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Li, Z.; Zheng, Y.; Jin, P. Effects of CaCl2 treatment alleviates chilling injury of loquat fruit (Eribotrya japonica) by modulating ROS homeostasis. Foods 2021, 10, 1662. [Google Scholar] [CrossRef]
Disorder | Control | Ca | MCP | Ca + MCP |
---|---|---|---|---|
BP (%) | 18.61 b | 13.95 b | 27.21 a | 17.74 b |
Scald (%) | 3.53 a | 1.99 a | 0.10 a | 3.73 a |
DSB (%) | 2.50 b | 5.02 a | 0.62 b | 1.82 b |
Rot (%) | 5.56 a | 1.15 b | 2.56 b | 0.80 b |
Parameters | Palmitic | Linoleic | Oleic | Stearic Unsat/sat | MDA | |
---|---|---|---|---|---|---|
Palmitic acid | 1 | −0.930 ** | 0.106 | −0.026 | −0.957 ** | −0.554 * |
Linoleic acid | −0.930 ** | 1 | −0.440 | −0.108 | 0.944 ** | 0.577 * |
Oleic acid | 0.106 | −0.440 | 1 | 0.239 | −0.189 | −0.183 |
Stearic acid | −0.026 | −0.108 | 0.239 | 1 | 0.014 | 0.135 |
Unsaturated/saturated | −0.957 ** | 0.944 ** | −0.189 | 0.014 | 1 | 0.639 ** |
MDA | −0.554 * | 0.577 * | −0.183 | 0.135 | 0.639 ** | 1 |
BP | 0.151 | −0.074 | −0.166 | 0.032 | −0.199 | 0.139 |
Scald | −0.151 | 0.076 | 0.168 | −0.028 | 0.203 | −0.135 |
DSB | −0.056 | 0.057 | 0.091 | 0.079 | 0.148 | 0.035 |
Rot | −0.083 | 0.068 | 0.118 | 0.066 | 0.178 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, M.D.; Guimarães, A.C.; Gago, C.; Guerreiro, A.; Panagopoulos, J.; Vilas Boas, E.; Miguel, M.G. Membrane Fatty Acids and Physiological Disorders in Cold-Stored ‘Golden Delicious’ Apples Treated with 1-MCP and Calcium Chloride. Horticulturae 2022, 8, 162. https://doi.org/10.3390/horticulturae8020162
Antunes MD, Guimarães AC, Gago C, Guerreiro A, Panagopoulos J, Vilas Boas E, Miguel MG. Membrane Fatty Acids and Physiological Disorders in Cold-Stored ‘Golden Delicious’ Apples Treated with 1-MCP and Calcium Chloride. Horticulturae. 2022; 8(2):162. https://doi.org/10.3390/horticulturae8020162
Chicago/Turabian StyleAntunes, Maria Dulce, Ana Clara Guimarães, Custódia Gago, Adriana Guerreiro, Jorge Panagopoulos, Eduardo Vilas Boas, and Maria Graça Miguel. 2022. "Membrane Fatty Acids and Physiological Disorders in Cold-Stored ‘Golden Delicious’ Apples Treated with 1-MCP and Calcium Chloride" Horticulturae 8, no. 2: 162. https://doi.org/10.3390/horticulturae8020162
APA StyleAntunes, M. D., Guimarães, A. C., Gago, C., Guerreiro, A., Panagopoulos, J., Vilas Boas, E., & Miguel, M. G. (2022). Membrane Fatty Acids and Physiological Disorders in Cold-Stored ‘Golden Delicious’ Apples Treated with 1-MCP and Calcium Chloride. Horticulturae, 8(2), 162. https://doi.org/10.3390/horticulturae8020162