Effects of Magnesium Application on Tipburn Incidence and Calcium Acquisition in Lisianthus (Eustoma grandiflorum) Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Treatments
2.3. Sampling
2.4. Tipburn Severity and Incidence
2.5. Mesurments of Ca and Mg Concentrations
2.6. Statistical Analysis
3. Results and Discussion
3.1. Tipburn Severity and Incidence and Plant Growth
3.2. Mg and Ca Acquisition
3.3. Mg and Ca Distribution
3.3.1. Celeb Wine (CW)
3.3.2. Reina White (RW)
3.3.3. Voyage Peach (VP)
3.4. Relevance of Mg and Ca Concentrations in Same Organ
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Cox, E.F.; McKee, J.M.T.; Dearman, A.S. The effect of growth rate on tipburn occurrence in lettuce. J. Hortic. Sci. 1976, 51, 297–309. [Google Scholar] [CrossRef]
- Collier, G.F.; Huntington, V.C. The relationship between leaf growth, calcium accumulation and distribution, and tipburn development in field-grown butterhead lettuce. Sci. Hortic. 1983, 21, 123–128. [Google Scholar] [CrossRef]
- Saure, M.C. Causes of the tipburn disorder in leaves of vegetables. Sci. Hortic. 1998, 76, 131–147. [Google Scholar] [CrossRef]
- Kuronuma, T.; Watanabe, Y.; Ando, M.; Watanabe, H. Relevance of tipburn incidence to the competence for Ca acquirement and Ca distributivity in lisianthus [Eustoma grandiflorum (Raf.) Shinn.] cultivars. Sci. Hortic. 2019, 246, 805–811. [Google Scholar] [CrossRef]
- Wiebe, H.J.; Schätzler, H.P.; Kühn, W. On the movement and distribution of calcium in white cabbage in dependence of the water status. Plant Soil 1977, 48, 409–416. [Google Scholar] [CrossRef]
- Barta, D.J.; Tibbitts, T.W. Calcium localization and tipburn development in lettuce leaves during early enlargement. J. Am. Soc. Hortic. Sci. 2020, 125, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Olle, M.; Bender, I. Causes and control of calcium deficiency disorders in vegetables: A review. J. Hortic. Sci. Biotech. 2009, 84, 577–584. [Google Scholar] [CrossRef]
- Mason, G.F.; Guttridge, C.G. The influence of relative humidity and nutrition on leaf tipburn of strawberry. Sci. Hortic. 1975, 3, 339–349. [Google Scholar] [CrossRef]
- Kuronuma, T.; Watanabe, Y.; Ando, M.; Watanabe, H. Tipburn severity and calcium distribution in lisianthus (Eustoma grandiflorum (Raf.) Shinn.) cultivars under different relative air humidity conditions. Agronomy 2018, 8, 218. [Google Scholar] [CrossRef] [Green Version]
- Bautista, A.S.; López-Galarza, S.; Martínez, A.; Pascual, B.; Maroto, J.V. Influence of cation proportions of the nutrient solution on tipburn incidence in strawberry plants. J. Plant Nutr. 2009, 32, 1527–1539. [Google Scholar] [CrossRef]
- Kuronuma, T.; Ando, M.; Watanabe, H. Tipburn Incidence and Ca acquisition and distribution in lisianthus (Eustoma grandiflorum (Raf.) Shinn.) cultivars under different Ca concentrations in nutrient solution. Agronomy 2020, 10, 216. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.G.; Choi, C.S.; Jang, Y.A.; Jang, S.W.; Lee, S.G.; Um, Y.C. Effects of air temperature and air flow rate control on the tipburn occurrence of leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotech. 2013, 54, 303–310. [Google Scholar] [CrossRef]
- Holmes, S.C.; Wells, D.E.; Pickens, J.M.; Kemble, J.M. Selection of heat tolerant lettuce (Lactuca sativa L.) cultivars grown in deep water culture and their marketability. Horticulturae 2019, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Sago, Y. Effects of light intensity and growth rate on tipburn development and leaf calcium concentration in butterhead lettuce. HortScience 2016, 51, 1087–1091. [Google Scholar] [CrossRef]
- Collier, G.F.; Tibbitts, T.W. Tipburn of Lettuce. Hortic. Rev. 1982, 4, 49–67. [Google Scholar] [CrossRef]
- Ohkawa, K.; Kano, A.; Kanematsu, K.; Korenaga, M. Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum (Raf.) Shinn. Sci. Hortic. 1991, 48, 171–176. [Google Scholar] [CrossRef]
- Kawakatsu, K.; Ushio, A.; Fukuta, N. Anatomical Characterization of Flower-bud Blasting and Suppression Following Hormone Application in Eustoma grandiflorum (Raf.) Shinn. J. Jap. Soc. Hortic. Sci. 2012, 81, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Kuronuma, T.; Kinoshita, N.; Ando, M.; Watanabe, H. Difference of Ca distribution before and after the onset of tipburn in lisianthus [Eustoma grandiflorum (Raf.) Shinn.] cultivars. Sci. Hortic. 2020, 261, 108911. [Google Scholar] [CrossRef]
- Kuronuma, T.; Saotome, M.; Ando, M.; Watanabe, H. Excessive Calcium Accumulation in the Roots Is a Key Factor in Tipburn Incidence under High Ca Supply in Lisianthus (Eustoma grandiflorum) Cultivars. Agronomy 2020, 10, 1123. [Google Scholar] [CrossRef]
- Kuronuma, T.; Watanabe, H. Search for Candidate Genes Causing the Excessive Ca Accumulation in Roots of Tipburn-Damaged Lisianthus (Eustoma grandiflorum) Cultivars. Agriculture 2021, 11, 254. [Google Scholar] [CrossRef]
- Kuo, C.G.; Tsay, J.S.; Tsai, C.L.; Chen, R.J. Tipburn of Chinese cabbage in relation to calcium nutrition and distribution. Sci. Hortic. 1981, 14, 131–138. [Google Scholar] [CrossRef]
- Crisp, P.; Collier, G.F.; Thomas, T.H. The effect of boron on tipburn and auxin activity in lettuce. Sci. Hortic. 1976, 5, 215–226. [Google Scholar] [CrossRef]
- Mason, G.F.; Guttridge, C.G. The role of calcium, boron and some divalent ions in leaf tipburn of strawberry. Sci. Hortic. 1974, 2, 299–308. [Google Scholar] [CrossRef]
- Fageria, V.D. Nutrient interactions in crop plants. J. Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
- Huber, D.M.; Jones, J.B. The role of magnesium in plant disease. Plant Soil 2013, 368, 73–85. [Google Scholar] [CrossRef]
- Cakmak, I.; Yazici, A.M. Magnesium: A forgotten element in crop production. Better Crops 2010, 94, 23–25. [Google Scholar]
- Guo, W.; Nazim, H.; Liang, Z.; Yang, D. Magnesium deficiency in plants: An urgent problem. Crop J. 2016, 4, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.T.; Lee, C.L.; Yeh, D.M. Effects of nitrogen, phosphorus, potassium, calcium, or magnesium deficiency on growth and photosynthesis of Eustoma. HortScience 2018, 53, 795–798. [Google Scholar] [CrossRef]
- Xue, X.; Wu, X.; Luo, X.; Wang, W.; Wang, D.; Zhang, Y.; Zhao, C. Effects of Potassium and Magnesium Deficiency on Leaf Physiological Characteristics and Chloroplast Ultrastructure of Anther Culture Seedling of Rubber Tree (Hevea brasiliensis). Chine. J. Trop. Crops 2019, 40, 1507. [Google Scholar] [CrossRef]
- Tatagiba, S.D.; DaMatta, F.M.; Rodrigues, F.A. Magnesium decreases leaf scald symptoms on rice leaves and preserves their photosynthetic performance. Plant Physiol. Biochem. 2016, 108, 49–56. [Google Scholar] [CrossRef]
- Yan, B.; Sun, Y.Y.; Wei, Y. Potassium–calcium antagonistic interaction under tomato magnesium deficiency and magnesium fertiliser regulation in solar greenhouse. Qual. Assur. Saf. Crops Foods 2020, 12, 76–86. [Google Scholar] [CrossRef]
Nutrient Salts | Contents |
---|---|
KNO3 | 4.04 g/20 L |
Ca(NO3)2·4H2O | 4.72 g/20 L |
NH4H2PO4 | 0.76 g/20 L |
MgSO4·7H2O | 2.46 g/20 L |
Otsuka-house No. 5 L (OAT Agrio Co.) | 8.0 mL/20 L |
Light/Dark Period | 14 h (25 °C)/10 h (10 °C) |
---|---|
Light source | Fluorescent light |
Light intensity | 250 µmol·m−2·s−1 |
Humidity | 50 ± 10% |
CO2 concentration | 400 ppm |
Cultivars | Treatments | Total Dry Weight at 4 Weeks (g) | Total Dry Weight at 8 Weeks (g) | ||||||
---|---|---|---|---|---|---|---|---|---|
CW | Cont. | 0.31 | ± | 0.04 | n.s. | 1.95 | ± | 0.11 | a |
Mg+ | 0.41 | ± | 0.04 | 2.88 | ± | 0.18 | b | ||
Mg++ | 0.34 | ± | 0.04 | 2.68 | ± | 0.32 | ab | ||
RW | Cont. | 0.37 | ± | 0.06 | n.s. | 2.84 | 0.16 | ab | |
Mg+ | 0.41 | ± | 0.05 | 3.77 | ± | 0.35 | b | ||
Mg++ | 0.25 | ± | 0.03 | 2.58 | ± | 0.21 | a | ||
VP | Cont. | 0.25 | ± | 0.03 | n.s. | 2.32 | ± | 0.12 | n.s. |
Mg+ | 0.35 | ± | 0.04 | 3.06 | ± | 0.36 | |||
Mg++ | 0.27 | ± | 0.03 | 2.67 | ± | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuronuma, T.; Ishikawa, K.; Watanabe, H. Effects of Magnesium Application on Tipburn Incidence and Calcium Acquisition in Lisianthus (Eustoma grandiflorum) Cultivars. Horticulturae 2022, 8, 132. https://doi.org/10.3390/horticulturae8020132
Kuronuma T, Ishikawa K, Watanabe H. Effects of Magnesium Application on Tipburn Incidence and Calcium Acquisition in Lisianthus (Eustoma grandiflorum) Cultivars. Horticulturae. 2022; 8(2):132. https://doi.org/10.3390/horticulturae8020132
Chicago/Turabian StyleKuronuma, Takanori, Kanami Ishikawa, and Hitoshi Watanabe. 2022. "Effects of Magnesium Application on Tipburn Incidence and Calcium Acquisition in Lisianthus (Eustoma grandiflorum) Cultivars" Horticulturae 8, no. 2: 132. https://doi.org/10.3390/horticulturae8020132
APA StyleKuronuma, T., Ishikawa, K., & Watanabe, H. (2022). Effects of Magnesium Application on Tipburn Incidence and Calcium Acquisition in Lisianthus (Eustoma grandiflorum) Cultivars. Horticulturae, 8(2), 132. https://doi.org/10.3390/horticulturae8020132