Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costes, E.; Lauri, P.-E.; Regnard, J.-L. Analyzing fruit tree architecture: Implications for tree management and fruit production. Hortic. Rev. 2006, 32, 1–61. [Google Scholar]
- Lauri, P.-E. Differentiation and growth traits associated with acrotony in the apple tree (Malus domestica, Rosaceae). Am. J. Bot. 2007, 94, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Barthélémy, D.; Caraglio, Y.; Costes, E. Architecture, gradients morphogénétiques et âge physiologique chez les végétaux. In Modélisation et Simulation de L’architecture des Végétaux; INRA Editions: Paris, France, 1997; pp. 89–136. [Google Scholar]
- Barthélémy, D.; Caraglio, Y. Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 2007, 99, 375–407. [Google Scholar] [CrossRef] [PubMed]
- Hallé, F.; Oldeman, R. Essai sur L’architecture et la Dynamique de Croissance des Arbres Tropicaux; Masson: Paris, France, 1970. [Google Scholar]
- Hallé, F.; Oldeman, R.A.; Tomlinson, P.B. Tropical Trees and Forests: An Architectural Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 3-642-81190-6. [Google Scholar]
- Lauri, P.-É.; Lespinasse, J.-M. Genotype of Apple trees affects growth and fruiting responses to shoot bending at various times of year. J. Am. Soc. Hort. Sci. 2001, 126, 169–174. [Google Scholar] [CrossRef]
- Labuschagné, I.F.; Louw, J.; Schmidt, K.; Sadie, A. Selection for increased budbreak in apple. J. Am. Soc. Hort. Sci. 2003, 128, 363–373. [Google Scholar] [CrossRef]
- Naor, A.; Flaishman, M.; Stern, R.; Moshe, A.; Erez, A. Temperature effects on dormancy completion of vegetative buds in apple. J. Am. Soc. Hort. Sci. 2003, 128, 636–641. [Google Scholar] [CrossRef][Green Version]
- Arenas, F.; Hervalejo, A. Primeras experiencias del sistema de cultivo superintensivo en cítricos. Vida Rural. 2012, 2, 36–40. [Google Scholar]
- Rosati, A.; Paoletti, A.; Caporali, S.; Perri, E. The role of tree architecture in super high density olive orchards. Sci. Hortic. 2013, 161, 24–29. [Google Scholar] [CrossRef]
- León, L.; de la Rosa, R.; Barranco, D.; Rallo, L. Breeding for early bearing in olive. HortScience 2007, 42, 499–502. [Google Scholar] [CrossRef]
- Lo Bianco, R.; Proietti, P.; Regni, L.; Caruso, T. Planting Systems for Modern Olive Growing: Strengths and Weaknesses. Agriculture 2021, 11, 494. [Google Scholar] [CrossRef]
- Russo, C.; Cappelletti, G.M.; Nicoletti, G.M.; Di Noia, A.E.; Michalopoulos, G. Comparison of european olive production systems. Sustainability 2016, 8, 825. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; De la Rosa, R.; Leon, L.; Gomez, J.A.; Testi, L.; Orgaz, F.; Gil-Ribes, J.A.; Quesada-Moraga, E.; Trapero, A.; Masallem, M. Evolution and sustainability of the olive production systems. Options Mediterr. 2013, 106, 11–42. [Google Scholar]
- Proietti, P.; Tombesi, A.; Boco, M. Olive leaf photosynthesis in relation to leaf age and fruiting during the growing season. Italus Hortus 1995, 3, 17–21. [Google Scholar]
- Godini, A.; Bellomo, F. Olivicoltura superintensiva in puglia per la raccolta meccanica con vendemmiatrice. In Proceedings of the International Congress of Oliveculture, Spoleto, Italy, 22–23 April 2002; Società di Ortoflorofrutticoltura Italiana (SOI): Florence, Italy, 2002; pp. 230–234. [Google Scholar]
- Giametta, G.; Zimbalatti, G. Mechanical pruning in new olive-groves. J. Agr. Eng. Res. 1997, 68, 15–20. [Google Scholar] [CrossRef]
- Zimbalatti, G.; Bernardi, B.; García, S.C. Oliveti tradizionali, oltre gli scuotitori. Olivo Olio 2017, 20, 52–55. [Google Scholar]
- Bernardi, B.; Falcone, G.; Stillitano, T.; Benalia, S.; Strano, A.; Bacenetti, J.; De Luca, A.I. Harvesting system sustainability in Mediterranean olive cultivation. Sci. Total Environ. 2018, 625, 1446–1458. [Google Scholar] [CrossRef]
- Farinelli, D.; Ruffolo, M.; Boco, M.; Tombesi, A. Yield efficiency and mechanical harvesting with trunk shaker of some international olive cultivars. Acta Hortic. 2012, 949, 379–384. [Google Scholar] [CrossRef]
- Sola-Guirado, R.R.; Bernardi, B.; Castro-García, S.; Blanco-Roldán, G.L.; Benalia, S.; Fazari, A.; Brescia, A.; Zimbalatti, G. Assessment of aerial and underground vibration transmission in mechanically trunk shaken olive trees. J. Agric. Eng. 2018, 49, 191–197. [Google Scholar] [CrossRef]
- Marino, G.; Macaluso, L.; Grilo, F.; Marra, F.P.; Caruso, T. Toward the valorization of olive (Olea Europaea Var. Europaea L.) biodiversity: Horticultural performance of seven sicilian cultivars in a hedgerow planting system. Sci. Hortic. 2019, 256, 108583. [Google Scholar] [CrossRef]
- Scaramuzzi, F. The landscape planning policy in Italy constrains olive growing competitiveness. In Olive Growing Systems, Olea, Rome FAO Olive Network; FAO: Rome, Italy, 2007; pp. 14–17. [Google Scholar]
- Sarri, D.; Vieri, M. Criteria for introducing mechanical harvesting of oil olives: Results of a five-year project in Central Italy. In Criteria for Introducing Mechanical Harvesting of Oil Olives; University of Florence: Florence, Italy, 2010; pp. 1000–1013. [Google Scholar]
- Anifantis, A.S.; Camposeo, S.; Vivaldi, G.A.; Santoro, F.; Pascuzzi, S. Comparison of UAV photogrammetry and 3D modeling techniques with other currently used methods for estimation of the tree row volume of a super-high-density olive orchard. Agriculture 2019, 9, 233. [Google Scholar] [CrossRef]
- Tous, J.; Romero, A.; Hermoso, J.; Msallem, M.; Larbi, A. Olive orchard design and mechanization: Present and future. Acta Hortic. 2012, 1057, 231–246. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G. Yield, harvesting efficiency and oil chemical quality of cultivars ’Arbequina’ and ’Arbosana’ harvested by straddle machine in two apulian growing areas. Acta Hortic. 2018, 1199, 397–402. [Google Scholar] [CrossRef]
- Lodolini, E.; Polverigiani, S.; Cioccolanti, T.; Santinelli, A.; Neri, D. Preliminary Results about the Influence of Pruning Time and Intensity on Vegetative Growth and Fruit Yield of a Semi-Intensive Olive Orchard. J. Agric. Sci. Technol. 2019, 21, 969–980. [Google Scholar]
- Moutier, N.; Ricard, J.; Le Verge, S. Vigour control of the olive tree in a high density planting system: Two experimental approaches. Acta Hortic. 2011, 924, 185–193. [Google Scholar] [CrossRef]
- Lodolini, E.; Polverigiani, S.; Sirugo, M.; Neri, D. Damage to several olive cultivars by two over-the-row harvesters in high-density orchards. Acta Hortic. 2018, 1199, 415–420. [Google Scholar] [CrossRef]
- Gomez-del-Campo, M.; Connor, D.J.; Trentacoste, E.R. Long-term effect of intra-row spacing on growth and productivity of super-high density hedgerow olive orchards (cv. Arbequina). Front. Plant Sci. 2017, 8, 1790. [Google Scholar] [CrossRef]
- Barranco, D.; Navero, D.B.; Romero, L.R. El Cultivo Del Olivo; Mundi-Prensa: Madrid, Spain, 2008; ISBN 84-8474-234-2. [Google Scholar]
- Guerrero-Casado, J.; Carpio, A.J.; Tortosa, F.S.; Villanueva, A.J. Environmental challenges of intensive woody crops: The case of super high-density olive groves. Sci. Total Environ. 2021, 798, 149212. [Google Scholar] [CrossRef]
- Tous, J.; Romero, A.; Hermoso, J. High density planting systems, mechanization and crop management in olive. In Proceedings of the Olivebioteq 2006: Second International Seminar, Mazara Del Vallo, Italy, 5–10 November 2006; Caruso, T., Motisi, A., Sebastiani, L., Eds.; Campo Artigrafiche: Alcamo, Italy, 2006; pp. 423–430. [Google Scholar]
- Bottari, V.; Spina, P. Le varietà di olivo coltivate in Sicilia. Ann. Ist. Sper. Agron. 1953, 7, 937–1004. [Google Scholar]
- Barone, E.; Di Marco, L.; Motisi, A.; Caruso, T. The Sicilian olive germplasm and its characterization by using statistical metods. II Int. Symp. Olive Grow. 1993, 356, 66–69. [Google Scholar]
- La Mantia, M.; Lain, T.; Caruso, T.; Testolin, R. SSR-based DNA fingerprints reveal the genetic diversity of Sicilian olive (Olea europaea L.) germplasm. J. Hortic. Sci. Biotechnol. 2005, 80, 628–632. [Google Scholar] [CrossRef]
- Volo, P.; Fretto, S.; Lo Bianco, R.; Macaluso, L.; Caruso, T. Early bearing and vegetative growth of 153 Sicilian olive accessions. Acta Hortic. 2017, 1229, 319–324. [Google Scholar]
- Guo, Y.; Fourcaud, T.; Jaeger, M.; Zhang, X.; Li, B. Plant growth and architectural modelling and its applications. Ann. Bot. 2011, 107, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Edelin, C. Nouvelles Donnee Sur l’architecture Des Arbres Sympodiaux: Le Concept de plan d’organisation. In Proceedings of the L’arbre: Biologie et developpement. 2nd International Tree Conference, Montpellier, France, 10–15 September 1991; pp. 127–154. [Google Scholar]
- Lespinasse, Y. Breeding Apple Tree: Aims and Methods. In Proceedings of the Joint Conference of the EAPR Breeding & Varietal Assessment Section and the EUCARPIA Potato Section, Landerneau, France, 12–17 January 1992; INRA: Paris, France, 1992; pp. 103–110. [Google Scholar]
- Segura, V.; Kelner, J.-J.; Lauri, P.-E.; Costes, E. Towards a strategy for phenotyping architectural traits in mature f1 hybrids of an apple progeny. Symp. Fruit Breed. Genet. 2007, 814, 169–176. [Google Scholar] [CrossRef]
- Hansche, P.; Hesse, C.; Beres, V. Estimates of genetic and environmental effects on several traits in peach. J. Am. Soc. Hort. Sci. 1972, 97, 76–79. [Google Scholar]
- Caraglio, Y.; Barthélémy, D. Revue critique des termes relatifs à la croissance et à la ramification des tiges des végétaux vasculaires. Arbres Sci. 1997, 13, 1–61. [Google Scholar]
- Kurth, W. Morphological models of plant growth: Possibilities and ecological relevance. Ecol. Model. 1994, 75, 299–308. [Google Scholar] [CrossRef]
- Shahzad, Z.; Kellermeier, F.; Armstrong, E.M.; Rogers, S.; Lobet, G.; Amtmann, A.; Hills, A. EZ-Root-VIS: A software pipeline for the rapid analysis and visual reconstruction of root system architecture. Plant Physiol. 2018, 177, 1368–1381. [Google Scholar] [CrossRef]
- Seethepalli, A.; York, L. RhizoVision Explorer—interactive software for generalized root image analysis designed for everyone. Zenodo 2020. [Google Scholar] [CrossRef]
- Proietti, P.; Famiani, F.; Pannelli, G.; Guelfi, P. La Potatura Dell’olivo; Litograf Editor srl: Città di Castello, Italy, 2008; ISBN 978-88-87652-16-1. [Google Scholar]
- Ottanelli, A.; Marone, E.; Fiorino, P. A new device to improve the mechanical winter pruning in olive trees hedgerows. Adv. Hortic. Sci. 2019, 33, 113–122. [Google Scholar]





| Arbequina | Calatina | p-Value z | |
|---|---|---|---|
| Branch weight (g) | 177 ± 17.9 | 162 ± 14.6 | 0.496 |
| Leaf weight (g) | 54.3 ± 4.96 | 39.0 ± 2.95 | 0.003 |
| Weight of fruits (g) | 109 ± 12.6 | 127 ± 11.2 | 0.220 |
| Wood weight (g) | 45.1 ± 3.97 | 35.6 ± 3.26 | 0.047 |
| Arbequina | Calatina | p-Value z | |
|---|---|---|---|
| Leaf area (dm2) | 12.5 ± 1.22 | 9.08 ± 0.70 | 0.006 |
| Number of fruits | 85.1 ± 9.83 | 39.0 ± 3.85 | <0.001 |
| Fruit weight (g) | 0.90 ± 0.15 | 2.25 ± 0.38 | <0.001 |
| Fruit/leaf (g/cm2) | 2.42 ± 0.19 | 3.76 ± 0.32 | <0.001 |
| Leaf/wood (cm2/g) | 1.21 ± 0.04 | 1.19 ± 0.06 | 0.883 |
| Arbequina | Calatina | p-Value z | |
|---|---|---|---|
| Length (cm) | 60.2 ± 2.26 | 54.9 ± 2.20 | 0.081 |
| Width (cm) | 47.7 ± 2.25 | 50.5 ± 2.69 | 0.431 |
| Width:Height | 0.82 ± 0.04 | 0.96 ± 0.06 | 0.033 |
| Volume (dm3) | 78.1 ± 15.0 | 62.7 ± 8.18 | 0.377 |
| Total length (m) | 3.39 ± 0.23 | 2.63 ± 0.17 | 0.002 |
| Density (m m−3) | 78.3 ± 7.73 | 54.9 ± 4.52 | 0.004 |
| Branching frequency (n. branching/m) | 25.8 ± 3.54 | 28.4 ± 3.65 | 0.281 |
| Branching angle (°) | 45.8 ± 1.14 | 45.2 ± 1.59 | 0.430 |
| Shoot length (cm) | 21.0 ± 0.64 | 22.5 ± 0.92 | 0.276 |
| Shoot diameter (mm) | 3.32 ± 0.06 | 3.27 ± 0.09 | 0.546 |
| Shoot bending degree | 1.10 ± 0.003 | 1.12 ± 0.005 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carella, A.; Massenti, R.; Milazzo, G.; Caruso, T.; Lo Bianco, R. Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches. Horticulturae 2022, 8, 109. https://doi.org/10.3390/horticulturae8020109
Carella A, Massenti R, Milazzo G, Caruso T, Lo Bianco R. Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches. Horticulturae. 2022; 8(2):109. https://doi.org/10.3390/horticulturae8020109
Chicago/Turabian StyleCarella, Alessandro, Roberto Massenti, Giuseppe Milazzo, Tiziano Caruso, and Riccardo Lo Bianco. 2022. "Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches" Horticulturae 8, no. 2: 109. https://doi.org/10.3390/horticulturae8020109
APA StyleCarella, A., Massenti, R., Milazzo, G., Caruso, T., & Lo Bianco, R. (2022). Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches. Horticulturae, 8(2), 109. https://doi.org/10.3390/horticulturae8020109

