Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costes, E.; Lauri, P.-E.; Regnard, J.-L. Analyzing fruit tree architecture: Implications for tree management and fruit production. Hortic. Rev. 2006, 32, 1–61. [Google Scholar]
- Lauri, P.-E. Differentiation and growth traits associated with acrotony in the apple tree (Malus domestica, Rosaceae). Am. J. Bot. 2007, 94, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Barthélémy, D.; Caraglio, Y.; Costes, E. Architecture, gradients morphogénétiques et âge physiologique chez les végétaux. In Modélisation et Simulation de L’architecture des Végétaux; INRA Editions: Paris, France, 1997; pp. 89–136. [Google Scholar]
- Barthélémy, D.; Caraglio, Y. Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 2007, 99, 375–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallé, F.; Oldeman, R. Essai sur L’architecture et la Dynamique de Croissance des Arbres Tropicaux; Masson: Paris, France, 1970. [Google Scholar]
- Hallé, F.; Oldeman, R.A.; Tomlinson, P.B. Tropical Trees and Forests: An Architectural Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 3-642-81190-6. [Google Scholar]
- Lauri, P.-É.; Lespinasse, J.-M. Genotype of Apple trees affects growth and fruiting responses to shoot bending at various times of year. J. Am. Soc. Hort. Sci. 2001, 126, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Labuschagné, I.F.; Louw, J.; Schmidt, K.; Sadie, A. Selection for increased budbreak in apple. J. Am. Soc. Hort. Sci. 2003, 128, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Naor, A.; Flaishman, M.; Stern, R.; Moshe, A.; Erez, A. Temperature effects on dormancy completion of vegetative buds in apple. J. Am. Soc. Hort. Sci. 2003, 128, 636–641. [Google Scholar] [CrossRef] [Green Version]
- Arenas, F.; Hervalejo, A. Primeras experiencias del sistema de cultivo superintensivo en cítricos. Vida Rural. 2012, 2, 36–40. [Google Scholar]
- Rosati, A.; Paoletti, A.; Caporali, S.; Perri, E. The role of tree architecture in super high density olive orchards. Sci. Hortic. 2013, 161, 24–29. [Google Scholar] [CrossRef]
- León, L.; de la Rosa, R.; Barranco, D.; Rallo, L. Breeding for early bearing in olive. HortScience 2007, 42, 499–502. [Google Scholar] [CrossRef] [Green Version]
- Lo Bianco, R.; Proietti, P.; Regni, L.; Caruso, T. Planting Systems for Modern Olive Growing: Strengths and Weaknesses. Agriculture 2021, 11, 494. [Google Scholar] [CrossRef]
- Russo, C.; Cappelletti, G.M.; Nicoletti, G.M.; Di Noia, A.E.; Michalopoulos, G. Comparison of european olive production systems. Sustainability 2016, 8, 825. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Escobar, R.; De la Rosa, R.; Leon, L.; Gomez, J.A.; Testi, L.; Orgaz, F.; Gil-Ribes, J.A.; Quesada-Moraga, E.; Trapero, A.; Masallem, M. Evolution and sustainability of the olive production systems. Options Mediterr. 2013, 106, 11–42. [Google Scholar]
- Proietti, P.; Tombesi, A.; Boco, M. Olive leaf photosynthesis in relation to leaf age and fruiting during the growing season. Italus Hortus 1995, 3, 17–21. [Google Scholar]
- Godini, A.; Bellomo, F. Olivicoltura superintensiva in puglia per la raccolta meccanica con vendemmiatrice. In Proceedings of the International Congress of Oliveculture, Spoleto, Italy, 22–23 April 2002; Società di Ortoflorofrutticoltura Italiana (SOI): Florence, Italy, 2002; pp. 230–234. [Google Scholar]
- Giametta, G.; Zimbalatti, G. Mechanical pruning in new olive-groves. J. Agr. Eng. Res. 1997, 68, 15–20. [Google Scholar] [CrossRef]
- Zimbalatti, G.; Bernardi, B.; García, S.C. Oliveti tradizionali, oltre gli scuotitori. Olivo Olio 2017, 20, 52–55. [Google Scholar]
- Bernardi, B.; Falcone, G.; Stillitano, T.; Benalia, S.; Strano, A.; Bacenetti, J.; De Luca, A.I. Harvesting system sustainability in Mediterranean olive cultivation. Sci. Total Environ. 2018, 625, 1446–1458. [Google Scholar] [CrossRef]
- Farinelli, D.; Ruffolo, M.; Boco, M.; Tombesi, A. Yield efficiency and mechanical harvesting with trunk shaker of some international olive cultivars. Acta Hortic. 2012, 949, 379–384. [Google Scholar] [CrossRef]
- Sola-Guirado, R.R.; Bernardi, B.; Castro-García, S.; Blanco-Roldán, G.L.; Benalia, S.; Fazari, A.; Brescia, A.; Zimbalatti, G. Assessment of aerial and underground vibration transmission in mechanically trunk shaken olive trees. J. Agric. Eng. 2018, 49, 191–197. [Google Scholar] [CrossRef]
- Marino, G.; Macaluso, L.; Grilo, F.; Marra, F.P.; Caruso, T. Toward the valorization of olive (Olea Europaea Var. Europaea L.) biodiversity: Horticultural performance of seven sicilian cultivars in a hedgerow planting system. Sci. Hortic. 2019, 256, 108583. [Google Scholar] [CrossRef]
- Scaramuzzi, F. The landscape planning policy in Italy constrains olive growing competitiveness. In Olive Growing Systems, Olea, Rome FAO Olive Network; FAO: Rome, Italy, 2007; pp. 14–17. [Google Scholar]
- Sarri, D.; Vieri, M. Criteria for introducing mechanical harvesting of oil olives: Results of a five-year project in Central Italy. In Criteria for Introducing Mechanical Harvesting of Oil Olives; University of Florence: Florence, Italy, 2010; pp. 1000–1013. [Google Scholar]
- Anifantis, A.S.; Camposeo, S.; Vivaldi, G.A.; Santoro, F.; Pascuzzi, S. Comparison of UAV photogrammetry and 3D modeling techniques with other currently used methods for estimation of the tree row volume of a super-high-density olive orchard. Agriculture 2019, 9, 233. [Google Scholar] [CrossRef] [Green Version]
- Tous, J.; Romero, A.; Hermoso, J.; Msallem, M.; Larbi, A. Olive orchard design and mechanization: Present and future. Acta Hortic. 2012, 1057, 231–246. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G. Yield, harvesting efficiency and oil chemical quality of cultivars ’Arbequina’ and ’Arbosana’ harvested by straddle machine in two apulian growing areas. Acta Hortic. 2018, 1199, 397–402. [Google Scholar] [CrossRef]
- Lodolini, E.; Polverigiani, S.; Cioccolanti, T.; Santinelli, A.; Neri, D. Preliminary Results about the Influence of Pruning Time and Intensity on Vegetative Growth and Fruit Yield of a Semi-Intensive Olive Orchard. J. Agric. Sci. Technol. 2019, 21, 969–980. [Google Scholar]
- Moutier, N.; Ricard, J.; Le Verge, S. Vigour control of the olive tree in a high density planting system: Two experimental approaches. Acta Hortic. 2011, 924, 185–193. [Google Scholar] [CrossRef]
- Lodolini, E.; Polverigiani, S.; Sirugo, M.; Neri, D. Damage to several olive cultivars by two over-the-row harvesters in high-density orchards. Acta Hortic. 2018, 1199, 415–420. [Google Scholar] [CrossRef]
- Gomez-del-Campo, M.; Connor, D.J.; Trentacoste, E.R. Long-term effect of intra-row spacing on growth and productivity of super-high density hedgerow olive orchards (cv. Arbequina). Front. Plant Sci. 2017, 8, 1790. [Google Scholar] [CrossRef] [Green Version]
- Barranco, D.; Navero, D.B.; Romero, L.R. El Cultivo Del Olivo; Mundi-Prensa: Madrid, Spain, 2008; ISBN 84-8474-234-2. [Google Scholar]
- Guerrero-Casado, J.; Carpio, A.J.; Tortosa, F.S.; Villanueva, A.J. Environmental challenges of intensive woody crops: The case of super high-density olive groves. Sci. Total Environ. 2021, 798, 149212. [Google Scholar] [CrossRef]
- Tous, J.; Romero, A.; Hermoso, J. High density planting systems, mechanization and crop management in olive. In Proceedings of the Olivebioteq 2006: Second International Seminar, Mazara Del Vallo, Italy, 5–10 November 2006; Caruso, T., Motisi, A., Sebastiani, L., Eds.; Campo Artigrafiche: Alcamo, Italy, 2006; pp. 423–430. [Google Scholar]
- Bottari, V.; Spina, P. Le varietà di olivo coltivate in Sicilia. Ann. Ist. Sper. Agron. 1953, 7, 937–1004. [Google Scholar]
- Barone, E.; Di Marco, L.; Motisi, A.; Caruso, T. The Sicilian olive germplasm and its characterization by using statistical metods. II Int. Symp. Olive Grow. 1993, 356, 66–69. [Google Scholar]
- La Mantia, M.; Lain, T.; Caruso, T.; Testolin, R. SSR-based DNA fingerprints reveal the genetic diversity of Sicilian olive (Olea europaea L.) germplasm. J. Hortic. Sci. Biotechnol. 2005, 80, 628–632. [Google Scholar] [CrossRef]
- Volo, P.; Fretto, S.; Lo Bianco, R.; Macaluso, L.; Caruso, T. Early bearing and vegetative growth of 153 Sicilian olive accessions. Acta Hortic. 2017, 1229, 319–324. [Google Scholar]
- Guo, Y.; Fourcaud, T.; Jaeger, M.; Zhang, X.; Li, B. Plant growth and architectural modelling and its applications. Ann. Bot. 2011, 107, 723–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelin, C. Nouvelles Donnee Sur l’architecture Des Arbres Sympodiaux: Le Concept de plan d’organisation. In Proceedings of the L’arbre: Biologie et developpement. 2nd International Tree Conference, Montpellier, France, 10–15 September 1991; pp. 127–154. [Google Scholar]
- Lespinasse, Y. Breeding Apple Tree: Aims and Methods. In Proceedings of the Joint Conference of the EAPR Breeding & Varietal Assessment Section and the EUCARPIA Potato Section, Landerneau, France, 12–17 January 1992; INRA: Paris, France, 1992; pp. 103–110. [Google Scholar]
- Segura, V.; Kelner, J.-J.; Lauri, P.-E.; Costes, E. Towards a strategy for phenotyping architectural traits in mature f1 hybrids of an apple progeny. Symp. Fruit Breed. Genet. 2007, 814, 169–176. [Google Scholar] [CrossRef]
- Hansche, P.; Hesse, C.; Beres, V. Estimates of genetic and environmental effects on several traits in peach. J. Am. Soc. Hort. Sci. 1972, 97, 76–79. [Google Scholar]
- Caraglio, Y.; Barthélémy, D. Revue critique des termes relatifs à la croissance et à la ramification des tiges des végétaux vasculaires. Arbres Sci. 1997, 13, 1–61. [Google Scholar]
- Kurth, W. Morphological models of plant growth: Possibilities and ecological relevance. Ecol. Model. 1994, 75, 299–308. [Google Scholar] [CrossRef]
- Shahzad, Z.; Kellermeier, F.; Armstrong, E.M.; Rogers, S.; Lobet, G.; Amtmann, A.; Hills, A. EZ-Root-VIS: A software pipeline for the rapid analysis and visual reconstruction of root system architecture. Plant Physiol. 2018, 177, 1368–1381. [Google Scholar] [CrossRef] [Green Version]
- Seethepalli, A.; York, L. RhizoVision Explorer—interactive software for generalized root image analysis designed for everyone. Zenodo 2020. [Google Scholar] [CrossRef]
- Proietti, P.; Famiani, F.; Pannelli, G.; Guelfi, P. La Potatura Dell’olivo; Litograf Editor srl: Città di Castello, Italy, 2008; ISBN 978-88-87652-16-1. [Google Scholar]
- Ottanelli, A.; Marone, E.; Fiorino, P. A new device to improve the mechanical winter pruning in olive trees hedgerows. Adv. Hortic. Sci. 2019, 33, 113–122. [Google Scholar]
Arbequina | Calatina | p-Value z | |
---|---|---|---|
Branch weight (g) | 177 ± 17.9 | 162 ± 14.6 | 0.496 |
Leaf weight (g) | 54.3 ± 4.96 | 39.0 ± 2.95 | 0.003 |
Weight of fruits (g) | 109 ± 12.6 | 127 ± 11.2 | 0.220 |
Wood weight (g) | 45.1 ± 3.97 | 35.6 ± 3.26 | 0.047 |
Arbequina | Calatina | p-Value z | |
---|---|---|---|
Leaf area (dm2) | 12.5 ± 1.22 | 9.08 ± 0.70 | 0.006 |
Number of fruits | 85.1 ± 9.83 | 39.0 ± 3.85 | <0.001 |
Fruit weight (g) | 0.90 ± 0.15 | 2.25 ± 0.38 | <0.001 |
Fruit/leaf (g/cm2) | 2.42 ± 0.19 | 3.76 ± 0.32 | <0.001 |
Leaf/wood (cm2/g) | 1.21 ± 0.04 | 1.19 ± 0.06 | 0.883 |
Arbequina | Calatina | p-Value z | |
---|---|---|---|
Length (cm) | 60.2 ± 2.26 | 54.9 ± 2.20 | 0.081 |
Width (cm) | 47.7 ± 2.25 | 50.5 ± 2.69 | 0.431 |
Width:Height | 0.82 ± 0.04 | 0.96 ± 0.06 | 0.033 |
Volume (dm3) | 78.1 ± 15.0 | 62.7 ± 8.18 | 0.377 |
Total length (m) | 3.39 ± 0.23 | 2.63 ± 0.17 | 0.002 |
Density (m m−3) | 78.3 ± 7.73 | 54.9 ± 4.52 | 0.004 |
Branching frequency (n. branching/m) | 25.8 ± 3.54 | 28.4 ± 3.65 | 0.281 |
Branching angle (°) | 45.8 ± 1.14 | 45.2 ± 1.59 | 0.430 |
Shoot length (cm) | 21.0 ± 0.64 | 22.5 ± 0.92 | 0.276 |
Shoot diameter (mm) | 3.32 ± 0.06 | 3.27 ± 0.09 | 0.546 |
Shoot bending degree | 1.10 ± 0.003 | 1.12 ± 0.005 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carella, A.; Massenti, R.; Milazzo, G.; Caruso, T.; Lo Bianco, R. Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches. Horticulturae 2022, 8, 109. https://doi.org/10.3390/horticulturae8020109
Carella A, Massenti R, Milazzo G, Caruso T, Lo Bianco R. Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches. Horticulturae. 2022; 8(2):109. https://doi.org/10.3390/horticulturae8020109
Chicago/Turabian StyleCarella, Alessandro, Roberto Massenti, Giuseppe Milazzo, Tiziano Caruso, and Riccardo Lo Bianco. 2022. "Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches" Horticulturae 8, no. 2: 109. https://doi.org/10.3390/horticulturae8020109
APA StyleCarella, A., Massenti, R., Milazzo, G., Caruso, T., & Lo Bianco, R. (2022). Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches. Horticulturae, 8(2), 109. https://doi.org/10.3390/horticulturae8020109