Qualitative and Nutritional Characteristics of Plum Cultivars Grown on Different Rootstocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site of Planting and Plant Material
2.2. Phenological and Pomological Analysis
2.3. Soluble Solids and Titratable Acidity
2.4. Antioxidant Capacity, Total Phenolic and Flavonoid Content
2.5. Statistical Analysis
3. Results
3.1. Tree Vigor and Phenological Observation
3.2. Pomological Data and Fruit Firmness
3.3. Soluble Solids and Titratable Acids
3.4. Antioxidant Capacity, TPC and TFC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2022. Available online: http://faostat.fao.org. (accessed on 13 September 2022).
- Topp, B.L.; Russell, D.M.; Neumüller, M.; Dalbó, M.A.; Liu, W. Plum. In Fruit Breeding, Handbook of Plant Breeding; Badenes, M.L., Byrne, D.H., Eds.; Springer: London, UK; New York, NY, USA, 2012; pp. 571–622. [Google Scholar]
- Wolf, J.; Göttingerová, M.; Kaplan, J.; Kiss, T.; Venuta, R.; Nečas, T. Determination of the pomological and nutritional properties of selected plum cultivars and minor fruit species. Hort. Sci. 2020, 47, 181–193. [Google Scholar] [CrossRef]
- Stacewicz-Sapuntzakis, M.; Bowen, P.E.; Hussain, E.A.; Damayanti-Wood, B.I.; Farnsworth, N.R. Chemical composition and potential health effects of prunes: A functional food. Crit. Rev. Food Sci. Nutr. 2001, 41, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak-Tomczak, D. Characteristics of plums as a raw material with valuable nutritive and dietary properties—A review. Pol. J. Food Nutr. Sci. 2008, 58, 401–405. [Google Scholar]
- Rampáčková, E.; Göttingerová, M.; Kiss, T.; Ondrášek, I.; Venuta, R.; Wolf, J.; Nečas, T.; Ercisli, S. CIELAB analysis and quantitative correlation of total anthocyanin content in European and Asian plums. Eur. J. Hortic. Sci. 2021, 86, 453–460. [Google Scholar] [CrossRef]
- Hofman, P.J.; Vuthapanich, S.; Whiley, A.W.; Klieber, A.; Simons, D.H. Tree yield and fruit minerals concentrations influence ‘Hass’ avocado fruit quality. Sci. Hortic. 2002, 92, 113–123. [Google Scholar] [CrossRef]
- Meland, M. Performance of six European plum cultivars on four plum rootstocks growing in a northern climate. Acta Agric. Scand. Sect. B–Soil Plant Sci. 2010, 60, 381–387. [Google Scholar] [CrossRef]
- Blažek, J.; Pištěková, I. Final evaluation of nine plum cultivars grafted onto two rootstocks in a trial established in 1998 at Holovousy. Hort. Sci. 2012, 39, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Mészáros, M.; Kosina, J.; Laňar, L.; Náměstek, J. Long-term evaluation of growth and yield of Stanley and Cacanska lepotica plum cultivars on selected rootstocks. Hort. Sci. 2015, 42, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Daza, A.; García-Galavís, P.A.; Grande, M.J.; Santamaría, C. Fruit quality parameters of Pioneer Japanese plums produced on eight different rootstocks. Sci. Hortic. 2008, 118, 206–211. [Google Scholar] [CrossRef]
- Assunção, M.; Canas, S.; Cruz, S.; Brazão, J.; Zanol, G.C.; Eiras-Dias, J.E. Graft compability of Vitis spp.: The role of phenolic acids and flavanols. Sci. Hortic. 2016, 207, 140–145. [Google Scholar] [CrossRef]
- Usenik, V.; Krška, B.; Vičan, M.; Štampar, F. Early detection of graft incompatibility in apricot (Prunus armeniaca L.) using phenol analyses. Sci. Hortic. 2006, 109, 332–338. [Google Scholar] [CrossRef]
- Irisarri, P.; Zhebentyayeva, T.; Errea, P.; Pina, A. Differential expression of phenylalanine ammonia lyase (PAL) genes implies distinct roles in development of graft incompatibility symptoms in Prunus. Sci. Hortic. 2016, 204, 16–24. [Google Scholar] [CrossRef]
- Cookson, S.J.; Clemente Moreno, M.J.; Hevin, C.; Nyamba Mendome, L.Z.; Delrot, S.; Magnin, N.; Trossat-Magnin, C.; Ollat, N. Heterografting with nonself rootstocks induces genes involved in stress responses at the graft interface when compared with autografted controls. J. Exp. Bot. 2014, 65, 2473–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedesco, S.; Erban, A.; Gupta, S.; Kopka, J.; Fevereiro, P.; Kagler, F.; Pina, A. The impact of metabolic scion-rootstock interactions in different grapevine tissues and phloem exudates. Metabolites 2021, 11, 349. [Google Scholar] [CrossRef]
- Radović, M.; Milatović, D.; Tešić, Ž.; Tosti, T.; Gašić, U.; Dojčinović, B.; Dabić Zagorac, D. Influence of rootstocks on chemical composition of the fruits of plum cultivars. J. Food Compos. Anal. 2020, 92, 103480. [Google Scholar] [CrossRef]
- Butac, M.; Chitu, E.; Militaru, M.; Sumedrea, M.; Sumedrea, D.; Plopa, C. Orchard performance of some Romanian plum cultivars grafted on two rootstocks. Agric. Sci. Procedia 2015, 6, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Sitarek, M.; Grzyb, Z.S.; Guzowska-Spaleniak, B.; Lis, J. Performance of tree rootstocks for plums in two different soils and climatic conditions. Acta Hortic. 2004, 658, 273–277. [Google Scholar] [CrossRef]
- Magyar, L.; Hrotkó, K. Growth and productivity of plum cultivars on various rootstock in intensive orchard. Int. J. Hortic. Sci. 2006, 12, 77–81. [Google Scholar] [CrossRef]
- Siddiq, M.; Sultan, M.T. Plums and prunes. In Handbook of Fruits and Fruit Processing; Sinha, N., Sidhu, J., Barta, J., Wu, J., Cano, M.P., Eds.; John Wiley Sons Ltd.: Hoboken, NJ, USA; Blackwell Publishing: Hoboken, NJ, USA, 2012; pp. 551–564. ISBN 13 978-0-8138-0894-9. [Google Scholar]
- Goliáš, J.; Němcová, A. Skladování a Zpracování Ovoce a Zeleniny: (Návody do Cvičení), 1st ed.; Mendelova Zemědělská a Lesnická Univerzita v Brně: Brno, Czech Republic, 2009; ISBN 978-80-7375-331-3. (In Czech) [Google Scholar]
- Zloch, Z.; Čelakovský, J.; Aujezdská, A. Stanovení obsahu polyfenolů a celkové antioxidační kapacity v potravinách rostlinného původu. In Závěrečná Zpráva o Plnění Výzkumného Projektu Podpořeného Finančně Nadačním Fondem Institutu Da-None; Ústav Hygieny Lékařské Fakulty UK Plzeň: Plzeň, Czech Republic, 2004. (In Czech) [Google Scholar]
- Rato, A.E.; Agulheiro, A.C.; Barroso, J.M.; Riquelme, F. Soil and rootstock influence on fruit quality of plums (Prunus domestica L.). Sci. Horitulturae 2008, 118, 218–222. [Google Scholar] [CrossRef]
- Kosina, J. Growth and cropping of tree cultivars of plums on clonal rootstocks. Acta Hortic. 1998, 478, 243–246. [Google Scholar] [CrossRef]
- Kosina, J. Evaluation of some new plum rootstocks in the orchard. Acta Hortic. 2000, 538, 757–760. [Google Scholar] [CrossRef]
- Kosina, J. The orchard performance of some new plum rootstocks in the Czech Republic. Acta Hortic. 2007, 734, 393–396. [Google Scholar] [CrossRef]
- Reig, G.; Font I Forcada, C.; Mestre, L.; Jiménez, S.; Bertrán, J.A.; Moreno, M.Á. Horticultural, leaf mineral and fruit quality traits of two ‘Greengage’ plum cultivars budded on plum based rootstocks in Mediterranean conditions. Sci. Hortic. 2018, 232, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Font I Forcada, C.; Reig, G.; Mestre, L.; Mignard, P.; Betrán, J.Á.; Moreno, M.Á. Scion × Rootstock Response on Production, Mineral Composition and Fruit Quality under Heavy-Calcareous Soil and Hot Climate. Agronomy 2020, 10, 1159. [Google Scholar] [CrossRef]
- Renaud, R.; Bemhard, R.; Grassely, C.; Dosba, F. Diploid plum × peach hybrid rootstocks for stone fruit trees. HortScience 1988, 23, 115–117. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Z.; Zorzan, D.; Imran, M.; Sener, B.; Kilis, M.; El-Shazly, M.; Fahmy, N.M. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front. Pharmacol. 2020, 11, 1300. [Google Scholar] [CrossRef]
- Trendafilova, A.; Ivanova, V.; Trusheva, B.; Kamenova-Nacheva, M.; Tabakov, S.; Simova, S. Chemical Composition and Antioxidant Capacity of Fruits of European Plum Cultivar “Čačanska Lepotica” Influenced by Different Rootstocks. Foods 2022, 11, 2844. [Google Scholar] [CrossRef]
Cultivar | Rootstock | TCSA (cm2) | Time of Flowering | Flower Set | Ripening Duration (Days) | Fruit Set |
---|---|---|---|---|---|---|
Black Amber | Citation | 292 ± 72 a | 2/4 | 9 | 15 | 2 |
Ishtara | 349 ± 33 a | 2/4 | 9 | 15 | 2 | |
Penta | 295 ± 48 a | 1/4 | 7 | 15 | 1 | |
St. Julien A | 217 ± 11 a | 2/4 | 9 | 15 | 2 | |
Torinel | 647 ± 47 b | 2/4 | 9 | 15 | 5 | |
Karkulka | Citation | 418 ± 25 a | 2/4 | 9 | 12 | 5 |
Ishtara | 356 ± 22 a | 2/4 | 9 | 12 | 7 | |
Penta | 481 ± 36 ab | 2/4 | 9 | 12 | 7 | |
St. Julien A | 363 ± 43 a | 2/4 | 9 | 12 | 3 | |
Torinel | 592 ± 22 b | 2/4 | 9 | 12 | 7 | |
Shiro | Citation | 279 ± 39 a | 28/3 | 9 | 8 | 9 |
Ishtara | 484 ± 36 b | 28/3 | 9 | 8 | 9 | |
Penta | 511 ± 25 b | 28/3 | 9 | 8 | 9 | |
St. Julien A | 417 ± 50 ab | 28/3 | 9 | 8 | 9 | |
Torinel | 677 ± 26 c | 28/3 | 9 | 8 | 9 | |
Stanley | Ishtara | 290 ± 18 a | 19/4 | 7 | 15 | 5 |
Penta | 438 ± 28 b | 19/4 | 7 | 15 | 5 | |
St. Julien A | 264 ± 10 a | 19/4 | 7 | 15 | 5 | |
Torinel | 346 ± 28 ab | 19/4 | 7 | 15 | 7 |
Cultivar | Rootstock | Weight of Fruit (g) | Thickness of Flesh (mm) | Fruit Firmness (kg·cm−2) | SSC (°Brix) | TA (%) | SSC/TA (%) |
---|---|---|---|---|---|---|---|
Black Amber | Citation | 71 ± 3 a | 17.1 ± 0.4 a | 1.39 ± 0.06 a | 16.5 ± 0.3 a | 1.36 ± 0.02 ab | 12.12 |
Ishtara | 50 ± 1 a | 15.0 ± 0.5 a | 1.62 ± 0.06 a | 19.9 ± 0.4 ab | 1.30 ± 0.01 a | 15.26 | |
Penta | 48 ± 4 a | 14.4 ± 1.5 a | 1.53 ± 0.06 a | 14.4 ± 0.9 a | 1.34 ± 0.01 a | 10.78 | |
St. Julien A | 60 ± 3 a | 15.1 ± 0.4 a | 1.44 ± 0.06 a | 19.7 ± 0.4 c | 1.43 ± 0.01 b | 13.77 | |
Torinel | 57 ± 4 a | 15.8 ± 0.6 a | 1.44 ± 0.09 a | 19.1 ± 0.6 ab | 1.56 ± 0.02 c | 12.19 | |
Karkulka | Citation | 32 ± 1 b | 10.7 ± 0.4 ab | 0.98 ± 0.05 a | 14.2 ± 0.3 b | 2.07 ± 0.02 b | 6.86 |
Ishtara | 26 ± 2 a | 10.2 ± 0.5 ab | 0.74 ± 0.07 a | 12.9 ± 0.2 a | 1.83 ± 0.01 a | 7.07 | |
Penta | 24 ± 1 a | 9.5 ± 0.5 a | 0.81 ± 0.06 a | 15.2 ± 0.3 c | 2.28 ± 0.04 c | 6.66 | |
St. Julien A | 32 ± 1 b | 11.5 ± 0.5 b | 0.94 ± 0.12 a | 12.5 ± 0.2 a | 1.90 ± 0.01 a | 6.55 | |
Torinel | 24 ± 1 a | 9.5 ± 0.5 a | 0.80 ± 0.07 a | 16.2 ± 0.2 d | 2.37 ± 0.01 c | 6.84 | |
Shiro | Citation | 34 ± 2 a | 10.6 ± 0.5 a | 0.96 ± 0.05 ab | 14.6 ± 0.2 a | 2.19 ± 0.01 b | 6.66 |
Ishtara | 31 ± 2 a | 11.4 ± 0.3 a | 0.78 ± 0.04 a | 15.1 ± 0.4 a | 1.88 ± 0.01 a | 8.00 | |
Penta | 37 ± 1 a | 11.7 ± 0.7 a | 1.19 ± 0.07 abc | 13.8 ± 0.3 a | 1.91 ± 0.02 a | 7.24 | |
St. Julien A | 33 ± 1 a | 10.7 ± 0.7 a | 0.98 ± 0.06 bc | 14.1 ± 0.2 a | 1.94 ± 0.04 a | 7.26 | |
Torinel | 29 ± 1 a | 10.7 ± 0.2 a | 1.28 ± 0.02 c | 14.7 ± 0.2 a | 2.43 ± 0.01 c | 6.05 | |
Stanley | Ishtara | 45 ± 2 a | 10.8 ± 0.7 a | 1.24 ± 0.08 a | 21.9 ± 0.5 ab | 0.53 ± 0.01 a | 41.60 |
Penta | 41 ± 2 a | 9.9 ± 0.4 a | 0.98 ± 0.06 a | 23.5 ± 0.5 ab | 0.66 ± 0.01 c | 35.46 | |
St. Julien A | 45 ± 1 a | 11.5 ± 0.4 a | 1.37 ± 0.10 a | 22.3 ± 0.4 a | 0.62 ± 0.01 b | 36.03 | |
Torinel | 39 ± 1 a | 8.9 ± 0.3 a | 1.02 ± 0.07 a | 24.5 ± 0.4 b | 0.65 ± 0.01 c | 37.80 |
Cultivar | Rootstock | Antioxidant Capacity (mg (TE)/100 g) | TPC (mg (GAE)/100 g) | TFC (mg (CE)/100 g) |
---|---|---|---|---|
Black Amber | Citation | 340.3 ± 0.3 d | 738.0 ± 0.8 d | 111.9 ± 0.4 e |
Ishtara | 352.7 ± 0.4 e | 774.6 ± 0.2 e | 44.3 ± 1.0 b | |
Penta | 259.9 ± 0.2 a | 703.1 ± 2.1 a | 35.7 ± 0.7 a | |
St. Julien A | 274.5 ± 0.2 b | 593.2 ± 0.3 b | 67.5 ± 0.3 c | |
Torinel | 297.6 ± 1.3 c | 669.6 ± 0.3 c | 72.9 ± 1.2 d | |
Karkulka | Citation | 220.3 ± 0.6 b | 457.7 ± 0.1 b | 138.7 ± 1.0 c |
Ishtara | 316.9 ± 0.2 d | 685.0 ± 0.2 e | 102.8 ± 0.9 b | |
Penta | 274.0 ± 1.2 c | 600.8 ± 0.1 d | 150.6 ± 1.4 d | |
St. Julien A | 171.2 ± 4.5 a | 348.5 ± 0.2 a | 84.5 ± 1.4 a | |
Torinel | 279.7 ± 1.1 c | 580.5 ± 0.1 c | 152.2 ± 1.9 d | |
Shiro | Citation | 93.6 ± 0.1 d | 270.9 ± 0.1 c | 34.4 ± 0.3 b |
Ishtara | 128.9 ± 0.2 e | 384.0 ± 0.3 e | 60.7 ± 2.0 c | |
Penta | 65.3 ± 0.1 b | 170.1 ± 0.1 a | 15.5 ± 0.2 a | |
St. Julien A | 60.1 ± 0.5 a | 173.9 ± 0.1 b | 16.4 ± 0.5 a | |
Torinel | 87.8 ± 1.7 c | 297.0 ± 1 d | 37.6 ± 0.4 b | |
Stanley | Ishtara | 140.5 ± 0.1 c | 407.4 ± 0.1 c | 52.7 ± 1.1 c |
Penta | 98.4 ± 0.1 b | 273.5 ± 0.3 b | 29.4 ± 0.4 b | |
St. Julien A | 74.4 ± 0.4 a | 229.4 ± 0.6 a | 21.8 ± 0.4 a | |
Torinel | 163.6 ± 0.2 d | 457.0 ± 0.1 d | 58.9 ± 3.0 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zezulová, E.; Ondrášek, I.; Kiss, T.; Nečas, T. Qualitative and Nutritional Characteristics of Plum Cultivars Grown on Different Rootstocks. Horticulturae 2022, 8, 1123. https://doi.org/10.3390/horticulturae8121123
Zezulová E, Ondrášek I, Kiss T, Nečas T. Qualitative and Nutritional Characteristics of Plum Cultivars Grown on Different Rootstocks. Horticulturae. 2022; 8(12):1123. https://doi.org/10.3390/horticulturae8121123
Chicago/Turabian StyleZezulová, Eliška, Ivo Ondrášek, Tomáš Kiss, and Tomáš Nečas. 2022. "Qualitative and Nutritional Characteristics of Plum Cultivars Grown on Different Rootstocks" Horticulturae 8, no. 12: 1123. https://doi.org/10.3390/horticulturae8121123
APA StyleZezulová, E., Ondrášek, I., Kiss, T., & Nečas, T. (2022). Qualitative and Nutritional Characteristics of Plum Cultivars Grown on Different Rootstocks. Horticulturae, 8(12), 1123. https://doi.org/10.3390/horticulturae8121123