Biodegradable Recycled Paper Mulch Reduces Strawberry Water Consumption and Crop Coefficient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Experimental Design
2.3. Lysimeter Management
2.4. Evapotranspiration and Technical Coefficients
2.5. Evaluated Characteristics
2.6. Data Analysis
3. Results and Discussion
3.1. Evaporation Coefficient (Ke)
3.2. Basal Crop Coefficient (Kcb)
3.3. Single Crop Coefficient (Kc)
3.4. Kc Estimation by NDVI
3.5. Agronomic Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wurz, D.A.; Dubiela, R.C.; Nunes, H.F. Socioeconomic profile of strawberry producers in Canoinhas city-Santa Catarina state. Rev. Científica Rural 2019, 21, 13–27. [Google Scholar] [CrossRef]
- Antunes, L.E.C.; Bonow, S.; Reisser Júnior, C. Morango: Crescimento constante em área e produção. An. Campo Negócio 2020, 37, 88–92. [Google Scholar]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Correia, C.C.S.A.; Cunha, F.F.; Mantovani, E.C.; Silva, D.J.H.; Dias, S.H.B. Irrigation of radish cultivars in the region of Viçosa, Minas Gerais, Brazil. Rev. Ciência Agronômica 2020, 51, e20175643. [Google Scholar] [CrossRef]
- Gendron, L.; Letourneau, G.; Anderson, L.; Sauvageau, G.; Depardieu, C.; Paddock, E.; Caron, J. Real-time irrigation: Cost-effectiveness and benefits for water use and productivity of strawberries. Sci. Hortic. 2018, 240, 468–477. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Guan, H.; Huo, Z.; Wang, F.; Huang, G.; Boll, J. Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater. Agric. Water Manag. 2017, 194, 78–89. [Google Scholar] [CrossRef]
- Bedbabis, S.; Rouina, B.B.; Boukhris, M.; Ferrara, G. Effects of irrigation with treated wastewater on root and fruit mineral elements of Chemlali olive cultivar. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Boselli, M.; Bahouaoui, M.A.; Lachhab, N.; Sanzani, S.M.; Ferrara, G.; Ippolito, A. Protein hydrolysates effects on grapevine (Vitis vinifera L.; cv. Corvina) performance and water stress tolerance. Sci. Hortic. 2019, 258, 108784. [Google Scholar] [CrossRef]
- Torres, R.; Ferrara, G.; Soto, F.; López, J.A.; Sanchez, F.; Mazzeo, A.; Pérez-Pastor, A.; Domingo, R. Effects of soil and climate in a table grape vineyard with cover crops. Irrigation management using sensors networks. Ciência Téc. Vitiv. 2017, 32, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Sun, Z.X.; Feng, L.S.; Zheng, M.Z.; Chi, D.C.; Meng, W.Z.; Hou, Z.Y.; Bai, W.; Li, K.Y. Plastic film mulching for water-efficient agricultural applications and degradable films materials development research. Mater. Manuf. Process. 2015, 30, 143–154. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Ferrara, G.; Mazzeo, A.; Matarrese, A.M.S.; Pacifico, A.; Fracchiolla, M.; Al Chami, Z.; Lasorella, C.; Montemurro, P.; Mondelli, D. Soil management systems: Effects on soil properties and weed flora. S. Afr. J. Enol. Vitic. 2015, 36, 11–20. [Google Scholar] [CrossRef]
- Santin, A.; Villa, F.; Paulus, D.; Santin, J.; Piva, A.L.; Mezzalira, E.J.; Ritter, G. Plastic soil covers in vegetative development, production and quality of strawberries. Ceres 2020, 67, 272–280. [Google Scholar] [CrossRef]
- Kaur, P.; Kaur, A. Effect of various mulches on the growth and yield of strawberry cv. Chandler under tropical conditions on Punjab. Int. J. Recent Trends Sci. Technol. 2017, 25, 21–25. [Google Scholar] [CrossRef]
- Swapnil, P.; Singh, J.; Maurya, I.B. Effect of black polythene mulch on growth and yield of winter dawn strawberry (Fragaria × ananassa) by improving root zone temperature. Indian J. Agric. Sci. 2015, 85, 1219–1222. [Google Scholar]
- Király, I.; Maczkó, M.; Palkovics, A.; Mihálka, V. Changes in the vegetative and generative parameters of strawberry grown under ecological conditions. Gradus 2020, 7, 114–120. [Google Scholar] [CrossRef]
- Guerrini, S.; Borreani, G.; Voojis, H. Biodegradable Materials in Agriculture: Case Histories and Perspectives. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture; Malinconico, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 35–65. [Google Scholar] [CrossRef]
- Horodytska, O.; Valdés, F.J.; Fullana, A. Plastic flexible films waste management: A state of art review. Waste Manag. 2018, 77, 413–425. [Google Scholar] [CrossRef]
- Solis, M.; Silveira, S. Technologies for chemical recycling of household plastics: A technical review and TRL assessment. J. Waste Manag. 2020, 105, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Jabran, K.; Chauhan, B.S. Weed control using ground cover systems. Non-Chem. Weet Control 2018, 2018, 61–71. [Google Scholar] [CrossRef]
- Saglam, M.; Sintim, H.Y.; Bary, A.I.; Miles, C.A.; Ghimire, S.; Inglis, D.A.; Flury, M. Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics. Agric. Water Manag. 2017, 193, 240–250. [Google Scholar] [CrossRef]
- Moreno, M.M.; González-Mora, S.; Villena, J.; Campos, J.A.; Moreno, C. Deterioration pattern of six biodegradable, potentially low-environmental impact mulches in field conditions. J. Environ. Manag. 2017, 200, 490–501. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; FAO Irrigation and Drainage Paper 24; FAO: Rome, Italy, 1977; p. 144. [Google Scholar]
- Lozano, D.; Ruiz, N.; Gavilán, P. Consumptive water use and irrigation performance of strawberries. Agric. Water Manag. 2016, 169, 44–51. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; López-Borrallo, D.; Miranda, L.; Medina, J.J.; Arriaga, J.; Muriel-Fernández, J.L.; Martínez-Ferri, E. Estimating strawberry crop coefficients under plastic tunnels in Southern Spain by using drainage lysimeters. Sci. Hortic. 2018, 231, 233–240. [Google Scholar] [CrossRef]
- Gavilán, P.; Ruiz, N.; Miranda, L.; Martínez-Ferri, E.; Contreras, J.I.; Baeza, R.; Lozano, D. Improvement of strawberry irrigation sustainability in Southern Spain using FAO methodology. Water 2021, 13, 833. [Google Scholar] [CrossRef]
- Bernardo, S.; Mantovani, E.C.; Silva, D.D.; Soares, A.A. Manual de Irrigação, 9 ed.; Editora UFV: Viçosa, Brazil, 2019; p. 545. [Google Scholar]
- Alface, A.B.; Pereira, S.B.; Filgueiras, R.; Cunha, F.F. Sugarcane spatial-temporal monitoring and crop coefficient estimation through NDVI. Rev. Bras. Eng. Agric. Ambient. 2019, 23, 330–335. [Google Scholar] [CrossRef]
- Saher, R.; Stephen, H.; Ahmad, S. Urban evapotranspiration of green spaces in arid regions through two established approaches: A review of key drivers, advancements, limitations, and potential opportunities. Urban Water J. 2020, 18, 115–127. [Google Scholar] [CrossRef]
- Oliveira, R.M.; Cunha, F.F.; Silva, G.H.; Andrade, L.M.; Morais, C.V.; Ferreira, P.M.O.; Oliveira, R.A. Evapotranspiration and crop coefficients of Italian zucchini cultivated with recycled paper as mulch. PLoS ONE 2020, 15, e0232554. [Google Scholar] [CrossRef]
- Rodrigues, T.F.; Cunha, F.F.; Silva, G.H.; Condé, S.B.; Silva, F.C.S. Water use of different weed species using lysimeter and NDVI. Adv. Weed Sci. 2021, 39, e021233767. [Google Scholar] [CrossRef]
- Silva, G.H.; Cunha, F.F.; Andrade, L.M.; Rodrigues, T.F.; Ferreira, T.S.; Freitas, A.R.J.; Souza, C.M. Biodegradable mulch of recycled paper reduces water consumption and crop coefficient of pak choi. Sci. Hortic. 2020, 267, 109315. [Google Scholar] [CrossRef]
- Fabbri, C.; Napoli, M.; Verdi, L.; Mancini, M.; Orlandini, S.; Marta, A.D.A. Sustainability assessment of the greenseeker n management tool: A lysimetric experiment on barley. Sustainability 2020, 12, 7303. [Google Scholar] [CrossRef]
- Poudel, U.; Stephen, H.; Ahmad, S. Evaluating irrigation performance and water productivity using EEFlux ET and NDVI. Sustainability 2021, 13, 7967. [Google Scholar] [CrossRef]
- Ali, M.A.; Ibrahim, S.M.; Singh, B. Wheat grain yield and nitrogen uptake prediction using atLeaf and Green Seeker portable optical sensors at jointing growth stage. Inf. Process. Agric. 2020, 7, 375–383. [Google Scholar] [CrossRef]
- Oliveira, T.C.; Ferreira, E.; Dantas, A.A.A. Temporal variation of normalized difference vegetation index (NDVI) and calculation of the crop coefficient (Kc) from NDVI in areas cultivated with irrigated soybean. Ciência Rural 2016, 46, 1683–1688. [Google Scholar] [CrossRef] [Green Version]
- Dingre, S.K.; Gorantiwar, S.D.; Kadam, S.A. Correlating the field water balance derived crop coefficient (Kc) and canopy reflectance-based NDVI for irrigated sugarcane. Precis. Agric. 2021, 22, 1134–1153. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Embrapa-Empresa Brasileira de Pesquisa Agropecuária; Centro Nacional de Pesquisas de Solos; Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; p. 356. [Google Scholar]
- Perea, R.G.; García, I.F.; Arroyo, M.M.; Díaz, J.A.R.; Poyato, E.C.; Montesinos, P. Multiplatform application for precision irrigation scheduling in strawberries. Agric. Water Manag. 2017, 183, 194–201. [Google Scholar] [CrossRef]
- Nannetti, D.C.; Souza, R.J. Comissão de Fertilidade do Solo do Estado de Minas Gerais. In Recomendação para Uso de Corretivos e Fertilizantes em MINAS Gerais; Ribeiro, A.C., Guimarães, P.T.G., Alvarez, V.H., Eds.; Editora UFV: Viçosa, Brazil, 1999; 359p. [Google Scholar]
- Pritts, M. Nutrient management practices in perennial strawberry are informed by understanding the relationships among carbohydrate status nitrogen availability and soil compaction. HortTechnology 2015, 25, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.K.; Chung, M.; Shin, K.Y.; Im, Y.H.; Yoon, S.W. A study of the effects of enhanced uniformity control of greenhouse environment variables on crop growth. Energies 2019, 12, 1749. [Google Scholar] [CrossRef] [Green Version]
- Tunc, T.; Sahin, U.; Evren, S.; Dasci, E.; Guney, E.; Aslantas, R. The deficit irrigation productivity and economy in strawberry in the different drip irrigation practices in a high plain with semi-arid climate. Sci. Hortic. 2019, 245, 47–56. [Google Scholar] [CrossRef]
- Arnold, C.Y. The determination and significance of the base temperature in a linear heat unit system. J. Am. Soc. Hortic. Sci. 1959, 74, 430–445. [Google Scholar]
- Diel, M.I.; Pinheiro, M.V.M.; Cocco, C.; Fontana, D.C.; Caron, B.O.; Paula, G.M.; Schmidt, D. Phyllochron and phenology of strawberry cultivars from different origins cultivated in organic substrates. Sci. Hortic. 2017, 220, 226–232. [Google Scholar] [CrossRef]
- Tazzo, I.F.; Fagherazzi, A.F.; Lerin, S.; Kretzschmar, A.A.; Rufato, L. Heat requirement of two selections and four strawberry cultivars grown in the catarinense plateau. Rev. Bras. Frutic. 2015, 37, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Costa, S.I.; Ferreira, L.V.; Benati, J.A.; Cantillano, R.F.F.; Antunes, L.E.C. Qualitative parameters of neutral-day strawberries produced in soilless cultivation. Rev. Eng. Agric. 2019, 27, 481–499. [Google Scholar] [CrossRef]
- Trimble. GreenSeeker Handheld Crop Sensor. 2022. Available online: https://agriculture.trimble.com/product/greenseeker-handheld-crop-sensor/ (accessed on 10 October 2022).
- Böhm, W. Methods of Studying Root Systems; Springer: Berlin/Heidelberg, Germany, 1979; p. 188. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Santos, D.T.; Tiwari, K.N. Estimation of water requirement of banana crop under drip irrigation with and without plastic mulch using dual crop coefficient approach. Earth Environ. Sci. 2019, 344, 012024. [Google Scholar] [CrossRef]
- Nicolás-Cuevas, J.A.; Parras-Burgos, D.; Soler-Méndez, M.; Ruiz-Canales, A.; Molina-Martínez, J.M. Removable weighing lysimeter for use in horticultural crops. Appl. Sci. 2020, 10, 4865. [Google Scholar] [CrossRef]
- Razzaghi, F.; Sepaskhah, A.R. Assessment of nine different equations for ETo estimation using lysimeter data in a semi-arid environment. Arch. Agron. Soil Sci. 2010, 56, 1–12. [Google Scholar] [CrossRef]
- Gonzalez-Fuentes, J.A.; Shackel, K.; Lieth, J.H.; Albornoz, F.; Benavides-Mendoza, A.; Evans, R.Y. Diurnal root zone temperature variations affect strawberry water relations, growth, and fruit quality. Sci. Hortic. 2016, 203, 169–177. [Google Scholar] [CrossRef]
- Yan, H.F.; Acquah, S.J.; Zhang, J.Y.; Wang, G.Q.; Zhang, C.; Darko, R.O. Overview of modelling techniques for greenhouse microclimate environment and evapotranspiration. Int. J. Agric. Biol. Eng. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Martin, D.E.; López Júnior, J.D.; Lan, Y. Laboratory evaluation of the GreenSeeker handheld optical sensor to variations in orientation and height above canopy. Int. J. Agric. Biol. Eng. 2012, 5, 43–47. [Google Scholar] [CrossRef]
- Diel, M.I.; Pinheiro, M.V.M.; Cocco, C.; Caron, B.O.; Fontana, D.C.; Meira, D.; Schmidt, D. Yield and quality performance of italian and american strawberry genotypes in Brazil. J. Agric. Sci. 2018, 10, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.H.; Cunha, F.F.; Morais, C.V.; Freitas, A.R.J.; Silva, D.J.H.; Souza, C.M. Mulching materials and wetted soil percentages on zucchini cultivation. Ciênc. Agrotec. 2020, 44, e006720. [Google Scholar] [CrossRef]
Layer | Ufc 1 | Uwp 2 | BD 3 | Clay | Silt | Sand | Textural Classification 4 | ||||||||||||||||||||
(cm) | (g g−1) | (g cm−3) | (%) | ||||||||||||||||||||||||
0–35 | 0.208 | 0.160 | 1.11 | 24.7 | 4.3 | 71.0 | Sandy clay loam | ||||||||||||||||||||
35–55 | 0.015 | 0.008 | 1.43 | 1.3 | 0.7 | 98.0 | Sand | ||||||||||||||||||||
Layer | pH | P | K | Ca | Mg | Al | H+Al | SB 5 | t 6 | T 7 | |||||||||||||||||
(cm) | (H2O) | (mg dm−3) | (cmolc dm−3) | ||||||||||||||||||||||||
0–35 | 5.66 | 2.5 | 23 | 0.64 | 0.18 | 0.0 | 1.4 | 0.88 | 0.88 | 2.28 | |||||||||||||||||
35–55 | 6.62 | 2.9 | 3 | 0.17 | 0.06 | 0.0 | 0.2 | 0.24 | 0.24 | 0.44 | |||||||||||||||||
Layer | V 8 | m 9 | OM 10 | Prem 11 | S | B | Cu | Mn | Fe | Zn | |||||||||||||||||
(cm) | (%) | (dag kg−1) | (mg L−1) | (mg dm−3) | |||||||||||||||||||||||
0–35 | 38.6 | 0.0 | 0.67 | 24.4 | 31.0 | 0.10 | 2.13 | 36.2 | 129.9 | 1.72 | |||||||||||||||||
35–55 | 54.5 | 0.0 | - | 51.0 | - | - | - | - | - | - |
Factor | CV 1 (%) | F Test | Types of Mulch | ||
---|---|---|---|---|---|
MS 2 | p-Value | SWoP | SWiP | ||
Volume of water (m3 m−2) | 11.90 | 1.20 × 104 | 0.0010 | 0.394 a | 0.317 b |
Number of fruits (fruit pl−1) | 15.96 | 3.53 × 10−1 | 0.9454 | 43.58 a | 43.17 a |
Fresh mass (g fruit−1) | 5.12 | 8.45 × 10−1 | 0.2207 | 15.86 a | 16.51 a |
Yield (kg m−2) | 18.08 | 5.12 × 10−2 | 0.8623 | 6.21 a | 6.37 a |
WP 3 (kg m−3) | 38.99 | 3.90 × 101 | 0.1243 | 15.68 a | 20.09 a |
Waste (fruit pl−1) | 11.90 | 1.25 × 10−1 | 0.9574 | 4.75 a | 4.83 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, J.P.; da Cunha, F.F.; da Silva, G.H.; Condé, S.B.; Guimarães, G.F.C.; Ribeiro, M.C. Biodegradable Recycled Paper Mulch Reduces Strawberry Water Consumption and Crop Coefficient. Horticulturae 2022, 8, 1112. https://doi.org/10.3390/horticulturae8121112
Pinto JP, da Cunha FF, da Silva GH, Condé SB, Guimarães GFC, Ribeiro MC. Biodegradable Recycled Paper Mulch Reduces Strawberry Water Consumption and Crop Coefficient. Horticulturae. 2022; 8(12):1112. https://doi.org/10.3390/horticulturae8121112
Chicago/Turabian StylePinto, João Pedro, Fernando França da Cunha, Gustavo Henrique da Silva, Saulo Borges Condé, Gabriel Fernandes Costa Guimarães, and Marcos Caldeira Ribeiro. 2022. "Biodegradable Recycled Paper Mulch Reduces Strawberry Water Consumption and Crop Coefficient" Horticulturae 8, no. 12: 1112. https://doi.org/10.3390/horticulturae8121112
APA StylePinto, J. P., da Cunha, F. F., da Silva, G. H., Condé, S. B., Guimarães, G. F. C., & Ribeiro, M. C. (2022). Biodegradable Recycled Paper Mulch Reduces Strawberry Water Consumption and Crop Coefficient. Horticulturae, 8(12), 1112. https://doi.org/10.3390/horticulturae8121112