Mutual Augmentation of Spectral Sensing and Machine Learning for Non-Invasive Detection of Apple Fruit Damages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Setup for Hyperspectral Measurements
2.3. Hyperspectral Data Treatment
2.3.1. Expert Annotation (Ground Truth)
2.3.2. Per-Pixel Classification
2.3.3. Vegetation Indices as Feature Transformations
2.3.4. Combined Spectral–Spatial Classification
2.4. Performance Evaluation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walsh, K.B.; Blasco, J.; Zude-Sasse, M.; Sun, X. Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use. Postharvest Biol. Technol. 2020, 168, 111246. [Google Scholar] [CrossRef]
- Penzel, M.; Tsoulias, N.; Herppich, W.B.; Weltzien, C.; Zude-Sasse, M. Mapping the fruit bearing capacity in a commercial apple (Malus x domestica BORKH) orchard. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 4–6 November 2020; pp. 283–287. [Google Scholar]
- Zude-Sasse, M.; Fountas, S.; Gemtos, T.A.; Abu-Khalaf, N. Applications of precision agriculture in horticultural crops. Eur. J. Hortic. Sci. 2016, 81, 78–90. [Google Scholar] [CrossRef]
- Solovchenko, A.; Lukyanov, A.; Nikolenko, A.; Shurygin, B.; Akimov, M.; Gitelson, A. Physiological foundations of spectral imaging-based monitoring of apple fruit ripening. Acta Hortic. 2021, 1324, 419–428. [Google Scholar] [CrossRef]
- Gamon, J.A.; Somers, B.; Malenovský, Z.; Middleton, E.M.; Rascher, U.; Schaepman, M.E. Assessing Vegetation Function with Imaging Spectroscopy. Surv. Geophys. 2019, 40, 489–513. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Van Beers, R.; Saeys, W.; Li, C.; Cen, H. Measurement of optical properties of fruits and vegetables: A review. Postharvest Biol. Technol. 2020, 159, 111003. [Google Scholar] [CrossRef]
- Sparks, T.; Huber, K.; Croxton, P. Plant development scores from fixed-date photographs: The influence of weather variables and recorder experience. Int. J. Biometeorol. 2006, 50, 275–279. [Google Scholar] [CrossRef]
- Yost, J.M.; Sweeney, P.W.; Gilbert, E.; Nelson, G.; Guralnick, R.; Gallinat, A.S.; Ellwood, E.R.; Rossington, N.; Willis, C.G.; Blum, S.D. Digitization protocol for scoring reproductive phenology from herbarium specimens of seed plants. Appl. Plant Sci. 2018, 6, e1022. [Google Scholar] [CrossRef]
- Yalcin, H. Plant phenology recognition using deep learning: Deep-Pheno. In Proceedings of the 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; pp. 1–5. [Google Scholar]
- Hufkens, K.; Melaas, E.K.; Mann, M.L.; Foster, T.; Ceballos, F.; Robles, M.; Kramer, B. Monitoring crop phenology using a smartphone based near-surface remote sensing approach. Agric. For. Meteorol. 2019, 265, 327–337. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Toscano, P.; Cinat, P.; Berton, A.; Matese, A. A low-cost and unsupervised image recognition methodology for yield estimation in a vineyard. Front. Plant Sci. 2019, 10, 559. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef]
- Roitsch, T.; Cabrera-Bosquet, L.; Fournier, A.; Ghamkhar, K.; Jiménez-Berni, J.; Pinto, F.; Ober, E.S. Review: New sensors and data-driven approaches—A path to next generation phenomics. Plant Sci. 2019, 282, 2–10. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of Proceedings of the IEEE International Conference on Computer Vision, Las Condes, Chile, 11–18 December 2015; pp. 1026–1034. [Google Scholar]
- Vinuesa, R.; Sirmacek, B. Interpretable deep-learning models to help achieve the Sustainable Development Goals. Nat. Mach. Intell. 2021, 3, 926. [Google Scholar] [CrossRef]
- Taylor, J.; Yudkowsky, E.; LaVictoire, P.; Critch, A. Alignment for Advanced Machine Learning Systems. In Ethics of Artificial Intelligence; Oxford University Press: Oxford, UK, 2016; pp. 342–382. [Google Scholar]
- Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining explanations: An overview of interpretability of machine learning. In Proceedings of the 2018 IEEE 5th International Conference on data science and advanced analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 80–89. [Google Scholar]
- Cavaco, A.M.; Utkin, A.B.; Marques da Silva, J.; Guerra, R. Making Sense of Light: The Use of Optical Spectroscopy Techniques in Plant Sciences and Agriculture. Appl. Sci. 2022, 12, 997. [Google Scholar] [CrossRef]
- Merzlyak, M.; Solovchenko, A.; Gitelson, A. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol. Technol. 2003, 27, 197–212. [Google Scholar] [CrossRef]
- Gitelson, A.; Arkebauer, T.; Viña, A.; Skakun, S.; Inoue, Y. Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region. Remote Sens. Environ. 2021, 258, 112401. [Google Scholar] [CrossRef]
- Gitelson, A.; Solovchenko, A.; Viña, A. Foliar absorption coefficient derived from reflectance spectra: A gauge of the efficiency of in situ light-capture by different pigment groups. J. Plant Physiol. 2020, 254, 153277. [Google Scholar] [CrossRef]
- Solovchenko, A.; Dorokhov, A.; Shurygin, B.; Nikolenko, A.; Velichko, V.; Smirnov, I.; Khort, D.; Aksenov, A.; Kuzin, A. Linking tissue damage to hyperspectral reflectance for non-invasive monitoring of apple fruit in orchards. Plants 2021, 10, 310. [Google Scholar] [CrossRef]
- Solovchenko, A.E.; Merzlyak, M.N.; Pogosyan, S.I. Light-induced decrease of reflectance provides an insight in the photoprotective mechanisms of ripening apple fruit. Plant Sci. 2010, 178, 281–288. [Google Scholar] [CrossRef]
- Solovchenko, A.; Avertcheva, O.; Merzlyak, M. Elevated sunlight promotes ripening-associated pigment changes in apple fruit. Postharvest Biol. Technol. 2006, 40, 183–189. [Google Scholar] [CrossRef]
- Gitelson, A.; Solovchenko, A. Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance-and absorbance-based approaches. J. Photochem. Photobiol. B Biol. 2018, 178, 537–544. [Google Scholar] [CrossRef]
- Shurygin, B.; Chivkunova, O.; Solovchenko, O.; Solovchenko, A.; Dorokhov, A.; Smirnov, I.; Astashev, M.E.; Khort, D. Comparison of the Non-Invasive Monitoring of Fresh-Cut Lettuce Condition with Imaging Reflectance Hyperspectrometer and Imaging PAM-Fluorimeter. Photonics 2021, 8, 425. [Google Scholar] [CrossRef]
- Che, W.; Sun, L.; Zhang, Q.; Tan, W.; Ye, D.; Zhang, D.; Liu, Y. Pixel based bruise region extraction of apple using Vis-NIR hyperspectral imaging. Comput. Electron. Agric. 2018, 146, 12–21. [Google Scholar] [CrossRef]
- Heikkilä, M.; Pietikäinen, M.; Schmid, C. Description of interest regions with local binary patterns. Pattern Recognit. 2009, 42, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Wyman, C.; Sloan, P.-P.; Shirley, P. Simple analytic approximations to the CIE XYZ color matching functions. J. Comput. Graph. Technol. 2013, 2, 11. [Google Scholar]
- Hill, C. Learning Scientific Programming with Python; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Drozdov, D.; Kolomeychenko, M.; Borisov, Y. Supervisely. Available online: https://www.supervise.ly (accessed on 24 November 2022).
- Vieira, S.M.; Kaymak, U.; Sousa, J.M. Cohen’s Kappa Coefficient as a Performance Measure for Feature Selection. In Proceedings of the International Conference on Fuzzy Systems, Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Underwood, E.; Ustin, S.; DiPietro, D. Mapping nonnative plants using hyperspectral imagery. Remote Sens. Environ. 2003, 86, 150–161. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef] [Green Version]
- Main, R.; Cho, M.A.; Mathieu, R.; O’Kennedy, M.M.; Ramoelo, A.; Koch, S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J. Photogramm. Remote Sens. 2011, 66, 751–761. [Google Scholar] [CrossRef]
- Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. Scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Rendon, E.; Alejo, R.; Castorena, C.; Isidro-Ortega, F.J.; Granda-Gutierrez, E.E. Data sampling methods to deal with the big data multi-class imbalance problem. Appl. Sci. 2020, 10, 1276. [Google Scholar] [CrossRef] [Green Version]
- Shaw, G.A.; Burke, H.K. Spectral imaging for remote sensing. Linc. Lab. J. 2003, 14, 3–28. [Google Scholar]
- Kira, O.; Nguy-Robertson, A.L.; Arkebauer, T.J.; Linker, R.; Gitelson, A.A. Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agric. For. Meteorol. 2016, 218, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Pan, E.; Ma, Y.; Fan, F.; Mei, X.; Huang, J. Hyperspectral image classification across different datasets: A generalization to unseen categories. Remote Sens. 2021, 13, 1672. [Google Scholar] [CrossRef]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 2017, 50, 1–45. [Google Scholar] [CrossRef]
- Belmerhnia, L.; Djermoune, E.-H.; Carteret, C.; Brie, D. Simultaneous regularized sparse approximation for wood wastes NIR spectra features selection. Proceedings of 2015 the IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancun, Mexico, 13–16 December 2015; pp. 437–440. [Google Scholar]
Index Name | Formula | Explanation |
---|---|---|
NIR band | R800 | Highly invariable in heathy plant tissues and affected by damages, it also contains information about the viewing geometry and illumination |
CI700 | R800 is unaffected by the pigment absorption of light, whereas R700 corresponds to the Red Edge region of the red Chl absorption maximum | |
mARI | R550 is affected by both AnC and Chl, and R700 is the reflectance in the band of the red Chl absorption maximum. | |
mBRI | R800 and R640 are used as the terms sensitive to the accumulation of the damage-related pigments and reflectance R678 is employed for correction of the index for the interference from Chl absorption |
Feature Set Used | Accuracy, % | Cohen’s Kappa | F2 Score | |
---|---|---|---|---|
Baseline (agreement between human experts) | 97.7 ± 2.4 | 0.931 ± 0.053 | 0.445 ± 0.309 | |
Random Forest classifiers | ||||
Reflectances with spectral downsampling | 1 1 | 98.2 ± 2.2 | 0.944 ± 0.056 | 0.160 ± 0.286 |
1/2 | 98.1 ± 2.2 | 0.943 ± 0.057 | 0.154 ± 0.280 | |
1/4 | 98.1 ± 2.2 | 0.942 ± 0.058 | 0.149 ± 0.275 | |
1/8 | 98.1 ± 2.3 | 0.941 ± 0.059 | 0.135 ± 0.262 | |
1/16 | 97.8 ± 2.5 | 0.932 ± 0.065 | 0.095 ± 0.212 | |
1/32 | 97.8 ± 2.5 | 0.931 ± 0.064 | 0.127 ± 0.233 | |
Reflectances with no downsampling + LBP | 98.1 ± 2.3 | 0.941 ± 0.058 | 0.173 ± 0.290 | |
Reflectances + LBP + weighting | 96.1 ± 3.6 | 0.888 ± 0.073 | 0.181 ± 0.241 | |
LBP only | 90.1 ± 4.7 | 0.651 ± 0.101 | 0.000 ± 0.000 2 | |
VI only | 98.0 ± 2.1 | 0.940 ± 0.053 | 0.149 ± 0.266 | |
VI + LBP | 98.3 ± 2.1 | 0.948 ± 0.054 | 0.192 ± 0.295 | |
VI + LBP + weighting | 98.2 ± 2.0 | 0.947 ± 0.052 | 0.196 ± 0.294 | |
Support Vector classifiers | ||||
Reflectances with spectral downsampling | 1 | 97.9 ± 2.5 | 0.935 ± 0.063 | 0.142 ± 0.260 |
1/2 | 97.8 ± 2.6 | 0.933 ± 0.066 | 0.110 ± 0.228 | |
1/4 | 97.8 ± 2.6 | 0.931 ± 0.067 | 0.096 ± 0.213 | |
1/8 | 97.7 ± 2.6 | 0.930 ± 0.068 | 0.086 ± 0.204 | |
1/16 | 97.5 ± 2.7 | 0.920 ± 0.070 | 0.035 ± 0.131 | |
1/32 | 97.4 ± 2.7 | 0.919 ± 0.071 | 0.018 ± 0.083 | |
Reflectances with no downsampling + LBP | 97.9 ± 2.5 | 0.936 ± 0.063 | 0.140 ± 0.256 | |
Reflectances + LBP + weighting | 95.7 ± 2.1 | 0.864 ± 0.050 | 0.200 ± 0.273 | |
LBP only | 39.1 ± 4.0 | −0.105 ± 0.027 | 0.011 ± 0.019 | |
VI only | 97.5 ± 2.7 | 0.922 ± 0.071 | 0.006 ± 0.039 | |
VI + LBP | 96.8 ± 3.1 | 0.902 ± 0.075 | 0.029 ± 0.052 | |
VI + LBP + weighting | 94.6 ± 3.1 | 0.832 ± 0.061 | 0.079 ± 0.128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shurygin, B.; Smirnov, I.; Chilikin, A.; Khort, D.; Kutyrev, A.; Zhukovskaya, S.; Solovchenko, A. Mutual Augmentation of Spectral Sensing and Machine Learning for Non-Invasive Detection of Apple Fruit Damages. Horticulturae 2022, 8, 1111. https://doi.org/10.3390/horticulturae8121111
Shurygin B, Smirnov I, Chilikin A, Khort D, Kutyrev A, Zhukovskaya S, Solovchenko A. Mutual Augmentation of Spectral Sensing and Machine Learning for Non-Invasive Detection of Apple Fruit Damages. Horticulturae. 2022; 8(12):1111. https://doi.org/10.3390/horticulturae8121111
Chicago/Turabian StyleShurygin, Boris, Igor Smirnov, Andrey Chilikin, Dmitry Khort, Alexey Kutyrev, Svetlana Zhukovskaya, and Alexei Solovchenko. 2022. "Mutual Augmentation of Spectral Sensing and Machine Learning for Non-Invasive Detection of Apple Fruit Damages" Horticulturae 8, no. 12: 1111. https://doi.org/10.3390/horticulturae8121111
APA StyleShurygin, B., Smirnov, I., Chilikin, A., Khort, D., Kutyrev, A., Zhukovskaya, S., & Solovchenko, A. (2022). Mutual Augmentation of Spectral Sensing and Machine Learning for Non-Invasive Detection of Apple Fruit Damages. Horticulturae, 8(12), 1111. https://doi.org/10.3390/horticulturae8121111