Cyproconazole Translocation in Coconut Palm Tree Using Vegetative Endotherapy: Evaluation by LC-MS/MS and Mathematical Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Cyproconazole Solution for Endotherapeutic Applications
2.3. Endotherapeutic Systems
2.4. Application and Sample Collection—Field Trials
2.5. Residual Analysis
2.6. Mathematical Modeling
2.7. Modeling the Disease Dynamics along the Leaves (Leaf Model)
3. Results and Discussions
3.1. Stem Translocation—Modeling Based on Field Trials and LC-MS/MS
3.2. Stem Translocation—Modeling Extrapolation for Taller Palms
3.3. Leaf Translocation—Simulation/Prediction for Disease in Coconut Leaf
3.4. Cyproconazole Residue in Coconut Fruit Treated by Endotherapy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Berger, C.; Laurent, F. Trunk injection of plant protection products to protect trees from pests and diseases. Crop. Prot. 2019, 124, 104831. [Google Scholar] [CrossRef]
- Gardner, C.L.; da Silva, D.R.; Pagliai, F.A.; Pan, L.; Padgett-Pagliai, K.A.; Blaustein, R.A.; Merli, M.L.; Zhang, D.; Pereira, C.; Teplitski, M.; et al. Assessment of unconventional antimicrobial compounds for the control of ‘Candidatus Liberibacter asiaticus’, the causative agent of citrus greening disease. Sci Rep. 2020, 10, 5395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montecchio, L. A venturi effect can help cure our trees. J. Vis. Exp. 2013, 80, e51199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beerling, D.J.; Franks, P.J. The hidden cost of transpiration reconfigurable colloids. Nature. 2010, 464, 495–496. [Google Scholar] [CrossRef]
- VanWoerkom, A.H.; Aćimović, S.G.; Sundin, G.W.; Cregg, B.M.; Mota-Sanchez, D.; Vandervoort, C.; Wise, J.C. Trunk injection, An alternative technique for pesticide delivery in apples. Crop. Prot. 2014, 65, 173–185. [Google Scholar] [CrossRef]
- Hesami, A.; Jafari, N.; Shahriari, M.H.; Zolfi, M. Yield and Physico-Chemical Composition of Date-Palm (Phoenix Dactylifera) as Affected by Nitrogen and Zinc Application. Commun. Soil Sci. Plant. Anal. 2017, 48, 1943–1954. [Google Scholar] [CrossRef]
- Corina, V.A.; Dempsey, D.A.; Klessig, D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Jiang, J.; Wang, N. Control of citrus huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 2018, 108, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Byrne, F.J.; Almanzor, J.; Tellez, I.; Eskalen, A.; Grosman, D.M.; Morse, J.G. Evaluation of trunk-injected emamectin benzoate as a potential management strategy for Kuroshio shot hole borer in avocado trees. Crop. Prot. 2020, 132, 105136. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Ferreira, J.M.S.; Talamini, V.; Lins, P.M.P.; Farias, S.C.C.; Bottoli, C.B.G. Translocation of pesticides in coconut palm by endotherapy with the addition of different adjuvants. Ciência E Nat. 2020, 42, e56. [Google Scholar] [CrossRef]
- Ainsworth, G.C. Introduction to the History of Plant Pathology, 1st ed.; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Chihaoui-Meridja, S.; Harbi, A.; Abbes, K.; Chaabane, H.; La Pergola, A.; Chermiti, B.; Suma, P. Systematicity, persistence and efficacy of selected insecticides used in endotherapy to control the red palm weevil Rhynchophorus ferrugineus (Olivier, 1790) on Phoenix canariensis. Phytoparasitica 2020, 48, 75–85. [Google Scholar] [CrossRef]
- Maso, E.D.; Linaldeddu, B.T.; Fanchin, G.; Faccoli, M.; Montecchio, L. The potential for pesticide trunk injections for control of thousand cankers disease of walnut. Phytopathol. Mediterr. 2019, 58, 73–79. [Google Scholar] [CrossRef]
- Carles, C.; Bouvier, G.; Lebailly, P.; Baldi, I. Use of job-exposure matrices to estimate occupational exposure to pesticides A review. J. Expo. Sci. Environ. Epidemiol. 2016, 27, 125–140. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Talamine, V.; Facco, J.F.; Rizzetti, T.M.; Ferreira, J.M.S.; Oliveira, F.A.; Prestes, O.D.; Zanella, R.; Martins, M.L.; Adaime, M.B.; et al. Determination of pesticide residues in coconut tree trunks by modified QuEChERS method and ultrahigh-performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry. Anal. Methods 2015, 7, 4237–4245. [Google Scholar] [CrossRef] [Green Version]
- Davis, T.A.; Sudasrip, H.; Darwis, S.N. Coconut Research Institute Manado Indonesia, An Overview of Research Activities; CRI: Manado, Indonesia, 1985. [Google Scholar]
- Ferry, M.; Gomez, S. Assessment of risks and potential of injection techniques in integrated programs to eradicate the red palm weevil, Review and new perspectives. Fruits 2014, 69, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Foale, M.A.; Nguyen, Q.T.; Adkins, S.W. iCocos Nucifera/i Coconut. In Biotechnology of Fruit and Nut Crops, 2nd ed.; Litz, R.E., Pliego-Alfaro, F., Hormaza, J.I., Eds.; CAB eBooks—CABI: London, UK, 2020; p. 79. [Google Scholar] [CrossRef]
- Yalegama, L.L.W.C.; Karunaratne, D.N.; Sivakanesan, R.; Jayasekara, C. Chemical and functional properties of fiber concentrates obtained from byproducts of coconut kernel. Food Chem. 2013, 141, 124–130. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Santos, J.M.; Breitkreitz, M.C.; Ferreira, J.M.S.; Lins, P.M.P.; Farias, S.C.; de Morais, D.R.; Eberlin, M.N.; Bottoli, C.B.G. Characterization of the lipid profile from coconut (Cocos nucifera L.) oil of different varieties by electrospray ionization mass spectrometry associated with principal component analysis and independent component analysis. Food Res. Int. 2019, 123, 189–197. [Google Scholar] [CrossRef]
- Warwick, D.R.N.; Talamini, V.; Leal, E.C.; Ram, C. Principais Doenças. In A Cultura do Coqueiro no Brasil, 3rd ed.; Ferreira, J.M.S., Warwick, D.R.N., Siqueira, L.A., Eds.; Embrapa: Brasília, Brazil, 2018; p. 447. [Google Scholar]
- Ferreira, J.A.; Ferreira, J.M.S.; Talamini, V.; Facco, J.d.F.; Rizzetti, T.M.; Prestes, O.D.; Adaime, M.B.; Zanella, R.; Bottoli, C.B.G. Determination of pesticides in coconut (Cocos nucifera Linn. ) water and pulp using modified QuEChERS and LC–MS/MS. Food Chem. 2016, 213, 616–624. [Google Scholar] [CrossRef]
- Lewis, K.; Tzilivakis, J. Development of a data set of pesticide dissipation rates in/on various plant matrices for the pesticide properties database (PPDB). Data 2017, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, J.A.M.; Eficiência da Aplicação axilar de Ciproconazole no Controle de Doenças Foliares do Coqueiro-anão. Universidade Estadual do Norte Fluminense. 2013. Available online: https://uenf.br/posgraduacao/producao-vegetal/wp-content/uploads/sites/10/2014/03/Disserta%C3%A7%C3%A3o-M.Sc_.-Jackeline-Ara%C3%BAjo-Mota-Siqueira-2013.pdf (accessed on 14 June 2020).
- da Silva, J.M.; Complexo lixa e queima das folhas em coqueiro anão, Avaliação de germoplasma e estratégias de controle químico por cyproconazole. Universidade Federal de Sergipe. 2016. Available online: https://ri.ufs.br/handle/riufs/6782 (accessed on 14 June 2020).
- Holbrook, N.M.; Zwieniecki, M.A. Vascular Transport in Plants; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Wheeler, T.D.; Stroock, A.D. The transpiration of water at negative pressures in a synthetic tree. Nature 2008, 455, 208–212. [Google Scholar] [CrossRef] [PubMed]
- McElrone, A.J.; Choat, B.; Gambetta, G.A.; Brodersen, C.R. Water uptake and transport in vascular plants. Nat. Educ. Knowl. 2013, 4, 6. [Google Scholar] [CrossRef]
- Bhosle, V.K.; Altit, G.; Autmizguine, J.; Chemtob, S. 18—Basic Pharmacologic Principles, 5th ed.; Fetal and Neonatal Physiology, 2-Volume Set; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Darrieutort, G.; Lecomte, P. Evaluation of a trunk injection technique to control grapevine wood diseases. Phytopathol. Mediterr. 2007, 46, 50–57. [Google Scholar]
- Koch, G.W.; Sillett, S.C.; Jennings, G.M. The limit to tree height. Nature 2004, 428, 851–854. [Google Scholar] [CrossRef]
- European Union Pesticides Database. Pesticide Residues. 2021. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls (accessed on 20 February 2020).
- Roth, I. Fruits of Angiosperms. Encyclopedia of Plant Anatomy, 1st ed.; Gebruder Borntraeger: Berlin, Germany, 1977; p. 675. [Google Scholar]
- Ferreira, J.A.; Queiroz, S.C.N. Multiresidue method for determination of pesticides in coconut (Cocos nucifera Linn.) endosperm by using GC—MS/MS and UHPLC—MS/MS analysis. J. Food Compos. Anal. 2021, 97, 103764. [Google Scholar] [CrossRef]
- McVay, J.; Sun, X.; Jones, D.; Urbina, H.; Aldeek, F.; Cook, J.M.; Jeyaprakash, A.; Hodges, G.; Smith, T. Limited persistence of residues and metabolites in fruit and juice following penicillin trunk infusion in citrus affected by Huanglongbing. Crop. Prot. 2019, 125, 104753. [Google Scholar] [CrossRef]
- Byrne, F.J.; Krieger, R.I.; Doccola, J.; Morse, J.G. Seasonal timing of neonicotinoid and organophosphate trunk injections to optimize the management of avocado thrips in California avocado groves. Crop. Prot. 2014, 57, 20–26. [Google Scholar] [CrossRef]
Nonpressurized | Pressurized |
---|---|
20 mL in each plant, being 10 mL in each of two opposite injection points | 10 mL at a single application point |
Dilution | |
1:1 (v/v) of cyproconazole in Break-thru® |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, J.A.; Fassoni, A.C.; Ferreira, J.M.S.; Lins, P.M.P.; Bottoli, C.B.G. Cyproconazole Translocation in Coconut Palm Tree Using Vegetative Endotherapy: Evaluation by LC-MS/MS and Mathematical Modeling. Horticulturae 2022, 8, 1099. https://doi.org/10.3390/horticulturae8121099
Ferreira JA, Fassoni AC, Ferreira JMS, Lins PMP, Bottoli CBG. Cyproconazole Translocation in Coconut Palm Tree Using Vegetative Endotherapy: Evaluation by LC-MS/MS and Mathematical Modeling. Horticulturae. 2022; 8(12):1099. https://doi.org/10.3390/horticulturae8121099
Chicago/Turabian StyleFerreira, Jordana Alves, Artur César Fassoni, Joana Maria Santos Ferreira, Paulo Manoel Pontes Lins, and Carla Beatriz Grespan Bottoli. 2022. "Cyproconazole Translocation in Coconut Palm Tree Using Vegetative Endotherapy: Evaluation by LC-MS/MS and Mathematical Modeling" Horticulturae 8, no. 12: 1099. https://doi.org/10.3390/horticulturae8121099
APA StyleFerreira, J. A., Fassoni, A. C., Ferreira, J. M. S., Lins, P. M. P., & Bottoli, C. B. G. (2022). Cyproconazole Translocation in Coconut Palm Tree Using Vegetative Endotherapy: Evaluation by LC-MS/MS and Mathematical Modeling. Horticulturae, 8(12), 1099. https://doi.org/10.3390/horticulturae8121099