Evaluation of Critical Points for Effective Cryopreservation of Four Different Citrus spp. Germplasm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Surface Sterilization and In Vitro Propagation of Citrus Micro-Shoots
2.2. Cold Hardening
2.3. Isolation of Shoot Tips
2.4. Sucrose Preculture
2.5. Application of Droplet Vitrification Technique
2.6. Thawing and Post-Thaw Recovery
2.7. Data Analyses
3. Results
3.1. The Determination of the Medium for Shoot Tip Regrowth
3.2. The Evaluation of Cold-Hardening
3.3. The Effect of Shoot Tip Size on Cryopreservation
3.4. The Evaluation of Sucrose Preculture
3.5. The Evaluation of Cryoprotectant Treatment Time
3.6. The Evaluation of the Optimized Post Thaw Culture after Cryopreservation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thormann, I.; Dulloo, M.; Engels, J. Techniques for ex situ plant conservation. In Plant Conservation Genetics; Henry, R.J., Ed.; The Haworth Press: New York, NY, USA, 2006; pp. 7–36. [Google Scholar]
- Kaya, E.; Alves, A.; Rodrigues, L.; Jenderek, M.; Hernandez-Ellis, M.; Ozudogru, A.; Ellis, D. Cryopreservation of Eucalyptus genetic resources. CryoLetters 2013, 34, 608–618. [Google Scholar]
- Kaya, E.; Souza, F.V.D. Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane (Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers. Vitr. Cell Dev. Biol. Plant. 2017, 53, 410–417. [Google Scholar] [CrossRef]
- Kalaiselvi, R.; Rajasekar, M.; Gomathi, S. Cryopreservation of plant materials-a review. Int. J. Chem. Stud. 2017, 5, 560–564. [Google Scholar]
- Sakai, A.; Yoshida, S. Survival of plant tissue at super-low temperature VI. Effects of cooling and rewarming rates on survival. Plant Physiol. 1967, 42, 1695–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, A. Cryopreservation of Germplasm of Woody Plants. In Cryopreservation of Plant Germplasm I; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 32, pp. 53–69. [Google Scholar] [CrossRef]
- Gnanapragasam, S.; Vasil, I.K. Ultrastructural changes in suspension culture cells of Panicum maximum during cryopreservation. Plant Cell Rep. 1992, 11, 169–174. [Google Scholar] [CrossRef]
- Volk, G.M.; Walters, C. Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology 2006, 52, 48–61. [Google Scholar] [CrossRef]
- Panis, B. Sixty years of plant cryopreservation: From freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Hortic. 2019, 1234, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A. Potentially valuable cryogenie procedures for cryopreservation of cultured plant meristems. In Conservation of Plant Genetic Resources In Vitro; Razdan, M.K., Cocking, E.C., Eds.; Science Publishers Inc.: Enfield, CT, USA, 1997; Volume 1, pp. 53–66. [Google Scholar]
- Reed, B.M. Cryopreservation—Practical Considerations. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 3–13. [Google Scholar] [CrossRef]
- Panis, B.; Lambardi, M. Status of cryopreservation technologies in plants (crops and forest trees). In The Role of Biotechnology in Exploring and Protecting Agricultural Genetic Resources, 2nd ed.; Ruane, J., Sonnino, A., Eds.; FAO: Rome, Italy, 2006; pp. 61–78. [Google Scholar]
- Nag, K.K.; Street, H.E. Freeze preservation of cultured plant cells: I. the pretreatment phase. Physiol. Plant. 1975, 34, 254–260. [Google Scholar] [CrossRef]
- Zamecnik, J.; Faltus, M.; Bilavcik, A. Vitrification Solutions for Plant Cryopreservation: Modification and Properties. Plants 2021, 10, 2623. [Google Scholar] [CrossRef]
- Kim, H.H.; No, N.Y.; Shin, D.J.; Ko, H.C.; Kang, J.H.; Cho, E.G.; Engelmann, F. Development of alternative plant vitrification solutions to be used in droplet-vitrification procedures. Acta Hortic. 2011, 908, 181–186. [Google Scholar] [CrossRef]
- Ping, K.S.; Poobathy, R.; Zakaria, R.; Subramaniam, S. Development of a PVS2 Droplet-vitrification Cryopreservation Technique for Aranda Broga Blue Orchid Protocorm-like Bodies (PLBs). CryoLetters 2017, 38, 290–298. [Google Scholar]
- Reed, B.M. Shoot Tips Cryopreservation Manual; USDA-ARS National Clonal Germplasm Repository: Corvallis, OR, USA, 2004; pp. 1–39. Available online: https://www.ars.usda.gov/ARSUserFiles/4630/cryopreservation/20.%20Cryopreservation%20Manual%20(2004).pdf (accessed on 25 October 2022).
- Matsumoto, T.; Sakai, A.; Yamada, K. Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep. 1994, 13, 442–446. [Google Scholar] [CrossRef]
- Roose, M.L.; Gmitter, F.G.; Lee, R.F.; Hummer, K.E. Conservation of citrus germplasm: An international survey. Acta Hortic 2015, 1101, 33–38. [Google Scholar] [CrossRef]
- Gonzalez-Arnao, M.T.; Engelmann, F. Cryopreservation of plant germplasm using the encapsulation-dehydration technique: Review and case study on sugarcane. CryoLetters 2006, 27, 155–168. [Google Scholar]
- Volk, G.M.; Bonnart, R.; Krueger, R.; Lee, R. Cryopreservation of citrus shoot tips using micrografting for recovery. CryoLetters 2012, 33, 418–426. [Google Scholar]
- Kaya, E.; Souza, F.; Yilmaz-Gokdogan, E.; Ceylan, M.; Jenderek, M. Cryopreservation of Citrus Seed via Dehydration Followedby Immersion in Liquid Nitrogen. Turk. J. Biol. 2017, 41, 242–248. [Google Scholar] [CrossRef]
- Volk, G.M.; Bonnart, R.; Shepherd, A.; Yin, Z.; Lee, R.; Polek, M.L.; Krueger, R. Citrus cryopreservation: Viability of diverse taxa and histological observations. Plant Cell Tissue Organ Cult. 2017, 128, 327–334. [Google Scholar] [CrossRef]
- Wang, M.R.; Lambardi, M.; Engelmann, F.; Pathirana, R.; Panis, B.; Volk, G.M.; Wang, Q.C. Advances in cryopreservation of in vitro-derived propagules: Technologies and explant sources. Plant Cell Tiss Organ Cult. 2021, 144, 7–20. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Bonnart, R.; Volk, G.M. Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell Tiss Organ Cult. 2021, 144, 21–34. [Google Scholar] [CrossRef]
- Kim, H.H.; Lee, Y.G.; Park, S.U.; Lee, S.C.; Baek, H.J.; Cho, E.G.; Engelmann, F. Development of Alternative Loading Solutions in Droplet-Vitrification Procedures. CryoLetters 2009, 30, 291–299. [Google Scholar]
- Cruz-Cruz, C.A.; González-Arnao, M.T.; Engelmann, F. Biotechnology and conservation of plant biodiversity. Resources 2013, 2, 73–95. [Google Scholar] [CrossRef]
- Kulus, D.; Zalewska, M. Cryopreservation as a tool used in long-term storage of ornamental species—A review. Sci. Hortic. 2014, 168, 88–107. [Google Scholar] [CrossRef]
- Panis, B.; Piette, B.; Swennen, R. Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Musaceae. Plant Sci. 2005, 168, 45–55. [Google Scholar] [CrossRef]
- Benelli, C.; De Carlo, A.; Engelmann, F. Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol. Adv. 2013, 31, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Ozudogru, E.A.; Kirdok, E.; Kaya, E.; Capuana, M.; Benelli, C.; Engelmann, F. Cryopreservation of Redwood (Sequoia sempervirens (D. Don.) Endl.) in vitro Buds Using Vitrification-Based Techniques. CryoLetters 2011, 32, 99–110. [Google Scholar]
- Mc Cown, B.H.; Lloyd, G. Woody Plant Medium (WPM)—A Mineral Nutrient Formulation for Microculture of Woody Plant Species. Hort. Sci. 1981, 16, 453. [Google Scholar]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Plant Physiol. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lambardi, M.; Sharma, K.K.; Thorpe, T.A. Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine (Pinus halepensis Mill.). Vitr. Cell Dev. Biol. Plant. 1993, 29, 189–199. [Google Scholar] [CrossRef]
- Sakai, A.; Kobayashi, S.; Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990, 9, 30–33. [Google Scholar] [CrossRef]
- Carpentier, S.C.; Vertommen, A.; Swennen, R.; Fortes, C.W.; Souza, M.T.; Panis, B. Sugar-Mediated Acclimation: The Importance Of Sucrose Metabolism in Meristems. J. Proteome Res. 2010, 9, 5038–5046. [Google Scholar] [CrossRef]
- Pociecha, E.; Plazek, A.; Janowiak, F.; Zwierzykowski, Z. ABA level, proline and phenolic concentration, and PAL activity induced during cold acclimation in androgenic Festulolium forms with contrasting resistance to frost and pink snow mould (Microdochium nivale). Physiol. Mol. Plant Pathol. 2009, 73, 126–132. [Google Scholar] [CrossRef]
- Fki, L.; Bouaziz, N.; Chkir, O.; Benjemaa-Masmoudi, R.; Rival, A.; Swennen, R.; Drira, N.; Panis, B. Cold hardening and sucrose treatment improve cryopreservation of date palm meristems. Biol. Plant 2012, 57, 375–379. [Google Scholar] [CrossRef]
- Reed, B.M. Cold Hardening vs ABA as a Pretreatment For Meristem Cryopreservation. Hort. Sci. 1990, 25, 1086. [Google Scholar] [CrossRef] [Green Version]
- Kushnarenko, S.V.; Romadanova, N.V.; Reed, B.M. Cold Acclimation Improves Regrowth of Cryopreserved Apple Shoot Tips. CryoLetters 2009, 30, 47–54. [Google Scholar]
- Ozudogru, A.; da Silva, D.P.C.; Kaya, E.; Dradi, G.; Paiva, R.; Lambardi, M. In vitro Conservation and Cryopreservation of Nandina domestica an Outdoor Ornamental Shrub. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 638–645. [Google Scholar] [CrossRef] [Green Version]
- Takada, S.; Tasaka, M. Embryonic Shoot Apical Meristem Formation in Higher Plants. J. Plant Res. 2002, 115, 411–417. [Google Scholar] [CrossRef]
- Benson, E.E. Cryopreservation Of Phytodiversity: A Critical Appraisal of Theory & Practice. CRC Crit. Rev. Plant Sci. 2008, 27, 141–219. [Google Scholar] [CrossRef]
- Helliot, B.; Swenen, R.; Poumay, Y.; Frison, E.; Lepoivre, P.; Panis, B. Ultrastructural Changes Associated with Cryopreservation of Banana (Musa spp.) Highly Proliferating Meristems. Plant Cell Rep. 2003, 21, 690–698. [Google Scholar] [CrossRef]
- Wang, Q.C.; Valkonen, J.P.T. Efficient elimination of sweetpotato little leaf phytoplasma from sweetpotato by cryotherapy of shoot tips. Plant Pathol. 2008, 57, 338–347. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Bonnart, R.; Shepherd, A.; Kretzschmar, A.A.; Volk, G.M. Modifications to a Vitis shoot tip cryopreservation procedure: Effect of shoot tip size and use of cryoplates. CryoLetters 2019, 40, 103–112. [Google Scholar]
- Panis, B.; Strosse, H.; Van Den Hende, S.; Swennen, R. Sucrose preculture to simplify cryopreservation of banana meristem cultures. CryoLetters 2002, 23, 375–384. [Google Scholar]
- Pinker, I.; Halmagyi, A.; Olbricht, K. Effects of sucrose preculture on cryopreservation by droplet-vitrification of strawberry cultivars and morphological stability of cryopreserved plants. CryoLetters 2009, 30, 202–211. [Google Scholar]
- Folgado, R.; Panis, B.; Sergeant, K.; Renaut, J.; Swennen, R.; Hausman, J.F. Unravelling the effect of sucrose and cold pretreatment on cryopreservation of potato through sugar analysis and proteomics. Cryobiology 2015, 71, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Panis, B.; Totte, N.; Van Nimmen, K.; Withers, L.A.; Swennen, R. Cryopreservation of banana (Musa spp.) meristem cultures after preculture on sucrose. Plant Sci. 1996, 121, 95–106. [Google Scholar] [CrossRef]
- Souza, F.V.D.; Kaya, E.; de Jesus Vieira, L.; da Silva Souza, A.; da Silva Carvalho, M.D.J.; Santos, E.B.; Alves, A.A.C.; Ellis, D. Cryopreservation of Hamilin sweet orange [(Citrus sinensis (L.) Osbeck)] embryogenic calli using a modified aluminum cryo-plate technique. Sci. Hortic. 2017, 224, 302–305. [Google Scholar] [CrossRef]
- Souza, F.V.D.; de Souza, E.H.; Kaya, E.; de Jesus Vieira, L.; da Silva, R.L. Cryopreservation of Pineapple Shoot Tips by the Droplet Vitrification Technique. Methods Mol. Biol. 2018, 815, 269–277. [Google Scholar] [CrossRef]
- Sakai, A.; Engelmann, F. Vitrification, encapsulation-vitrification and droplet-vitrification: A review. CryoLetters 2007, 28, 151–172. [Google Scholar]
- Thomas, T.D. The role of activated charcoal in plant tissue culture. Biotechnol. Adv. 2008, 26, 618–631. [Google Scholar] [CrossRef]
- Matoh, T. Boron in plant cell walls. Plant Soil 1997, 193, 59–70. [Google Scholar] [CrossRef]
- Matoh, T.; Kobayashi, M. Boron Function in Plant Cell Walls. In Boron in Plant and Animal Nutrition; Goldbach, H.E., Brown, P.H., Rerkasem, B., Thellier, M., Wimmer, M.A., Bell, R.W., Eds.; Springer: Boston, MA, USA, 2002; pp. 143–155. [Google Scholar] [CrossRef]
- Van der Salm, T.P.; Van der Toorn, C.J.; Hänisch ten Cate, C.H.; Dubois, L.A.; De Vries, D.P.; Dons, H.J. Importance of the iron chelate formula for micropropagation of Rosa hybrida L.‘Moneyway’. Plant Cell Tissue Organ Cult. 1994, 37, 73–77. [Google Scholar] [CrossRef]
- Kaviani, B. Conservation of plant genetic resources by cryopreservation. Aust. J. Crop. Sci. 2011, 5, 778–800. [Google Scholar]
- Kaya, E.; Souza, F.V.D.; Almeida dos Santos-Serejo, J.; Galatali, S. Influence of dehydration on cryopreservation of Musa spp. germplasm. Acta Bot Croat. 2020, 79, 99–104. [Google Scholar] [CrossRef]
- Reed, B.M.; Kovalchuk, I.; Kushnarenko, S.; Meier-Dinkel, A.; Schoenweiss, K.; Pluta, S.; Straczynska, K.; Benson, E.E. Evaluation of critical points in technology transfer of cryopreservation protocols to international plant conservation laboratories. CryoLetters 2004, 25, 341–352. [Google Scholar]
- Panis, B.; Nagel, M.; Van den houwe, I. Challenges and Prospects for the Conservation of Crop Genetic Resources in Field Genebanks, in In Vitro Collections and/or in Liquid Nitrogen. Plants 2020, 9, 1634. [Google Scholar] [CrossRef]
MS + 1 mg.L−1 BAP | MS + 1 mg.L−1 BAP + 10 g.L−1 Charcoal | WPM + 1 mg.L−1 BAP | WPM + 1 mg.L−1 BA + 10 g.L−1 Charcoal | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Regeneration (%) | Avarage Nuber of Shoots | Shoot Forming Capacity Index | Regeneration (%) | Avarage Nuber of Shoots | Shoot Forming Capacity Index | Regeneration (%) | Avarage Nuber of Shoots | Shoot Forming Capacity Index | Regeneration (%) | Avarage Nuber of Shoots | Shoot Forming Capacity Index | |
Bodrum Mandarin | 100 ± 0.0 a * | 1.4 ± 0.16 D | 1.4 | 100 ± 0.0 a | 2.0 ± 0.13 C | 2.0 | 100 ± 0.0 a | 3.1 ± 0.06 B | 3.1 | 100 ± 0.0 a | 3.7 ± 0.04 A | 3.7 |
Klin Mandarin | 93.3 ± 2.11 b | 1.3 ± 0.11 D | 1.2 | 100 ± 0.0 a | 1.8 ± 0.08 C | 1.8 | 100 ± 0.0 a | 2.8 ± 0.09 B | 2.8 | 100 ± 0.0 a | 5.3 ± 0.07 A | 5.3 |
White grapefruit | 96.7 ± 1.7 b | 1.1 ± 0.06 D | 1.06 | 100 ± 0.0 a | 2.8 ± 0.13 B | 2.8 | 100 ± 0.0 a | 2.3 ± 0.04 C | 2.3 | 100 ± 0.0 a | 3.1 ± 0.06 A | 3.1 |
Red grapefruit | 100 ± 0.0 a | 2.0 ± 0.12 D | 2.0 | 100 ± 0.0 a | 2.9 ± 0.11 C | 2.9 | 100 ± 0.0 a | 3.1 ± 0.03 B | 3.1 | 100 ± 0.0 a | 3.4 ± 0.06 A | 3.4 |
The Shoot Tips No Cold Hardened | The Shoot Tips Cold Hardened for 24 h | The Shoot Tips Cold Hardened for 3 days | The Shoot Tips Cold Hardened for 7 Days | |||||
---|---|---|---|---|---|---|---|---|
Regeneration (%) (Control) | Regeneration (%) (After Cryostorage) | Regeneration (%) (Control) | Regeneration (%) (after Cryostorage) | Regeneration (%) (Control) | Regeneration (%) (after Cryostorage) | Regeneration (%) (Control) | Regeneration (%) (after Cryostorage) | |
Bodrum Mandarin | 100 ± 0.0 a * | 0 | 100 ± 0.0 a | 13.3 ± 1.26 d | 96.7 ± 0.67 b | 33.3 ± 0.60 c | 0 | 0 |
Klin Mandarin | 100 ± 0.0 a | 0 | 100 ± 0.0 a | 8.3 ± 0.99d | 100 ± 0.0 a | 26.7 ± 0.58b | 16.7 ± 0.54c | 0 |
White grapefruit | 100 ± 0.0 a | 0 | 100 ± 0.0 a | 0 | 100 ± 0.0 a | 13.3 ± 0.57 b | 3.3 ± 052 c | 0 |
Red grapefruit | 100 ± 0.0 a | 0 | 100 ± 0.0 a | 1.7 ± 0.38 d | 93.3 ± 0.61 b | 26.7 ± 1.11 c | 0 | 0 |
The Shoot Tips 0.3–0.7 mm in Size | The Shoot Tips More Than 0.7 mm in Size | |||
---|---|---|---|---|
Regeneration (%) (Control) | Regeneration (%) (after Cryostorage) | Regeneration (%) (Control) | Regeneration (%) (after Cryostorage) | |
Bodrum Mandarin | 100 ± 0.0 a * | 33.3 ± 1.26 b | 100 ± 0.0 a | 0 |
Klin Mandarin | 100 ± 0.0 a | 26.7 ± 1.14 b | 100 ± 0.0 a | 0 |
White grapefruit | 100 ± 0.0 a | 13.3 ± 1.05 b | 100 ± 0.0 a | 0 |
Red grapefruit | 100 ± 0.0 a | 26.7 ± 1.97 b | 100 ± 0.0 a | 0 |
The Shoot Tips No Sucrose Precultured | The Shoot Tips Sucrose Precultured on WPM Medium Containing 0.1 M Sucrose | The Shoot Tips Sucrose Precultured on WPM Medium Containing 0.25 M Sucrose | The Shoot Tips Sucrose Precultured on WPM Medium Containing 0.5 M Sucrose | |||||
---|---|---|---|---|---|---|---|---|
Regeneration (%) (Control) | Regeneration (%) (after Cryostorage) | Regeneration (%) (Control) | Regeneration (%) (after Cryostorage) | Regeneration (%) (Control) | Regeneration (%) (after Cryostorage) | Regeneration (%) (Control) | Regeneration (%) (after Cryostorage) | |
Bodrum Mandarin | 100 ± 0.0 a * | 0 | 100 ± 0.0 a | 11.7 ± 1.02 d | 100 ± 0.0 a | 33.3 ± 0.6 c | 53.3 ± 0.55 b | 0 |
Klin Mandarin | 100 ± 0.0 a | 0 | 100 ± 0.0 a | 16.7 ± 0.52 d | 100 ± 0.0 a | 26.7 ± 0.58 c | 66.7 ± 0.54 b | 8.3 ± 0.28 e |
White grapefruit | 100 ± 0.0 a | 0 | 100 ± 0.0 a | 0 | 100 ± 0.0 a | 13.3 ± 0.57 c | 63.3 ± 0.53 b | 6.7 ± 0.55 d |
Red grapefruit | 100 ± 0.0 a | 0 | 100 ± 0.0 a | 13.3 ± 0.48 d | 100 ± 0.0 a | 26.7 ± 1.12 c | 56.7 ± 1.03 b | 0 |
PVS2 Treatment Time | Regeneration (%) | Bodrum Mandarin | Klin Mandarin | White Grapefruit | Red Grapfruit |
---|---|---|---|---|---|
0 min | Control | 100 ± 0.0 a * | 96.7 ± 0.71 b | 93.3 ± 0.51 c | 100 ± 0.0 a |
Cryostoraged | 0 | 0 | 0 | 0 | |
15 min | Control | 100 ± 0.0 a | 90.0 ± 0.0 d | 100 ± 0.0 a | 100 ± 0.0 a |
Cryostoraged | 0 | 0 | 0 | 0 | |
30 min | Control | 96.7 ± 1.67 b | 100 ± 0.0 a | 96.7 ± 0.49 b | 100 ± 0.0 a |
Cryostoraged | 0 | 3.3 ± 0.56 f | 0 | 0 | |
45 min | Control | 93.3 ± 1.42 c | 96.6 ± 0.65 b | 100 ± 0.0 a | 86.7 ± 1.07 d |
Cryostoraged | 33.3 ± 1.67 d | 26.7 ± 1.09 e | 13.3 ± 0.88 f | 26.7 ± 0.75 e | |
60 min | Control | 100 ± 0.0 a | 90.0 ± 1.89 d | 86.7 ± 1.26 d | 90.0 ± 0.0 c |
Cryostoraged | 6.7 ± 0.79 e | 0 | 6.7 ± 0.86 g | 0 | |
75 min | Control | 83.3 ± 3.02 d | 93.3 ± 1.23 c | 93.3 ± 0.94 c | 86.7 ± 0.39 d |
Cryostoraged | 0 | 0 | 0 | 0 | |
90 min | Control | 83.3 ± 2.11 d | 96.7 ± 0.59 b | 83.3 ± 0.92 e | 93.3 ± 0.78 b |
Cryostoraged | 3.3 ± 0.74 f | 0 | 0 | 6.7 ± 0.73 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozkaya, D.E.; Souza, F.V.D.; Kaya, E. Evaluation of Critical Points for Effective Cryopreservation of Four Different Citrus spp. Germplasm. Horticulturae 2022, 8, 995. https://doi.org/10.3390/horticulturae8110995
Ozkaya DE, Souza FVD, Kaya E. Evaluation of Critical Points for Effective Cryopreservation of Four Different Citrus spp. Germplasm. Horticulturae. 2022; 8(11):995. https://doi.org/10.3390/horticulturae8110995
Chicago/Turabian StyleOzkaya, Damla Ekin, Fernanda Vidigal Duarte Souza, and Ergun Kaya. 2022. "Evaluation of Critical Points for Effective Cryopreservation of Four Different Citrus spp. Germplasm" Horticulturae 8, no. 11: 995. https://doi.org/10.3390/horticulturae8110995
APA StyleOzkaya, D. E., Souza, F. V. D., & Kaya, E. (2022). Evaluation of Critical Points for Effective Cryopreservation of Four Different Citrus spp. Germplasm. Horticulturae, 8(11), 995. https://doi.org/10.3390/horticulturae8110995