The Yield, Chemical Composition, and Antioxidant Activities of Essential Oils from Different Plant Parts of the Wild and Cultivated Oregano (Origanum vulgare L.)
Abstract
:1. Introduction
2. Material and Method
2.1. Plant Materialand Growing Conditions
2.2. Clevenger-Hydrodistillation
2.3. Gas Chromatography/Massspectrometry (GC/MS) and Gas Chromatography/Flameionization Detection (GC/FID) Analysis
2.4. Antioxidantactivity(DPPH Assay)
3. Results and Discussion
3.1. Growing Condition
3.2. Essential Oil Yield
3.3. Essential Oil Composition
3.4. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stešević, D.; Jaćimović, Ž.; Šatović, Z.; Šapčanin, A.; Jančan, G.; Kosović, M.; Damjanović-Vratnica, B. Chemical characterization of wild growing Origanum vulgare populations in Montenegro. Nat. Prod. Comm. 2018, 13, 1357–1362. [Google Scholar] [CrossRef] [Green Version]
- Swamy, M.K.; Sinniah, U.R. Acomprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: An aromatic medicinal plant of industrial importance. Molecules 2015, 20, 8521–8547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tmušić, N.; Ilić, Z.S.; Milenković, L.; Šunić, L.; Lalević, D.; Kevrešan, Ž.; Mastilović, J.; Stanojević, L.; Cvetković, D. Shading of medical plants affects the phytochemical quality of herbal extracts. Horticulturae 2021, 7, 437. [Google Scholar] [CrossRef]
- Cinbilgel, I.; Kurt, Y. Oregano and/or marjoram: Traditional oil production and ethnomedical utilization of Origanum species in southern Turkey. J. Herb. Med. 2019, 16, 100257. [Google Scholar] [CrossRef]
- Sakkas, H.; Papadopoulou, C. Antimicrobial activity of basil, oregano, and thyme essential oils. J. Microbiol. Biotechnol. 2017, 27, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Fasseas, M.K.; Mountzouris, K.C.; Tarantilis, P.A.; Polissiou, M.; Zervas, G. Antioxidant activity in meat treated with oregano and sage essential oils. Food Chem. 2008, 106, 1188–1194. [Google Scholar] [CrossRef]
- Passarinho, A.T.P.; Dias, N.F.; Camilloto, G.P.; Cruz, R.S.; Otoni, C.G.; Moraes, A.R.F.; Soares, N.D.F.F. Sliced bread preservation through oregano essential oil-containing sachet. J. Food Process Eng. 2014, 37, 53–62. [Google Scholar] [CrossRef]
- Asensio, C.M.; Grosso, N.R.; Juliani, H.R. Quality preservation of organic cottage cheese using oregano essential oils. LWT Food Sci. Technol. 2015, 60, 664–671. [Google Scholar] [CrossRef]
- Kokkini, S. Taxonomy, diversity and distribution of Origanum species. In Proceedings of the IPGRI International WorkshoponOregano, Bari, Italy, 8–12 May 1996; Padulosi, S., Ed.; IPGRI: Rome, Italy, 1997; pp. 2–12. [Google Scholar]
- Giuliani, C.; Maggi, F.; Papa, F.; MaleciBini, L. Congruence of phytochemical and morphological profiles along an altitudinal gradient in Origanum vulgare subsp. vulgare from Venetian Region (NE Italy). Chem. Biodivers. 2013, 10, 569–583. [Google Scholar] [CrossRef]
- Burt, S.; Vlielander, R.; Haagsman, H.; Veldhuizen, E. Increase inactivity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J. Food Prot. 2005, 68, 919–926. [Google Scholar] [CrossRef]
- Berghold, H.; Wagner, S.; Mandi, M.; Thaller, A.; Muller, M.; Rakowitz, M.; Pasteiner, S.; Boechzelt, H. Yield, content andcomposition of the essential oil of 5 oregano strains (Origanum vulgare L.) depending on the developmental stage. Z. Fur Arznei Gewurzpflanzen 2008, 13, 36–43. [Google Scholar]
- Azizi, A.; Yan, F.; Honermeier, B. Herbage yield, essential oil content and composition of three oregano (Origanum vulgare L.) populations as affected by soil moisture regimes and nitrogen supply. Ind. Crop. Prod. 2009, 29, 554–561. [Google Scholar] [CrossRef]
- Dou, H.; Niu, G.; Gu, M.; Masabni, J.G. Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae 2017, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Milenković, L.; Stanojević, J.; Cvetković, D.; Stanojević, L.; Lalević, D.; Šunić, L.; Fallik, E.; Ilić, S.Z. New technology in basil production with high essential oil yield and quality. Ind. CropsProd. 2019, 140, 111718. [Google Scholar] [CrossRef]
- Ilić, S.Z.; Milenković, L.; Tmušić, N.; Stanojević, L.J.; Cvetković, D. Essential oils content, composition and antioxidant activity of lemon balm, mint and sweet basil from Serbia. LWT Food Sci. Technol. 2022, 153, 112210. [Google Scholar] [CrossRef]
- Milenković, L.; Ilić, S.Z.; Šunić, L.J.; Tmušić, N.; Stanojević, L.J.; Cvetković, D. Modification of light intensity influence essential oils content, composition and antioxidant activity of thyme, marjoram and oregano. Saudi J. Biol. Sci. 2021, 28, 6532–6543. [Google Scholar] [CrossRef]
- Kokkini, S.; Karousou, R.; Hanlidou, E. Herbs of the Labiatae. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: San Diego, CA, USA, 2003; pp. 3082–3090. [Google Scholar]
- Kokkini, S.; Karousou, R.; Dardioti, A.; Krigas, N.; Lanaras, T. Autumn essential oils of Greek oregano. Phytochemistry 1997, 44, 883–886. [Google Scholar] [CrossRef]
- Gounaris, Y.; Skoula, M.; Fournaraki, C.; Drakakaki, G.; Makris, A. Comparison of essential oils and genetic relationship of Origanum × intercedenstoits parental taxa in the island of Crete. Biochem. Syst. Ecol. 2002, 30, 249–258. [Google Scholar] [CrossRef]
- Koukoulitsa, C.; Karioti, A.; Bergomzi, M.C.; Pescitelli, G.; DiBari, L.; Skaltsa, H. Polar constituents from the aerial parts of Origanum vulgare L. ssp. hirtum growing wild in Greece. J. Agric Food Chem. 2006, 54, 5388–5392. [Google Scholar] [CrossRef]
- De Falco, E.; Mancini, E.; Roscigno, G.; Mignola, E.; Taglialatela-Scafati, O.; Senatore, F. Chemical composition and biological activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions. Molecules 2013, 18, 14948–14960. [Google Scholar]
- Buthelezi, M.N.D. Effect of photo-selective netting on postharvest quality and bioactive compounds in three selected summer herbs(coriander, marjoram an doregano). Master’s Thesis, Department of Crop Sciences, Faculty of Science Tshwane University of Technology, Pretoria, South Africa, 2015. [Google Scholar]
- Ilić, S.Z.; Milenković, L.; Šunić, L.J.; Tmušić, N.; Mastilović, J.; Kevrešan, Ž.; Stanojević, L.J.; Danilović, B.; Stanojević, J. Efficiency of basil essential oil antimicrobial agents under different shading treatments and harvest times. Agronomy 2021, 11, 1574. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Co.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Sparkman, D.O.; Penton, Z.E.; Fulton, K.G. Gas Chromatography and Mass Spectrometry: A Practical Guide, 2nd ed.; Elsevier: Oxford, MI, USA, 2011. [Google Scholar]
- Stanojević, J.S.; Stanojević, L.J.S.; Cvetković, D.J.; Danilović, B.R. Chemical composition, antioxidant and antimicrobial activity of theturmeric essential oil (Curcumalonga L.). Adv. Technol. 2015, 4, 19–25. [Google Scholar] [CrossRef]
- Stanojevic, L.P.; Stanojevic, J.S.; Cvetkovic, D.J.; Ilic, D.P. Antioxidant activity of oregano essential oil (Origanum vulgare L.). Biol. Nyssana. 2016, 7, 131–139. [Google Scholar]
- Mastro, G.D. Crop domestication and variability within accessions of Origanum genus. In Proceedings of the IPGRI International Workshop on Oregano, Bari, Italy, 8–12 May 1996; pp. 34–48. [Google Scholar]
- Oliveira, G.C.; Vieira, W.L.; Bertolli, S.C.; Pacheco, A.C. Photosynthetic behavior, growth and essential oil production of Melissa officinalis L. cultivated under colored shade nets. Chilean J. Agric. Res. 2016, 76, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Lukas, B.; Schmiderer, C.; Novak, J. Essential oil diversity of European Origanum vulgare L. (Lamiaceae). Phytochemistry 2015, 119, 32–40. [Google Scholar] [CrossRef]
- Elezi, F.; Plaku, F.; Ibraliu, A.; Stefkov, G.; Karapandzova, M.; Kulevanova, S.; Aliu, S. Genetic variation of oregano (Origanum vulgare L.) for etheric oil in Albania. Agric. Sci. 2013, 4, 449–454. [Google Scholar]
- Morshedloo, M.R.; Salami, S.A.; Nazeri, V.; Maggi, F.; Craker, L. Essential oil profile of oregano (Origanum vulgare L.) populations grown under similar soil and climate conditions. Ind. Crops Prod. 2018, 119, 183–190. [Google Scholar] [CrossRef]
- Vazirian, M.; Mohammadi, M.; Farzaei, M.H.; Amin, G.; Amanzadeh, Y. Chemical composition and antioxidant activity of Origanum vulgare subsp. vulgare essential oil from Iran. Res. J. Pharm. 2015, 2, 41–46. [Google Scholar]
- Goyal, S.; Tewari, G.; Pandey, H.K.; Kumari, A. Exploration of productivity, chemical composition, and antioxidant potential of (Origanum vulgare L.) grown at different geographical locations of Western Himalaya. Ind. J. Chem. 2021, 2021, 6683300. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R. Herb yield and chemical composition of common oregano (Origanum vulgare L.) essential oil according to the plant’s developmental stage. Herba Polon. 2009, 55, 55–62. [Google Scholar]
- Gonceariuc, M.; Balmuş, Z.; Sandu, T.; Romanciuc, G.; Gonceariuc, N. Essential oil of Origanum vulgare ssp. vulgare L. and Origanum vulgare L. ssp. hirtum(Link) Ietswaart from Moldova: Content and chemical composition. Inter. J. Agric. Inn. Res. 2014, 3, 659–663. [Google Scholar]
- Arslan, M. Herbage yield, essential oil content and components of cultivated and naturally grown Origanum syriacum. Sci. Pap.-Ser. A Agron. 2016, 59, 178–182. [Google Scholar]
- D’Antuono, L.F.; Galetti, G.C.; Bocchini, P. Variability of essentials oil contents and composition of Origanum vulgare L. populations from North Mediterranean Area (Liguria Region, Northern Italy). Ann. Bot. 2000, 86, 471–478. [Google Scholar] [CrossRef]
- Putievsky, E.; Ravid, U.; Dud, N. Phenological and seasonal influences on essential oil of a cultivated clone of Origanum vulgare L. J. Sci. Food Agric. 1988, 43, 225–228. [Google Scholar] [CrossRef]
- Kosakowska, O.; Czupa, W. Morphological and chemical variability of common oregano (Origanum vulgare L. subsp. vulgare) occurring in eastern Poland. Herba Polon. 2013, 64, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Stoilova, I.; Bail, S.; Buchbauer, G.; Ivanov Krasnov, A.; Stoyanova, A.; Shmidt, E.; Jirovetz, L. Chemical composition, olfactory evaluation and antioxidant effects of an essential oil of Origanum vulgare L. from Bosnia. Nat. Prod. Commun. 2008, 3, 1043–1046. [Google Scholar] [CrossRef] [Green Version]
- Tibaldi, E.; Fontana, E.; Nikola, S. Growing conditions and postharvest management can affect the essential oil of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Ind. Crops Prod. 2011, 34, 1516–1522. [Google Scholar] [CrossRef]
- Khan, M.; Khan, S.T.; Khan, N.A.; Mahmood, A.; Al-Kedhairy, A.A.; Alkhathlan, H.Z. The composition of the essential oil and aqueous distillate of Origanum vulgare L. growing in Saudi Arabia an devaluation of their antibacterial activity. Arab. J. Chem. 2018, 11, 1189–2000. [Google Scholar] [CrossRef]
- Pande, C.; Tewari, G.; Singh, S.; Singh, C. Chemical markers in Origanum vulgare L. from Kuma on Himalay as: Achemosystematic study. Nat. Prod. Res. 2012, 26, 140–145. [Google Scholar] [CrossRef]
- Ozkan, A.; Erdoğan, A. A comparative evaluation of antioxidant and anticancer activity of essential oil from Origanum onites (Lamiaceae) and its two major phenolic components. Turk. J. Biol. 2011, 35, 735–742. [Google Scholar]
- Ličina, B.; Stefanovic, O.; Vasic, S.; Radojevic, I.; Dekic, M.; Čomic, L.J. Biological activities of thee xtracts from wild growing Origanum vulgare L. Food Control 2013, 33, 498–504. [Google Scholar] [CrossRef]
- Moghrovyan, A.; Sahakyan, N.; Babayan, A.; Chichoyan, N.; Petrosyan, M.; Trchounian, A. Essential oil and ethanol extract of oregano (Origanum vulgare L.) from Armenian flora as a natural source of terpenes, flavonoids and other phytochemicals with antiradical, antioxidant, metal chelating, tyrosinase inhibitory and antibacterial activity. Curr. Pharm. Des. 2019, 25, 1809–1816. [Google Scholar] [CrossRef] [PubMed]
- Sahin, F.; Gulluce, M.; Daferera, D.; Sokmen, A.; Sokmen, M.; Polissiou, M.; Ozer, H. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 2004, 15, 549–557. [Google Scholar]
- Brigitte, L.; Schmiderer, C.; Johannes, N. Phytochemical diversity of Origanum vulgare L. subsp. vulgare (Lamiaceae) from Austria. Biochem. Syst. Ecol. 2013, 50, 106–113. [Google Scholar]
- Baranauskiene, R.; Venskutonis, P.R.; Dambrauskiene, E. Harvesting time influences the yield and oil composition of Origanum vulgare L. ssp. vulgare and ssp. hirtum. Ind. Crops Prod. 2013, 49, 43–51. [Google Scholar] [CrossRef]
- Mockute, D.; Bernotiene, G.; Judzentiene, A. The essential oil of Origanum vulgare subsp. vulgare growing wild in Vilnius district (Lithuania). Phytochemistry 2001, 57, 65–69. [Google Scholar] [PubMed]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Fennell, C.W.; Light, M.E.; Sparg, S.G.; Stafford, G.I.; Van Staden, J. Assessing African medicinal plants for efficacy and safety: Agricultural and storage practices. J. Ethnopharm. 2004, 95, 113–121. [Google Scholar] [CrossRef]
- Sumira, J.; Megna, R.; Elsayed, F.A.; Parvaiz, A. Biological efficacy of essential oils and plant extracts of cultivated and wild ecotypes of Origanum vulgare L. Biomed Res. Int. 2020, 2020, 8751718. [Google Scholar]
- Han, F.; Ma, G.; Yang, M.; Yan, L.; Xiong, W.; Shu, J.; Zhao, Y.; Xu, H. Chemical composition and antioxidant activities of essential oils from different parts of the oregano. J. Zhejiang Univ.-Sci. B 2017, 18, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Mechergui, K.; Jaouadi, W.; Coelho, J.P.; Khouja, M.L. Effect of harvest year on production, chemical composition and antioxidant activities of essential oil of oregano (Origanum vulgare subsp. glandulosum) growing in North Africa. Ind. Crop. Prod. 2016, 90, 32–37. [Google Scholar] [CrossRef]
- Ozkan, G.; Baydar, H.; Erbas, S. The influence of harvest time on essential oil composition, phenolic constituents and antioxidant properties of Turkish oregano (Origanum onites L.). J. Sci. Food Agric. 2010, 90, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef] [PubMed]
PAR * (μmolm−2s−1) | Solar Radiation (Wm−2) | Temperature °C | Relative Humidity% | |||||
---|---|---|---|---|---|---|---|---|
Time (h) | Nonshading | Shading Reduction% | Nonshading | Shading | Nonshading | Shading Reduction % | Nonshading | Shading Reduction % |
6:00 | 182.5 | 31.2 | 162.5 | 40.5 | 16.7 | 0.0 | 74.7 | −4.1 |
9:00 | 1325.6 | 46.0 | 513.8 | 281.0 | 24.7 | −0.4 | 71.8 | 0.0 |
12:00 | 2242.2 | 49.1 | 874.5 | 459.5 | 31.4 | −2.2 | 47.3 | −2.1 |
15:00 | 1684.1 | 51.9 | 790.5 | 351.0 | 31.5 | −3.4 | 48.2 | −1.2 |
18:00 | 672.0 | 53.9 | 375.5 | 90.9 | 28.3 | −1.0 | 50.4 | −0.2 |
Sample | Essential Oil Yield, mL/100 g p.m. |
---|---|
Oregano | |
Cultivated nonshaded (stemsandleaves) | 0.31 ± 0.015 a* |
Cultivated shaded (stems and leaves) | 0.32 ± 0.013 a |
Cultivated nonshaded (flowers) | 0.21 ± 0.010 b |
Cultivated shaded (flowers) | 0.35 ± 0.011 a |
Wild (stems and leaves) | 0.26 ± 0.018 b |
Wild (flowers) | 0.33 ± 0.009 a |
N0 | t ret., min | Compound | RIexp | RIlit | Method of Identification | c% | |
---|---|---|---|---|---|---|---|
shaded | nonshaded | ||||||
1. | 6.70 | α-Thujene | 924 | 924 | RI, MS | tr | tr |
2. | 6.92 | α-Pinene | 932 | 932 | RI, MS | tr | 0.2 |
3. | 8.19 | Sabinene | 973 | 969 | RI, MS | 7.7 | 10.5 |
4. | 8.28 | β-Pinene | 976 | 974 | RI, MS, Co-I | tr | 0.5 |
5. | 8.63 | 1-Octen-3-ol | 977 | 974 | RI, MS | 2.3 | 2.4 |
6. | 8.71 | Myrcene | 980 | 988 | RI, MS | 1.9 | 1.7 |
7. | 9.12 | 3-Octanol | 994 | 988 | RI, MS | 0.4 | 0.4 |
8. | 9.67 | α-Terpinene | 1010 | 1014 | RI, MS | 0.4 | 0.4 |
9. | 10.06 | p-Cymene | 1021 | 1020 | RI, MS | 1.5 | 2.3 |
10. | 10.18 | 1,8-Cineole | 1025 | 1026 | RI, MS, Co-I | 1.7 | 2.1 |
11. | 10.45 | (Z)-β-Ocimene | 1030 | 1032 | RI, MS | 7.7 | 6.3 |
12. | 10.84 | (E)-β-Ocimene | 1041 | 1044 | RI, MS | 2.9 | 2.2 |
13. | 11.27 | γ-Terpinene | 1054 | 1054 | RI, MS | 1.5 | 1.6 |
14. | 11.90 | cis-Sabinenehydrate | 1069 | 1065 | RI, MS | 0.5 | 0.6 |
15. | 12.41 | Terpinolene | 1083 | 1086 | RI, MS | 0.2 | 0.3 |
16. | 12.55 | trans-Linalooloxide(furanoid) | 1086 | 1084 | RI, MS | tr | tr |
17. | 12.78 | Rosefuran | 1092 | 1095 | RI, MS | tr | tr |
18. | 13.23 | Linalool | 1103 | 1095 | RI, MS, Co-I | 3.8 | 2.6 |
19. | 14.15 | cis-p-Menth-2-en-l-ol | 1126 | 1118 | RI, MS | tr | tr |
20. | 14.34 | p-Mentha-1,5,8-triene* | 1130 | 1139 | RI, MS | tr | - |
21. | 14.97 | trans-p-Menth-2-en-1-ol* | 1145 | 1136 | RI, MS | tr | - |
22. | 15.36 | β-Pineneoxide* | 1155 | 1154 | RI, MS | tr | - |
23. | 15.50 | Sabinaketone | 1158 | 1154 | RI, MS | tr | tr |
24. | 16.54 | Terpinen-4-ol | 1182 | 1174 | RI, MS | 4.7 | 3.8 |
25. | 17.25 | α-Terpineol | 1200 | 1196 | RI, MS | 2.0 | 1.8 |
26. | 19.01 | Neral | 1242 | 1235 | RI, MS, Co-I | 0.3 | 2.6 |
27. | 20.31 | Geranial | 1273 | 1264 | RI, MS, Co-I | 0.6 | 2.7 |
28. | 20.96 | DihydroedulanI | 1288 | 1288 | RI, MS | 0.6 | 0.7 |
29. | 22.05 | (2E,4E)-Decadienol | 1314 | 1319 | RI, MS | tr | tr |
30. | 24.51 | Piperitenonoxide | 1373 | 1366 | RI, MS | 1.4 | tr |
31. | 24.61 | α-Copaene* | 1375 | 1374 | RI, MS | tr | - |
32. | 25.02 | β-Bourbonene* | 1385 | 1387 | RI, MS | 2.3 | - |
33. | 25.36 | β-Elemene | 1394 | 1389 | RI, MS | tr | 3.6 |
34. | 26.51 | (E)-Caryophyllene | 1422 | 1417 | RI, MS | 8.5 | 6.2 |
35. | 26.87 | β-Copaene | 1431 | 1430 | RI, MS | 0.4 | 0.6 |
36. | 27.44 | Aromadendrene | 1445 | 1439 | RI, MS | tr | tr |
37. | 27.92 | α-Humulene | 1457 | 1452 | RI, MS | 1.2 | 0.8 |
38. | 28.14 | Alloaromadendrene | 1463 | 1458 | RI, MS | 0.5 | 0.5 |
39. | 29.09 | GermacreneD | 1485 | 1484 | RI, MS | 13.5 | 8.4 |
40. | 29.64 | Bicyclogermacrene | 1500 | 1500 | RI, MS | 2.6 | 1.0 |
41. | 29.78 | α-Muurolene* | 1504 | 1500 | RI, MS | tr | - |
42. | 30.03 | (E,E)-α-Farnesene | 1510 | 1505 | RI, MS | 2.6 | 1.5 |
43. | 30.40 | γ-Cadinene* | 1520 | 1513 | RI, MS | tr | - |
44. | 30.69 | δ-Cadinene | 1528 | 1522 | RI, MS | 1.6 | 1.2 |
45. | 33.19 | Caryophylleneoxide | 1592 | 1582 | RI, MS | 18.1 | 20.4 |
46. | 33.54 | Salvial-4(l4)-en-l-one* | 1603 | 1594 | RI, MS | tr | - |
47. | 34.17 | HumuleneepoxideIl | 1618 | 1608 | RI, MS | 1.7 | 1.8 |
48. | 34.48 | Alloaromadendreneepoxide | 1629 | 1639 | RI, MS | 0.6 | 0.5 |
49. | 35.41 | α-Muurolol* | 1647 | 1644 | RI, MS | 0.3 | - |
50. | 35.58 | epi-α-Muurolol | 1650 | 1640 | RI, MS | 1.2 | 1.2 |
51. | 36.09 | α-Cadinol | 1662 | 1652 | RI, MS | 2.2 | 2.3 |
52. | 37.26 | Amorpha-4,9-dien-2-ol | 1706 | 1700 | RI, MS | 1.5 | 1.7 |
Total identified | 99.5 | 99.2 | |||||
Grouped components (%) | |||||||
Monoterpene hydrocarbons (1–4,6,8,11–13,15) | 22.3 | 23.7 | |||||
Oxygen-containing monoterpenes (10,14,16–28,31) | 14.2 | 18.7 | |||||
Sesquiterpene hydrocarbons (30,32–44) | 33.2 | 23.8 | |||||
Oxygenated sesquiterpenes (45–52) | 25.6 | 27.9 | |||||
Aromatic compounds (9) | 1.5 | 2.3 | |||||
Others (5,7,29) | 2.7 | 2.8 |
N° | t ret., min | Compound | RIexp | RIlit | Method of Identification | c% | |
---|---|---|---|---|---|---|---|
Shaded | Nonshaded | ||||||
1. | 8.16 | Sabinene | 962 | 969 | RI, MS | tr | |
2. | 8.63 | 1-Octen-3-ol | 977 | 974 | RI, MS | 1.9 | |
3. | 9.12 | 3-Octanol | 994 | 988 | RI, MS | 0.3 | |
4. | 9.67 | α-Terpinene | 1010 | 1014 | RI, MS | tr | |
5. | 10.05 | p-Cymene | 1020 | 1020 | RI, MS | 0.4 | |
6. | 10.17 | 1,8-Cineole | 1025 | 1026 | RI, MS, Co-I | 0.4 | |
7. | 10.43 | (Z)-β-Ocimene | 1030 | 1032 | RI, MS | 1.4 | |
8. | 10.84 | (E)-β-Ocimene | 1041 | 1044 | RI, MS | 0.5 | |
9. | 11.28 | γ-Terpinene | 1052 | 1054 | RI, MS | 0.5 | |
10. | 11.91 | cis-Sabinenehydrate | 1069 | 1065 | RI, MS | 0.6 | |
11. | 12.43 | Terpinolene | 1083 | 1086 | RI, MS | tr | |
12. | 12.57 | trans-Linalooloxide(furanoid) | 1086 | 1084 | RI, MS | tr | |
13. | 13.23 | Linalool | 1103 | 1095 | RI, MS, Co-I | 4.7 | tr |
14. | 14.15 | cis-p-Menth-2-en-l-ol | 1126 | 1118 | RI, MS | 0.4 | |
15. | 14.97 | trans-p-Menth-2-en-1-ol | 1145 | 1136 | RI, MS | tr | |
16. | 15.36 | β-Pineneoxide | 1155 | 1154 | RI, MS | tr | |
17. | 15.50 | Sabinaketone | 1158 | 1154 | RI, MS | 0.3 | |
18. | 16.16 | Borneol | 1173 | 1165 | RI, MS, Co-I | tr | |
19. | 16.54 | Terpinen-4-ol | 1182 | 1174 | RI, MS | 7.0 | 1.5 |
20. | 17.25 | α-Terpineol | 1200 | 1196 | RI, MS | 3.1 | 3.3 |
21. | 18.58 | (3Z)-Hexenyl3-methylbutanoate | 1232 | 1232 | RI, MS | tr | |
22. | 18.74 | Thymol, methylether | 1235 | 1232 | RI, MS | tr | |
23. | 19.01 | Neral | 1242 | 1235 | RI, MS, Co-I | tr | |
24. | 19.16 | Cuminaldehyde | 1245 | 1238 | RI, MS | tr | |
25. | 20.31 | Geranial | 1273 | 1264 | RI, MS, Co-I | tr | |
26. | 20.96 | DihydroedulanI | 1288 | 1288 | RI, MS | 0.6 | |
27. | 22.05 | (2E,4E)-Decadienol | 1314 | 1319 | RI, MS | tr | |
28. | 24.61 | α-Copaene | 1375 | 1374 | RI, MS | tr | |
29. | 25.02 | β-Bourbonene | 1385 | 1387 | RI, MS | 2.8 | 1.8 |
30. | 25.36 | β-Elemene | 1394 | 1389 | RI, MS | tr | tr |
31. | 26.51 | (E)-Caryophyllene | 1422 | 1417 | RI, MS | 10.8 | 7.3 |
32. | 26.86 | β-Copaene | 1431 | 1430 | RI, MS | 0.5 | |
33. | 27.92 | α-Humulene | 1457 | 1452 | RI, MS | 1.6 | tr |
34. | 28.14 | Alloaromadendrene | 1463 | 1458 | RI, MS | 0.6 | |
35. | 28.85 | γ-Muurolene | 1481 | 1478 | RI, MS | tr | |
36. | 29.09 | GermacreneD | 1485 | 1484 | RI, MS | 14.5 | 12.7 |
37. | 29.64 | Bicyclogermacrene | 1500 | 1500 | RI, MS | 2.6 | 3.0 |
38. | 29.78 | α-Muurolene | 1504 | 1500 | RI, MS | tr | |
39. | 30.03 | (E,E)-α-Farnesene | 1510 | 1505 | RI, MS | 3.3 | |
40. | 30.40 | γ-Cadinene | 1520 | 1513 | RI, MS | 0.3 | |
41. | 30.69 | δ-Cadinene | 1528 | 1522 | RI, MS | 1.7 | 2.7 |
42. | 31.34 | α-Cadinene | 1545 | 1537 | RI, MS | tr | |
43. | 32.24 | l-nor-Bourbonanone | 1569 | 1561 | RI, MS | 0.5 | |
44. | 33.19 | Caryophylleneoxide | 1592 | 1582 | RI, MS | 25.5 | 49.9 |
45. | 33.54 | Salvial-4(l4)-en-l-one | 1603 | 1594 | RI, MS | 0.6 | |
46. | 34.17 | HumuleneepoxideIl | 1618 | 1608 | RI, MS | 2.2 | 4.6 |
47. | 35.41 | α-Muurolol | 1647 | 1644 | RI, MS | 0.5 | 1.0 |
48. | 35.58 | epi-α-Muurolol | 1650 | 1640 | RI, MS | 1.8 | |
49. | 36.09 | α-Cadinol | 1662 | 1652 | RI, MS | 3.4 | 5.3 |
50. | 36.84 | Germacra-4(15),5,10(14)-trien-1-α-ol | 1694 | 1685 | RI, MS | 1.0 | |
51. | 37.26 | Amorpha-4,9-dien-2-ol | 1706 | 1700 | RI, MS | 1.9 | |
Total identified | 98.2 | 99.8 | |||||
Grouped components (%) | |||||||
Monoterpene hydrocarbons (1,4,7–9,11) | 2.4 | ||||||
Oxygen–containing monoterpenes (6,10,12–20,23,25,26) | 17.1 | 4.8 | |||||
Oxygenated sesquiterpenes (28–42) | 38.7 | ||||||
Sesquiterpene hydrocarbons (4–10) | 27.5 | ||||||
Oxygenated sesquiterpenes (43–51) | 37.4 | 65.4 | |||||
Aromatic compounds (5,22,24) | 0.4 | 2.1 | |||||
Others (2,3,21,27) | 2.2 |
N°. | t ret., min | Compound | RIexp | RIlit | Method of Identification | c% | |
---|---|---|---|---|---|---|---|
Steam/Leaves | Flowers | ||||||
1. | 6.70 | α-Thujene | 924 | 924 | RI, MS | tr | tr |
2. | 6.93 | α-Pinene | 932 | 932 | RI, MS | tr | tr |
3. | 7.41 | Camphene | 947 | 946 | RI, MS | tr | tr |
4. | 8.16 | Sabinene | 973 | 969 | RI, MS | 1.6 | 4.5 |
5. | 8.28 | β-Pinene | 976 | 974 | RI, MS, Co-I | tr | 0.5 |
6. | 8.64 | 1-Octen-3-ol | 977 | 974 | RI, MS | 2.8 | 2.0 |
7. | 8.71 | Myrcene | 980 | 988 | RI, MS | 1.1 | 1.2 |
8. | 9.12 | 3-Octanol | 994 | 988 | RI, MS | 0.6 | 0.3 |
9. | 9.67 | α-Terpinene | 1010 | 1014 | RI, MS | tr | 0.5 |
10. | 10.05 | p-Cymene | 1021 | 1020 | RI, MS | 0.4 | 0.6 |
11. | 10.18 | 1,8-Cineole | 1023 | 1026 | RI, MS, Co-I | 3.7 | 5.9 |
12. | 10.46 | (Z)-β-Ocimene | 1030 | 1032 | RI, MS | 3.0 | 2.9 |
13. | 10.84 | (E)-β-Ocimene | 1041 | 1044 | RI, MS | 2.3 | 3.0 |
14. | 11.29 | γ-Terpinene | 1054 | 1054 | RI, MS | 0.8 | 1.2 |
15. | 11.91 | cis-Sabinenehydrate | 1069 | 1065 | RI, MS | 0.8 | - |
16. | 12.41 | Terpinolene | 1083 | 1086 | RI, MS | tr | 0.6 |
17. | 12.55 | trans-Linalooloxide(furanoid) | 1086 | 1084 | RI, MS | 0.4 | 0.2 |
18. | 13.23 | Linalool | 1103 | 1095 | RI, MS, Co-I | 4.5 | 3.8 |
19. | 14.15 | cis-p-Menth-2-en-l-ol | 1126 | 1118 | RI, MS | 0.3 | tr |
20. | 15.50 | Sabinaketone | 1158 | 1154 | RI, MS | 0.6 | tr |
21. | 16.15 | Borneol | 1174 | 1165 | RI, MS | 1.7 | 1.5 |
22. | 16.57 | Terpinen-4-ol | 1184 | 1174 | RI, MS | 6.2 | 4.6 |
23. | 17.05 | Myrtenal | 1195 | 1195 | RI, MS | tr | - |
24. | 17.26 | α-Terpineol | 1200 | 1196 | RI, MS | 5.2 | 5.5 |
25. | 18.75 | Thymol, methylether | 1235 | 1232 | RI, MS | tr | tr |
26. | 20.32 | Geranial | 1272 | 1264 | RI, MS, Co-I | tr | tr |
27. | 20.96 | DihydroedulanI | 1288 | 1288 | RI, MS | 0.9 | 0.5 |
28. | 22.07 | (2E,4E)-Decadienol | 1314 | 1319 | RI, MS | tr | tr |
29. | 24.61 | α-Copaene | 1375 | 1374 | RI, MS | tr | tr |
30. | 25.02 | β-Bourbonene | 1385 | 1387 | RI, MS | 2.8 | 1.7 |
31. | 25.36 | β-Elemene | 1394 | 1389 | RI, MS | tr | tr |
32. | 26.50 | (E)-Caryophyllene | 1422 | 1417 | RI, MS | 8.4 | 8.5 |
33. | 26.87 | β-Copaene | 1431 | 1430 | RI, MS | 0.4 | 0.3 |
34. | 27.44 | Aromadendrene | 1445 | 1439 | RI, MS | tr | - |
35. | 27.92 | α-Humulene | 1457 | 1452 | RI, MS | 1.3 | 1.3 |
36. | 28.14 | Alloaromadendrene | 1463 | 1458 | RI, MS | 0.7 | 0.5 |
37. | 28.85 | γ-Muurolene | 1481 | 1478 | RI, MS | tr | tr |
38. | 29.09 | GermacreneD | 1485 | 1484 | RI, MS | 17.4 | 22.5 |
39. | 29.46 | epi-Cubebol | 1496 | 1493 | RI, MS | tr | tr |
40. | 29.61 | Bicyclogermacrene | 1500 | 1500 | RI, MS | 2.4 | 1.9 |
41. | 29.78 | α-Muurolene | 1504 | 1500 | RI, MS | tr | tr |
42. | 30.03 | (E,E)-α-Farnesene | 1510 | 1505 | RI, MS | 3.4 | 5.5 |
43. | 30.40 | γ-Cadinene | 1520 | 1513 | RI, MS | tr | 0.4 |
44. | 30.67 | δ-Cadinene | 1528 | 1522 | RI, MS | 1.9 | 1.9 |
45. | 32.05 | Elemol | 1538 | 1548 | RI, MS | 2.0 | 1.4 |
46. | 33.19 | Caryophylleneoxide | 1592 | 1582 | RI, MS | 12.5 | 7.4 |
47. | 33.66 | Guaiol | 1606 | 1600 | RI, MS | 0.5 | - |
48. | 34.18 | HumuleneepoxideIl | 1618 | 1608 | RI, MS | 1.4 | 0.9 |
49. | 35.15 | β-Eudesmol | 1647 | 1649 | RI, MS | 0.6 | - |
50. | 35.58 | α-Muurolol | 1650 | 1640 | RI, MS | 1.8 | 1.5 |
51. | 36.11 | α-Cadinol | 1662 | 1652 | RI, MS | 4.3 | 3.5 |
52. | 37.25 | Amorpha-4,9-dien-2-ol | 1706 | 1700 | RI, MS | 1.3 | 0.9 |
Total identified | 100.0 | 99.8 | |||||
Grouped components (%) | |||||||
Monoterpene hydrocarbons (1–5,7,9,12–14,16) | 8.8 | 14.0 | |||||
Oxygen–containing monoterpenes (11,15,17–24,26,27) | 24.3 | 22.4 | |||||
Sesquiterpene hydrocarbons (29–38,40–44) | 38.7 | 44.4 | |||||
Oxygenated sesquiterpenes (39,45–52) | 24.4 | 16.1 | |||||
Aromatic compounds (10,25) | 0.4 | 0.6 | |||||
Others (6,8,28) | 3.4 | 2.3 |
Essential Oil | EC50, mg/mL | |||
---|---|---|---|---|
Incubaton Time | ||||
Without Incubation | 20 min Incubation | 40 min Incubation | 60 min Incubation | |
Nonshaded oregano (stems and leaves) | / | 8.59 ± 0.034 | ||
Shaded oregano (stems and leaves) | / | 7.91 ± 0.015 | ||
Nonshaded oregano (flowers) | / | 24.63 ± 0.865 | ||
Shaded oregano (flowers) | / | / | / | * |
Wild oregano (stems and leaves) | / | / | / | * |
Wild oregano(flowers) | / | 4.78 ± 0.052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilić, Z.; Stanojević, L.; Milenković, L.; Šunić, L.; Milenković, A.; Stanojević, J.; Cvetković, D. The Yield, Chemical Composition, and Antioxidant Activities of Essential Oils from Different Plant Parts of the Wild and Cultivated Oregano (Origanum vulgare L.). Horticulturae 2022, 8, 1042. https://doi.org/10.3390/horticulturae8111042
Ilić Z, Stanojević L, Milenković L, Šunić L, Milenković A, Stanojević J, Cvetković D. The Yield, Chemical Composition, and Antioxidant Activities of Essential Oils from Different Plant Parts of the Wild and Cultivated Oregano (Origanum vulgare L.). Horticulturae. 2022; 8(11):1042. https://doi.org/10.3390/horticulturae8111042
Chicago/Turabian StyleIlić, Zoran, Ljiljana Stanojević, Lidija Milenković, Ljubomir Šunić, Aleksandra Milenković, Jelena Stanojević, and Dragan Cvetković. 2022. "The Yield, Chemical Composition, and Antioxidant Activities of Essential Oils from Different Plant Parts of the Wild and Cultivated Oregano (Origanum vulgare L.)" Horticulturae 8, no. 11: 1042. https://doi.org/10.3390/horticulturae8111042
APA StyleIlić, Z., Stanojević, L., Milenković, L., Šunić, L., Milenković, A., Stanojević, J., & Cvetković, D. (2022). The Yield, Chemical Composition, and Antioxidant Activities of Essential Oils from Different Plant Parts of the Wild and Cultivated Oregano (Origanum vulgare L.). Horticulturae, 8(11), 1042. https://doi.org/10.3390/horticulturae8111042